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ABSTRACT

Motivation: We previously reported the development of a highly accur-

ate statistical algorithm for identifying �-barrel outer membrane pro-

teins or transmembrane �-barrels (TMBBs), from genomic sequence

data of Gram-negative bacteria (Freeman,T.C. and Wimley,W.C.

(2010) Bioinformatics, 26, 1965–1974). We have now applied this iden-

tification algorithm to all available Gram-negative bacterial genomes

(over 600 chromosomes) and have constructed a publicly available,

searchable, up-to-date, database of all proteins in these genomes.

Results: For each protein in the database, there is information on (i)

�-barrel membrane protein probability for identification of �-barrels, (ii)

�-strand and �-hairpin propensity for structure and topology predic-

tion, (iii) signal sequence score because most TMBBs are secreted

through the inner membrane translocon and, thus, have a signal

sequence, and (iv) transmembrane �-helix predictions, for reducing

false positive predictions. This information is sufficient for the accurate

identification of most �-barrel membrane proteins in these genomes.

In the database there are nearly 50 000 predicted TMBBs (out of

1.9 million total putative proteins). Of those, more than 15 000 are

‘hypothetical’ or ‘putative’ proteins, not previously identified as

TMBBs. This wealth of genomic information is not available anywhere

else.

Availability: The TMBB genomic database is available at http://beta-

barrel.tulane.edu/.

Contact: wwimley@tulane.edu
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1 INTRODUCTION

The transmembrane �-barrel (TMBB) is the dominant architec-

ture of the membrane-spanning proteins found in the outer mem-

branes of Gram-negative bacteria (Schulz, 2000; Wimley, 2003).
Although it has been estimated that approximately 3% of the

proteins in Gram-negative organisms encode TMBBs (Freeman,
Jr and Wimley, 2010; Wimley, 2002, 2003), fewer than 100

unique structures have been determined experimentally

(Jayasinghe et al., 2001). The relatively slow progress in TMBB
structural characterization is partially a consequence of the

hydrophobic nature of membrane proteins, which makes stand-
ard techniques for purification and crystallization, or structure

determination by nuclear magnetic resonance (NMR), more dif-

ficult. While structural information is scarce, genome sequencing
is advancing (and accelerating) rapidly. Thus, computational

approaches that can utilize the available structural data to

predict and identify TMBBs, even in the absence of efficient

structure determination, are needed.
The complete genomic sequences of thousands of organisms

have become available in recent years, and a variety of compu-
tational tools have been developed to sift through the abundance

of genomic data toward the goal of identifying the structures and

functions of the genes that are expressed as proteins. Since this
process relies strongly on homology to known structures, the

resultant genomic database annotations for TMBBs are notice-
ably sparse. In the last decade, many computational prediction

tools have proven at least partially successful in using the infor-
mation from the limited examples of TMBBs to distinguish be-

tween TMBBs and non-TMBBs or to predict the structure and

topology of TMBBs (Bagos et al., 2004a, b; Bagos et al., 2005;
Bigelow and Rost, 2006; Bigelow et al., 2004; Freeman, Jr.

and Wimley, 2010; Garrow et al., 2005a, b; Gromiha and
Suwa, 2006a, b; Gromiha et al., 2005; Hayat and Elofsson,

2012; Hayat et al., 2011a, b; Imai et al., 2011; Jacoboni et al.,

2001; Martelli et al., 2002; Mirus and Schleiff, 2005; Ou
et al., 2008, 2010; Park et al., 2005; Randall et al., 2008;

Remmert et al., 2009; Savojardo et al., 2011; Schleiff et al.,
2003; Singh et al., 2011; Tsirigos et al., 2011; Waldispuhl et al.,

2006; Wimley, 2002). Among the various approaches are statis-
tical models, neural networks, hidden Markov models, k-nearest

neighbor, and support vector machines. We recently published a

prediction method (Freeman, Jr and Wimley, 2010) based on the
statistical prevalence of the amino acids in the transmembrane

segments of known structures, which was shown to accurately
discriminate TMBBs from non-TMBBs.

