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Gut Microbiota

The gut contains an immense and complex microbial ecosys-
tem, comprising a myriad of bacteria, of which most are strict 
anaerobes.1 The term “gut microbiome” is used to describe the 
constituents of the microbiota, ranging from its bacterial genes 
to their proteins and metabolites.2 While the gut microbiome 
is assumed to be similar between family members,3 recent data 
suggest that the human microbiome may be subgrouped into 
‘enterotypes’ depending on bacterial prevalence.4 Gut microbiota 
serve the host by protecting against pathogens, participating in 
the intake of dietary nutrients, metabolizing certain drugs and 
carcinogens, and influencing the absorption and distribution of 
fat.5 The influence of the microbiota extends beyond the gastro-
intestinal (GI) tract; contributing to, for example, pain percep-
tion in the skin6 and fat deposition in the liver.7,8 Disruption of 
the symbiotic relationship between the microbiota and the GI 
tract9 perturbs host functions and, in some cases, will contribute 
to a “leaky” gut-immune barrier10 leading to malfunction and ill-
ness such as inflammatory bowel disease (IBD) and Clostridium 
difficile colitis.11

Although it is known that a bi-directional communication 
between the GI tract and the central nervous system (CNS) 
occurs, less is known on how microbiota can influence this gut-
to-brain communication. Recent data, however, have begun to 
shed some light on the ability of microbiota to influence behavior 
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Mammalian brain development is initiated in utero and internal 
and external environmental signals can affect this process all 
the way until adulthood. Recent observations suggest that 
one such external cue is the indigenous microbiota which has 
been shown to affect developmental programming of the 
brain. This may have consequences for brain maturation and 
function that impact on cognitive functions later in life. This 
review discusses these recent findings from a developmental 
perspective.
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in mice.12-15 The mechanisms are essentially unknown but are 
currently subject to intense investigation.

Gut-brain axis. The brain and the gut are highly integrated 
organs, with communication occurring in a bidirectional manner 
via passive and active mechanisms including neural, immuno-
logical and endocrine pathways as well as through hypothalamic-
pituitary-adrenal (HPA) stress axis16-18 (Fig. 1). Research on 
gut-brain axis has focused on top-down communication on how 
the brain affects GI motility, blood flow and secretion, and on the 
bottom-up effects of intestinal activity on visceral perception and 
CNS activity. The neuroanatomy of the gut-brain axis has been 
reviewed elsewhere.19,20

Gut microbiota-to-brain. Over the years, the ability of micro-
biota to impact on brain function has been subject to an intense 
debate following the observation that administration of oral 
antibiotics and laxatives resulted in a dramatic improvement in 
patients with hepatic encephalopathy.21,22 The observation that 
common categories of GI diseases (functional and inflamma-
tory) often display correlation with psychiatric comorbidity that 
includes depression and anxiety in up to 80% of patients, sup-
ports the possibility that alteration of microbiota can affect CNS 
function.23,24 These clinical findings are supported by results 
from animal studies showing that certain pathogenic enteric bac-
teria, during the initial phase of infection, can induce an anxiety-
like behavior.25 Furthermore, microbiota has also been shown to 
modulate the levels of adreno-corticotrophic hormone (ACTH) 
in mice.13 Hence, the term: “gut feelings” and its role in intui-
tive decision making has perhaps some bearing and the Asian 
understanding of the gut being the “location of the soul and the 
center of spiritual and physical strength” and not only a simple 
digestive system are in support of these findings.26,27 These find-
ings were recently corroborated by us28 and others14,29 in which it 
was shown that germ free (GF) mice display (1) increased motor 
activity and reduced anxiety (2) decreased N-methyl-d-aspartate 
receptor subunit NR2B mRNA expression in the amygdale, (3) 
decreased 5HT-1A receptor in the hippocampus and (4) increased 
expression of brain-derived neurotrophic factor (BDNF) in the 
hippocampus.14,28-30

Modification of microbiota by a combination of probiotics 
(Lactobacillus helveticus and Bifidobacterium longum) has been 
shown to reduce anxiety in animals and bring beneficial psy-
chological effects with a decrease in serum cortisol in patients.31 
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the release of bacterial metabolites, neuropep-
tides or directly by activating vagal pathways 
at the level,33 the precise pathways remain to be 
identified (Fig. 1).