Here, we describe a comprehensive bioinformatics database
(TMBB-DB: the transmembrane beta barrel database: http://

beta-barrel.tulane.edu) generated by using the Freeman–
Wimley prediction method (Freeman, Jr and Wimley, 2010) to

analyze the protein-coding sequences of all bacterial chromo-

somes belonging to Gram-negative bacteria (currently over
600). For each of the 1.9 million proteins in the database, we

provide an overall �-barrel score that can be used to predict if a
sequence is likely to encode a TMBB. We also provide the

Freeman–Wimley �-strand and �-hairpin score profiles, which
are useful for structure and topology prediction. Furthermore,

the sequences were analyzed for the presence of an N-terminal

signal sequence because most known TMBB precursors encode
export signals at the N-terminus that allow translocon-dependent

transport across the inner membrane (Petersen et al., 2011).
Finally, we have also included a prediction for transmembrane

�-helices. This helps to eliminate false positives because TMBBs

generally do not also have TM helices. The information in the
database is sufficient for accurate identification of most �-barrel
membrane proteins in known Gram-negative genomes. There are*To whom correspondence should be addressed.
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more than 15000 ‘hypothetical’ or ‘putative’ proteins in the data-

base which are almost certainly �-barrel membrane proteins.

This wealth of genomic information is not available anywhere

else.

2 METHODS

2.1 Proteomic dataset

In order to create a database with the most complete set of TMBB pre-

dictions, we downloaded complete chromosomal data from NCBI

Entrez. The pre-translated, FASTA-formatted protein-coding sequences

from 610 chromosomes were downloaded as text from NCBI. This set

mostly includes sequences from Gram-negative bacteria, but sequences

from some acid-fast bacteria (mycobacteria) and related Gram-positive

bacteria are also included. This dataset represents the proteomes of 540

organisms, as there are several bacterial species, which have more than

one complete chromosome. There are currently 1 881 712 protein se-

quences for which predictions were made, and thus number will increase

with annual updates to the database.

2.2 Predictions

All sequences in the database were analyzed using the Freeman–Wimley

algorithm and given a �-barrel score, which was shown to be one of the

most accurate predictors of TMBBs available (Freeman, Jr and Wimley,

2010; Wimley, 2002). Briefly, the Freeman–Wimley algorithm uses the

amino acid abundances found in the transmembrane strands of TMBBs

of known structure to identify patterns in a test sequence consistent with

TMBB architecture, namely a �-hairpin with two 10-residue dyad repeat

motifs separated by a turn sequence of about five residues. Most TMBBs

also encode N-terminal signal peptides in the precursor sequence because

they are exported into the periplasmic space through the translocon ma-

chinery in the inner membrane. Thus, we used the SignalP 4 server to

predict whether or not a sequence was likely exported through the inner

membrane (Claros et al., 1997; Petersen et al., 2011). While users of the

database can choose whatever identification criteria they deem appropri-

ate, we have shown that for a sequence to be positively predicted as a

TMBB it should have a �-barrel score445 [the TMBB score is on an

arbitrary scale as discussed elsewhere (Freeman, Jr and Wimley, 2010)]. It

must also have a signal peptide predicted by the SignalP 4 algorithm,

which uses different algorithms for helical transmembrane (TM) proteins

and non-TM proteins (Petersen et al., 2011).

2.3 Score conversion

The predictions made in this database use an updated version of the

Freeman–Wimley analysis algorithm. Previously, the �-barrel score was

a positive integer value that ranged from zero to an indeterminate max-

imum value of �500. In the TMBB-DB, the scores have been converted

to a probability such that the value ranges from 0 to 1 and are more

representative of the probability function, indicating a positive prediction.

The �-barrel score modification is based on the positive predictive value

(PPV) of the �-barrel score observed in genomic sequences from

Escherichia coli. To calculate the PPV function, we analyzed all proteins

in E. coli that have definitive annotations (not ‘putative’, ‘predicted’,

‘unknown’ or ‘hypothetical’). This well-annotated dataset contains 2418

proteins, including 40 TMBBs. Importantly, all 40 positives are identified

as TMBBs in the both the National Center for Biotechnology

Information (NCBI) (RefSeq) and the UniProt sequence databases.

The area under the receiver operator characteristic (ROC) curve (true

positive rate versus false-positive rate) for our prediction algorithm,

using this annotated E. coli dataset is 0.998, showing again that the

Freeman–Wimley �-barrel score is a powerful TMBB identification tool:

PPV ¼
TP

TPþ FP
ð1Þ

The PPV is the proportion of true positives (TP) predicted to all posi-

tive predictions, including false positives (FP). This measurement can be

evaluated at a prediction threshold to estimate the probability that a

positive prediction is correct at that threshold. The PPV of the E. coli

dataset was fit with a sigmoidal model [equation (2)] where f(�) is the

probability that the �-barrel score corresponds to a correct positive pre-

diction, k is a growth constant, xc is the center of the curve through the

portion with maximum slope, and � is the �-barrel score of a sequence:

f �ð Þ ¼
1

1þ exp �k� �� xcð Þð Þ
ð2Þ

By fitting the known proteins of E. coli we obtain k¼ 0.04596 and

Xc¼ 66, where, Xc represents the midpoint of the sigmoidal PPV curve.

2.4 Database design

All prediction results have been deposited into a publicly available data-

base (http://beta-barrel.tulane.edu/). The website is constructed in two

major layers where the data layer is a MySQL database, and the user

interface layer is driven by Apache/PHP. Users may navigate to a

sequence by browsing the list of chromosomes and then browsing the

prediction data for that chromosome. Alternately, the user can search by

�-barrel score range and/or SignalP 4 score cutoff. Proteins outside of the

�-barrel score range or below the SignalP cutoff can either be hidden or

shown at the users’ discretion. An advanced search feature allows the user

to combine search terms with Boolean functions. In addition to �-barrel

score and SignalP score, valid search terms include as follows: GI (NCBI)

accession number, UniProt accession number, RefSeq accession number

(protein or genome), protein name and organism. Full data and sequence

files are downloadable at any stage. We have also made the entire data-

base available for download as a flat text file.

When the user selects a sequence of interest, they are redirected to a

page that has graphical representations of the Freeman–Wimley analysis

profile and the Wimley–White hydrophobicity profile (Wimley and

White, 1996) of the sequence. The raw data are also available. For

each protein, the user may also follow links to the UniProt database

entry or the NCBI entry for that sequence. The user may also conduct

a BLAST search where the accession number for the sequence is provided

as the search query. If a sequence of interest to a user is not included in

the database, user-friendly web version of the Freeman–Wimley analysis

software is available as is a downloadable, standalone version for single

sequences or collections. Updates to the database will be done annually

using a script-based, semi-automatic updater that we have developed.

3 RESULTS AND DISCUSSION

3.1 TMBB-DB: the transmembrane b-barrel database

We have employed a novel approach to increase the number of

correctly identified TMBBs in all available Gram-negative

chromosomes using an orthogonal prediction strategy (Fig. 1).

Our structurally based, statistical prediction method (Freeman,

Jr and Wimley, 2010) was used to score the protein sequences

with the probability that they encode TMBB domains. There are

a number of available TMBB prediction algorithms (see above),

and although they cannot always be directly compared, it

appears that the Freeman–Wimley algorithm (Freeman, Jr and

Wimley, 2010) and the BetaWare algorithm (Savojardo et al.,

2011) are the most accurate available. Here we use the

Freeman–Wimley algorithm because it is very easy to adapt it

to analyze millions of sequences rapidly. The software for single
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sequence or whole genome analysis is freely available on the