Brain-to-gut microbiota. Whereas the focus 
of current research is mainly on studying the 
influence of gut microbiota on the brain, there 
are also data to suggest that descending signals 
from CNS can alter the composition and func-
tion of the gut microbiota in rodents34,35 and 
primates.36,37 For example, while acute stress 
increased colonic paracellular permeability 
involving overproduction of IFN-gamma and 
a decrease in mRNA expression of ZO-2 and 
occludin,38 stress induced secretion of norepi-
nephrine favored overgrowth of non-pathogenic 
isolates of Escherichia coli as well as the patho-
genic E. coli 0157:H7.39,40 Other mechanisms 
such as changes in mucus secretion41 and in GI 
motility42 have also been shown to affect gut 
microbiome composition (Fig. 1).

Gut Microbiota and Brain Development 
(Prenatal and Postnatal)

The prenatal and postnatal periods in mam-
malian development are characterized by rapid 
changes in neuronal organization, thus provid-
ing a critical window of opportunity during 
which environmental factors could have long-
term influences on brain and behavior. During 
the last few years, a number of studies pointed 
to an ability of microbiota to influence the fine 
maturation of the brain which have long lasting 
effects on functions of the brain.13,28

Prenatal. A rapidly growing body of empiri-
cal evidence supports the Barker hypothesis 
regarding the influence of the intrauterine envi-

ronment on fetal development and susceptibility to a wide range 
of metabolic, neurodevelopmental and psychiatric diseases later 
in life.43 The developing brain has been shown to be susceptible 
to both internal and external environmental cues during prena-
tal life. Epidemiological data have indicated a possible common 
link between neurodevelopmental disorders, such as autism and 
schizophrenia, and microbial pathogen infections during the pre-
natal period.44-46 Experimental studies in rodents further support 
these findings, demonstrating that exposure to microbial patho-
gens during similar developmental periods results in behavioral 
abnormalities, including anxiety-like behavior and impaired 
cognitive function.47-49 The role of gut microbiota in modulating 
mood and behavior has been the focus of many research stud-
ies.14,28,29 As mentioned above, GF mice display increased motor 
activity and decreased anxiety compared with conventionally 
raised mice. Notably, colonizing adult GF mice with a whole 
microbiota failed to normalize the behavior of GF mice. On the 
other hand, colonizing the mother for at least 30 d before mating 

Furthermore, Bravo et al. showed that long lasting treatment 
of mice with the probiotic bacterium Lactobacillus rhamnosus 
appears to impact on emotional behavior and the expression of 
the neurotransmitter GABA (γ-aminobutyric acid) in the CNS 
in a region-dependent manner.32 Likewise, Lactobacillus rham-
nosus treatment may be associated with a decrease in corticoste-
rone levels as well as anxiety- and stress-related behavior. These 
alterations were not observed in vagotomized mice, indicating 
the vagus nerve may be part of the communication pathways 
that allow communication between the gut and the brain.32 By 
analogy, Li et al., have observed a temporal association between 
diet-induced alterations in intestinal microbiota diversity and 
changes in working and reference memories.15 Consistent with 
Li’s findings, Gareau et al., showed that memory dysfunction in 
Citrobacter rodentium infected mice was prevented by daily treat-
ment with probiotics.33 The study also showed a deficit in non-
spatial and working memory in GF mice even in the absence of 
stress. While several mechanisms have been proposed, including 

Figure 1. Bidirectional communication between the gut microbiota and the central 
nervous system (cNS). The composition of gut microbiota could modulate the function 
of cNS through various communication means including neural (vagus nerve activa-
tion), hormonal (enteroendocrine cells and bacterial neuropeptides), humeral (bacterial 
metabolites) and immunological (activation of mucosal immune system). The brain-to-gut 
microbiota axis is mediated via stress factors, alteration in intestinal permeability and 
motility and through release of neurotransmitters and mucus.
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two strains are then replaced with Bifidobacterium adolescentis 
and by other strains of the same species.74 Using bifidobacteria “of 
human infant intestinal origin” in probiotics may have beneficial 
effects on depression in rats exposed to maternal separation stress 
in early life.12 Recently, Stanton and coworkers showed that feed-
ing mice with two forms of bifidobacteria isolated from infant 
feces could influence brain fatty acid composition.75 These stud-
ies show the ability of infant microbiota to reset and influence 
neurophysiological parameters.