TMBB-DB page (http://beta-barrel.tulane.edu) and on our

main �-barrel page (http://www.tulane.edu/�biochem/WW/

Barrel.html).
A revised scoring convention has been adopted for TMBBs to

simplify the interpretation of the Freeman–Wimley �-barrel
score. The �-barrel score is a cardinal value that ranges from

zero to an indefinite maximum of around 500. The known se-

quences from the proteome of E. coli were used as a test case to

evaluate the relationship between the �-barrel score and the

probability of making a correct positive prediction. This dataset

included 40 known TMBBs and 2378 known non-TMBBs. Other

proteins were ignored for this calculation. The PPV or probabil-

ity that a positive prediction is correct increases as the �-barrel

score threshold increases (Fig. 2). The data fit a sigmoidal model

[equation (2)] with an R2 of 0.996. The parameter values given by

the fit are k¼ 0.04596, and Xc¼ 66. This model is used to convert

a �-barrel score into a probability between 0 and 1, which sim-

plifies the interpretation of a �-barrel score. Using this equation,

the threshold �-barrel score that we use in our work (45) corres-

ponds to a converted probability score of 0.28. However, we note

that the TMBB-DB database contains all data for all proteins so

that users can identify TMBBs using any criteria they choose.
The majority of TMBBs also encode an N-terminal export

signal peptide in the translated precursor, which signals secretion

across the inner membrane via the Sec translocon machinery

(White and von Heijne, 2004). The SignalP 4 server is the most

accurate signal peptide prediction tool available (Petersen et al.,

2011). It follows that an ideal positive prediction for a TMBB is a

sequence that has a high �-barrel score and high SignalP score.

Based on our previous work (Freeman, Jr and Wimley, 2010), we

use a threshold �-barrel score of 45 (probability score of 0.28, see
above) for putatively identifying TMBBs. While the user can

select any desired signalP cutoff, we wanted to use an inclusive

SignalP score cutoff as default in the database to match the in-

clusive �-barrel probability cutoff (PPV) of 0.28. To find an ap-

propriate value, we examined the scores for known TMBBs and

non-TMBBs. A SignalP cutoff of 0.3 identifies 93% of all

known, classical, certain TMBBs (annotated as ‘porin’, ‘outer

membrane protein’ or TonB-dependent receptor/transporter

and having a very high �-barrel probability between 0.99 and

1.00) as having a signal sequence, while identifying only 13% of

non-TMBBs as having one, a value that is similar to the percent-

age in the entire genome database.
A test case was performed to illustrate how the combined

Freeman–Wimley and SignalP analyses can be used to predict

unidentified TMBB-encoding sequences. The analysis data of a

known and predicted TMBB are shown in Figure 3. The known

TMBB, the 8-stranded colicin S4 receptor in Escherichia coli

(OmpW), received strongly positive scores in SignalP and has a

�-barrel score ranked in the 64th percentile among positively

Fig. 3. TMBB prediction analysis. Sample protein sequences were ana-

lyzed for propensity to fold into TMBBs. The Freeman–Wimley predic-

tion plots show the �-strand and �-hairpin prediction scores over the

sequences of OmpW and ECS5270 (gi 38704255), a predicted TMBB

from E. coli O157 (strain Sakai). Threshold values are indicated for

each. The �-hairpin threshold is an empirical value. Most TMBBs have

a significant portion of their sequence above the threshold. The structure

of OmpW has been solved (Hong et al., 2006). It has eight transmem-

brane �-strands arranged in four hairpins. The topology prediction of the

hypothetical protein looks very similar to OmpW, which suggests it has a

similar structure. The signal peptide scores for both sequences indicate

that a signal peptide is present. Although it has not been studied experi-

mentally, ECS5270 is predicted with high confidence to be a TMBB using

this orthogonal strategy of TMBB and signal peptide prediction

Fig. 2. From �-barrel score to probability. (A) The probability that a

particular �-barrel score is a positive prediction can be estimated from an

assessment of the PPV and a function of the arbitrary �-barrel score for a

given dataset. The dataset used to assess the PPV of the �-barrel score
included the annotated genes from an E. coli chromosome. There were 40