Gut microbiota also synthesize vitamins that are essential for 
human survival such as vitamins K2 and B12. Vitamin B12 or 
cobalamin is produced mainly by Lactobacillus reuteri76 and is 
important for development of the nervous system.77,78

Further evidence for the role of microbiota on postnatal brain 
development came from animal studies on GF mice. The activity 
of the HPA axis13 and more recently the hippocampal serotonergic 
system79 are altered in GF mice with elevation in corticosterone 
and serotonin levels. Colonisation of GF mice post weaning was 
insufficient to reverse the CNS neurochemical consequences79 
and had no effect on the HPA axis,13 introducing the notion of a 
critical time window very early in life. These finding gives sup-
port to the microflora hypothesis80—an extension of the hygiene 
hypothesis which suggests that insufficient exposure to microbi-
ota early in life may affect the composition and maturation of the 
adult microbiota that, in turn, skews the immune development 
in a way that increases susceptibility to contract allergic, and 
immune related diseases. The micorflora hypothesis may also be 
considered in the etiology of autism81—a neurodevelopment dis-
order of unknown etiology that starts to develop in the late post-
natal period. Numerous reports have pointed to a possible role 

was successful in reverting the behavioral phenotype in the off-
spring.28 This interesting finding hints to a crucial role of the 
microbiota on the mother during pregnancy that might have pro-
gramming effects later in life. The fetus lives in an almost sterile 
environemt50-53 and communicates with the mother through the 
placenta54 (Fig. 2). It is possible that maternal microbial metab-
olites could reach the growing fetus through the placenta and 
affect fetal brain development. Several recent studies indicate an 
important role of the placenta in shaping the fetus development. 
The placenta, nicknamed the fetal armor,55 has been shown to 
protect the fetus from damage when the mother is deprived of 
food by breaking down its own tissue (placental autophagy) to 
nourish energy demanding organs like the fetal brain.56 The pla-
centa appears also to provide the hormone serotonin essential for 
fetal forebrain development.57 Using a novel ex vivo preparation, 
the authors demonstrated that the placenta could convert mater-
nal tryptophan into the neurotransmitter serotonin (5-hydroxy-
tryptophan; 5-HT), providing the primary source of 5-HT for 
the developing mouse forebrain at midgestation.57 The hormonal 
interaction between the placenta and the fetal hypothalamus-
pituitary adrenal axis (HPA) was shown to be involved in regulat-
ing fetal brain development especially during stress. In rodents, 
prenatal stress had programming effects that extended to adult-
hood. These effects included elevation of stress-induced HPA 
axis activity,58,59 increased anxiety and behavioral reactivity/fear-
fulnes,60-62 decreased hippocampal glucocorticoid binding capac-
ity58,63 and a decline in cognitive performance.64 Several studies 
pointed to the effect of microbiota in modulating the activity of 
HPA axis. Prenatally, maternal probiotic supplementation dur-
ing pregnancy and lactation normalized the high corticosterone 
concentrations and restored corticotrophin-releasing hormone 
seen in maternally separated neonates.65 The mechanism whereby 
microbiota influences brain prenatally is yet to be determined, 
but the placenta is one of several possibilities.

Postnatal. The postnatal period is another critical period for 
brain development. For most vertebrates, the majority of organs 
and tissue development occurs during embryogenesis, and post-
natal changes are primarily concerned with growth. However, 
the CNS is different in that a considerable amount of morpho-
logical development, cell differentiation and acquisition of func-
tion, takes place during postnatal development.66 Colonization of 
the GI tract with microbiota begins postnatally at birth, overlap-
ping with this critical period of brain development. Microbiota 
colonization is actually influenced to a great degree by mode of 
delivery67 and feeding patterns68 (Fig. 2). Clinical studies have 
shown that breast-fed infants have better neurodevelopment out-
comes and higher scores on intelligence tests.69,70 The microbiota 
of breast-fed infants appear to be more diverse and heterogeneous 
than the formula-fed according to a recent metagenomic study.71 
However, the effect of breastfeeding on the composition of the 
infant gut microbiota, more specifically on the predominance 
of bifidobacteria is still controversial. Several reports72,73 found 
no difference for bifidobacteria between breast-and formula-fed 
infants. Interestingly the strains of bifidobacteria that colonize the 
infant intestine are different from adult predominating mainly 
with Bifidobacterium longum and Bifidobacterium bifidum. These 