TMBBs and 2378 non-TMBBs identified out of 5253 total sequences

(see the text). Proteins annotated as hypothetical, putative, or predicted

were excluded. The PPV was plotted as a function of �-barrel score and
was fit with a sigmoidal function. (B) Histogram of �-barrel probability

for the E. coli O157 genome. Based on our previous work, a protein with

probability value above 0.28 (�-barrel score above 45) is a strong candi-

date TMBB

Fig. 1. Prediction of TMBBs using signal peptide prediction and TMBB

structure prediction. Schematic of a TMBB-encoding protein shows

signal peptide predicted using SignalP (Petersen et al., 2011) and

TMBB domain using Freeman–Wimley �-barrel analysis (Freeman, Jr

and Wimley, 2010). The Freeman–Wimley algorithm is as follows: (i)

amino acid abundances are assigned to each residue within a 10-residue

sliding window. The three terminal residues at either end are assigned as

interfacial residues and the remainder as bilayer core residues. (ii) The

�-strand score is the sum of scores within the window, where peaks in-

dicate the middle of predicted �-strands. (iii) The �-hairpin score is a sum

of �-strand scores, where two �-strand peaks are separated by a

five-residue gap (representing the hairpin turn). (iv) The topology predic-

tion shown in the �-hairpin score is simplified to a single value called the

�-barrel score
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predicted sequences, with a �-barrel probability score of 0.97.

ECS5270 (gi 38704 255) a hypothetical protein in E. coli of simi-

lar length to OmpW received similarly high scores in SignalP and

has a �-barrel score ranked in the 74th percentile among posi-

tively predicted sequences with a �-barrel probability score of

0.99. A BLAST search suggested that the hypothetical sequence

is a member of the KdgM superfamily which is a family of porins

associated with acidic sugar transport (Blot et al., 2002) and

biofilm formation (Blot et al., 2002; Freeman, Jr et al., 2011).

This test demonstrates how potential biologically relevant

TMBB sequences can be identified using the outlined prediction

strategy despite the uninformative annotations commonly found

in genomic databases.

The �-barrel score profile of an entire genome can provide

useful insights into the biology of an organism. The plots

shown in Figure 4 exemplify the scoring profiles of entire gen-

omes. The legend in the upper right shows the quadrants based

on the TMBB score and signal peptide score cutoff values that

we use. The three organisms chosen were Francisella tularensis,
which causes the sometimes fatal disease, tularemia, an entero-

pathogenic strain of E. coli, and Flavobacterium johnsoniae.
Approximately 2.3% of the proteins in E. coli and in F. tularensis
have �-barrel probabilities greater than 0.28 and signal sequence

scores greater than 0.3 and thus are predicted to encode TMBBs.
The genome of F. tularensis has only about 1/3 as many proteins
as E. coli, but it also has about 1/3 as many TMBBs. In contrast,

while having a slightly smaller proteome than E. coli, 10.6% of
the proteins in F. johnsoniae are predicted to encode TMBBs, one
of the highest proportions observed in any genome. The surpris-

ingly large proportion of outer membrane proteins in F. johnso-
niae may correlate with two of its highly unusual capabilities,
gliding cell motility, and cell surface-localized chitin digestion

(McBride, 2004). An indication of the discriminatory power
of the combined prediction analysis is shown by the fact that
sequences that concurrently have predicted signal sequences

and high �-barrel scores typically include mostly known
TMBBs and unknown or hypothetical proteins. Obvious false
positives are rare in this quadrant.
However, a small proportion of known TMBBs do not have

recognizable signal sequences, and these will fall in the upper left
quadrant. To assess the rate of false negative predictions that
could result from this, we used the TMBB-DB database. We

searched for all proteins annotated as ‘outer membrane protein,’
which are mostly defined by homology to known TMBBs and
are thus true positives. We found that 4508 of 5348 (84%) of

these proteins have a signal sequence. If the search is restricted to
the very high-scoring sequences (�-barrel probability40.9), the
proportion is even higher: 2141/2361 or 91% of the sequences

have a signal sequence. Proteins annotated as ‘porin’ have signal
sequences at a rate of 94% (2585/2757) and proteins annotated
as ‘TonB-dependent transporters’ or ‘TonB-dependent receptors’

have signal sequences at a rate of 3890/4293 or 91%. We con-
clude that490% of the classical, well-described classes of con-
stitutive TMBBs have signal sequences that are recognized by

SignalP, compared to about 16% of the proteins in the genomes,
overall.
We then examined ‘autotransporter’ proteins in the database

because members of that class of transmembrane �-barrel

Fig. 4. Analysis of sample genomes. Three sample genomes of

Gram-negative organisms were analyzed using the dual strategy of

TMBB prediction and signal peptide prediction. The results for each

protein in each genome are plotted in the two-dimensional scatter plot.

The coloring of the plots indicates the density of points in an area, with

red being the most dense, and purple being the least dense. The plot in the

upper right shows a legend identifying where certain classes of proteins

will populate the scatterplots. In this panel, we also show values for the 40

known TMBBs of E. coli. These genomic data show that most proteins

score near zero using both prediction methods (Signal peptide and

�-barrel). TMBBs, i.e. sequences with high �-barrel scores and high

signal peptide prediction probability, range in these examples from 2.1

to 10.6% of the genomes

Fig. 5. Overall database statistics. ‘Left’: Current database coverage.

A positively predicted TMBBs has a �-barrel probability40.28 and a

SignalP score40.3. Unknown TMBBs are positively predicted unknown

or hypothetical proteins. ‘Right’: Histogram of TMBB in % of genome.

‘Inset’: The region above 5%, highlighting the few genomes with

high-TMBB content. Most genomes have between 1 and 5% TMBBs

and the median value is 2.5%
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protein are thought to have signal sequences less frequently
(Kim et al., 2006). Autotransporters have an N-terminal secreted

protein domain and a C-terminal �-barrel domain, which specif-
ically transports the secreted portion of the chain across the outer

membrane (Kim et al., 2006). In the TMBB-DB, 96% (647/672)

of proteins annotated as ‘autotransporter’ have �-barrel prob-
ability score over the threshold of 0.28, but only 73% of those

have signal sequence scores greater than 0.3. Even in the auto-
transporters with the highest �-barrels core (�-barrel probability
40.9), which are very likely to be true positives, only 71% (377/

552) contain recognizable signal sequences. While the proportion
of autotransporters with signal sequences is lower than for clas-

sical TMBBs, it is still much higher than the background
abundance of about 16%. We conclude that the combination

of �-barrel probability and signal sequence allows for the iden-

tification of most TMBBs in these genomes, including
autotransporters.

3.2 Comparison to other databases

There are many algorithms available online for the identification
of TMBBs or for structure/topology prediction (Bagos et al.,

2004a, b; Bagos et al., 2005; Bigelow et al., 2004; Bigelow and
Rost, 2006; Freeman, Jr andWimley, 2010; Garrow et al., 2005a,

b; Gromiha and Suwa, 2006a, b; Gromiha et al., 2005; Hayat

et al., 2011a, b; Hayat and Elofsson, 2012; Imai et al., 2011;
Jacoboni et al., 2001; Martelli et al., 2002; Mirus and Schleiff,

2005; Ou et al., 2008, 2010; Park et al., 2005; Randall et al.,
2008; Remmert et al., 2009; Savojardo et al., 2011; Schleiff

et al., 2003; Singh et al., 2011; Tsirigos et al., 2011; Waldispuhl

et al., 2006; Wimley, 2002). These include the Freeman–Wimley
statistical algorithm we used here (Freeman, Jr and Wimley,

2010; Wimley, 2002), which is one of the most accurate and
easiest to use for the analysis of whole genomes. There are

other databases containing predicted TMBBs in genomes

(Remmert et al., 2009; Tsirigos et al., 2011). The information
available in these published resources is also useful. However,

what we have provided by constructing the TMBB-DB database

is unique, and thus complements and extends existing databases
(Figure 5). We have used a highly accurate algorithm to score all

of the proteins in all available Gram-negative genomes and have
added signal peptide and transmembrane helix predictions for

added stringency. Our annotated, and up-to-date, database of

all proteins in Gram-negative genomes enables the most accurate
and comprehensive identification of transmembrane �-barrel
membrane proteins available. This information has utility in
fields ranging from bioinformatics (e.g. genome annotation) to

medicine (e.g. vaccine design).
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