Figure 2. Gut microbiota-to-Brain communications during prenatal and 
postnatal development.
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profiling of GF and conventionalized mice have revealed that 
conventionalization of GF mice by gut microbiota results in a 
2.8-fold increase in plasma serotonin levels.99 In line with this 
study, administration of the commensal bacteria, Bifidobacteria 
infantis, increased the plasma concentration of tryptophan, sug-
gesting that the normal microbiota can influence the precursor 
pool for serotonin (5-HT).12 It has been reported that microbiota 
may express and secrete neuropeptide like molecules proposed to 
influence behavior and emotion.100

Stimulation of afferent system to CNS. Another possible 
mechanism mediating the gut-brain communication may be via 
established neuronal circuits. Microbiota can elicit signals via the 
vagal nerve to the brain and vice versa.101,102 Several reports showed 
or supported a direct link between microbiota and the ENS. Oral 
ingestion of Lactobacillus rhamnosus has been shown to reduce 
stress-induced corticosterone and anxiety- and depression-related 
behavior in mice via the vagal nerve.32 Moreover, using another 
Lactobacillus strain, Lactobacillus reuteri, Kunze and colleagues 
observed activation in calcium-dependent potassium channels 
in a specific subset of enteric neurons in the colonic mysenteric 
plexus of Sprague Dawley rats,103 thus pointing to a direct link 
between microbiota and the ENS. Another study showed that 
treatment of Trichur muris infected mice with a specific probi-
otic Bifidobacterium longum was effective in normalizing anxi-
ety-like behavior exhibited by the infected mice. This effect of 
Bifidobacterium longum required an intact vagus nerve and was 
not accompanied by changes in gut immune functions.104

Activation of the mucosal immune system. The gut is 
patrolled by a variety of immune cells such as T-regulatory cells 
and antigen presenting cells (APC) which could traffic from the 
gut associated immune cells (GALT) to other peripheral lym-
phoid sites including the CNS. Recent studies established that 
GALT is shaped by components of the gut microbiota, some 
supporting the differentiation of interleukin (IL)-17-producing 
TH17 cells,105-107 while others the generation of regulatory T lym-
phocytes (Treg).108 Immune cell populations induced within the 
gut could cross the blood-brain barrier and within the CNS be 
reactivated by the appropriate resident APC.109

Endocrine mechanisms. Enteroendocrine cells (EEC) form 
the basis of the largest endocrine system in the body. They 
secrete gut hormones such as cholecystokinin (CCK), glucagon-
like peptide-1 (GLP-1), oxyntomodulin, gut peptide YY (PYY) 
which control food intake and energy homeostasis. The brain 
receives hormonal signals from the EEC via two main mecha-
nisms either by a paracrine effect on proximate cells (notably 
vagal afferent fibers), or by a classical endocrine fashion through 
the circulation acting mainly on the hypothalamus where the 
blood-brain barrier is leaky or absent. Gut microbiota have been 
reported to regulate EEC and influence the release of gut hor-
mones.110 Furthermore, the presence of gut microbiota is nec-
essary for the differentiation of EEC in zebrafish.111 Cani et al. 
in a series of studies showed a connection between gut micro-
biota and levels of two gut hormones GLP-1 and GLP-2. GLP-1 
promotes satiety and weight loss112 while GLP-2 stimulates 
intestinal glucose transport and reduces gut permeability.113 In 
rats, oligofructose treatment, which increases the proportion of 

of microbiota in the development of autism: (1) most children 
with autism often experience a range of GI disorders, (2) onset of 
the disease usually follows antimicrobial therapy, (3) a significant 
percentage of children with late-onset autism (18–24 mo of age) 
have a history of extensive antibiotic use and (4) oral vancomycin 
treatment showed a decrease in autistic symptoms, while relapse 
occurs following cessation of treatment.45,82 Real time qPCR83 
and culture-based microbiota45 profiling techniques support the 
possibility that alteration in microbiota may contribute to disease 
phenotype. For example, a 10-fold increase in certain clusters 
of Clostridium spp in stool samples from autistic children com-
pared with healthy controls has been observed. The authors fur-
ther speculated on the possibility that exposure to trimethoprim/
sulfamethoxazole antibiotics were more likely to precede diag-
nosis of late-onset autism than exposure to any other antibiotic 
regimen because trimethoprim/sulfamethoxazole are not effec-
tive against Clostridium spp, while oral vancomycin specifically 
targets Gram positive organisms which include Clostridium 
spp.45 It has also been suggested that Clostridia spores could be 
one reason for the high rates of autism seen among siblings.84 
Additional mechanisms are of course equally possible and great 
caution needs to be exercised in the interpretation of these data 
on autism and it could very well be a chicken-and-egg situation 
whereby symptoms observed in autistic children were the result 
of their autism rather than the cause.

Putative Mechanisms Underlying Microbiota Brain 
Axis

Bacterial metabolites and bacterial neuro-like peptides. Dietary 
carbohydrates can be digested in colon by gut microbiota into 
short chain fatty acids (SCFA) such as butyrate, acetate and 
proprionate.85 SCFA are sensed by G protein coupled receptors 
(GPRs), GPR41 and GPR43, which induce colonic motility, 
regulate appetite86 and suppress colon cancer.87 Butyrate can be 
directly used by colonocytes as an energy source, whereas propio-
nate and acetate are taken up directly to the blood stream and 
transported to various organs.88,89 Butyrate as well as propionate 
are strong inhibitors of histone deacetylases (HDACs), whereas 
acetate is not able to block HDAC functions.90 Oral adminis-
tration of acetate91 or butyrate92 was able to ameliorate the dis-
ease phenotype in DSS-induced colitis model in mice. SCFAs 
can interact with nerve cells by stimulating sympathetic nervous 
system93 and butyrate in particular has been suggested to influ-
ence memory and learning processes via HDAC inhibition.94,95 
Moreover systemic injection of butyrate exerted a potential anti-
depressant effect by inducing histone hyperacetylation in mice 
that had increased BDNF transcripts in the frontal cortex.96 
On the same treatment regime another SCFA, propionate, has 
been reported not only to accelerate an autism-like behavior in 
rodents97 but also to impair specific object recognition and social 
behavior in rats exposed to propionate compared with controls.98

Modulation of transmitters (e.g., serotonin, melatonin, 
gamma-aminobutyric acid, histamines and acetylcholine) within 
the gut is yet another possible mechanism of action that could 
mediate the effects of the gut microbiota. For example, metabolic 
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signaling affect brain development? How beneficial it is to sup-
ply mothers during pregnancy with probiotics or prebiotics to 
shape neural development of the fetus? One of the great advan-
tages in addressing these questions is the fact that we have the 
tools and techniques to study the microbiota-gut-brain axis. This 
include mechanistic studies in rodents and in piglets which can 
be translated into the human situation. Germ free animals such 
as rodents and piglets are a tremendous tool to study such interac-
tions. Stool samples for metagenomic sequencing and gut tissue 
that can be easily obtained by endoscopic biopsies for analysis of 
signaling mechanisms. With the rapid expansion of non-inva-
sive techniques to monitor brain structure, function and signal-
ing, we are quite hopeful that we will see a rapid and significant 
progress in unlocking the mysterious black box of Gut. Thus, by 
modulating microbiota, you may modulate the mind.
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Bifidobacteria has been associated with an increase in GLP-1 
secreting EEC in the colon.110 Ob/ob mice treated with a prebi-
otic had an altered gut microbiome and higher levels of GLP-1 
and GLP-2.114 Another evidence for the role of gut microbiota in 
modulating gut hormones comes from studies after gastric bypass 
surgery which showed a large shift in the bacterial population 
of the gut. Firmicutes which were dominant in normal weight 
and obese individuals, decreased significantly in individuals after 
gastric bypass surgery.115 As we know, gut hormones are able to 
reduce appetite and weight loss after gastric bypass surgery.116,117 
Interestingly, administration of probiotics after surgery induced 
an accelerated weight loss,118 thus supporting the notion that gut 
microbiota could indeed modulate gut hormones.

Summary/Conclusion

Considerable progress has already been made in understanding 
the bi-directional crosstalk governing the gut-brain axis, however 
we are only just beginning to realize the physiological impact 
of the microbota on this process. The finding that microbiota 
can modulate behavior raises the prospect of its involvement in 
developmental programming. How does microbiota-to-brain 
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