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Abstract
In genome-wide association studies (GWAS), multiple diseases with shared controls is one of the
case-control study designs. If data obtained from these studies are appropriately analyzed, this
design can have several advantages such as improving statistical power in detecting associations
and reducing the time and cost in the data collection process. In this paper, we propose a study
design for GWAS which involves multiple diseases but without controls. We also propose
corresponding statistical data analysis strategy for GWAS with multiple diseases but no controls.
Through a simulation study, we show that the statistical association test with the proposed study
design is more powerful than the test with single disease sharing common controls, and it has
comparable power to the overall test based on the whole dataset including the controls. We also
apply the proposed method to a real GWAS dataset to illustrate the methodologies and the
advantages of the proposed design. Some possible limitations of this study design and testing
method and their solutions are also discussed. Our findings indicate the proposed study design and
statistical analysis strategy could be more efficient than the usual case-control GWAS as well as
those with shared controls.
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1 Introduction
Due to the relatively small effect sizes of single-nucleotide polymorphisms (SNPs) in
GWAS, usually a large sample is required to detect SNPs associated with the disease of
interest. Since the data collection and genotyping in GWAS can be costly and time
consuming, it is desirable to have study design and statistical analysis strategy that can
reduce the sampling effort but without sacrificing the power in detecting significant
associations.
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GWAS with multiple diseases and shared controls has been conducted recently and it has
been shown that GWAS with multiple diseases and shared controls is more efficient than the
usual case-control GWAS where one group of cases and one group of controls are used (see,
for example, The Wellcome Trust Case Control Consortium, 2007 (for convenience, we will
cite this article as WTCCC, 2007 hereafter); The Wellcome Trust Case Control Consortium
& The Australo-Anglo-American Spondylitis Consortium, 2007 (for convenience, we will
cite this article as WTCCC & AAASC, 2007 hereafter); Craddock et al., 2010). Using
shared controls will dramatically reduce the required sampling effort and the related cost and
time for data collection.

Different statistical approaches can be used to detect the associated SNPs or copy number
variants (CNVs) for data obtained from GWAS with multiple diseases and shared controls.
For example, one can use the concept of expanded controls by treating all or part of the
cases from other diseases as controls (WTCCC, 2007; WTCCC & AAASC, 2007; Craddock
et al., 2010) and then apply those standard statistical association tests, such as Cochran-
Armitage trend test (CATT) (Cochran, 1954; Armitage, 1955), Pearsons chi-square test and
some robust tests (Freidlin et al., 2002; Zheng and Ng, 2008; Chen, 2011; Chen and Ng,
2012), to compare the individual interested disease and the pooled controls.

Chen et al (2012) have shown that the aforementioned statistical test procedures using
shared controls can produce inflated false positives because multiple tests were conducted
for the same SNP and decrease the statistical power in detecting associations when the
Bonferroni correction was used. An alternative procedure to test for associations for GWAS
with multiple diseases and shared control is the overall chi-square test applied to a (d + 1) ×
3 contingency table, where d is the number of diseases. Specifically, for a given SNP, there
are three possible genotypes and we have a (d + 1) × 3 contingency table, where the (d +
1)th disease is the control. Under the null hypothesis that a particular SNP is associated with
none of the d diseases, the chi-square test statistic based on this (d + 1) × 3 contingency
table has an asymptotic chi-square distribution with degrees of freedom (df) equal to 2d.

In this paper, we proposed a study design for GWAS in which multiple diseases are studied
without controls. This study design is motivated by a real dataset of a GWAS with 4
diseases and shared controls, where we found that comparable power can be obtained by an
overall chi-square test applied to the d × 3 contingency table when the shared controls are
ignored. To study the power properties of the overall chi-square tests with and without
controls, a simulation study is performed to compare the power of the overall test without
controls with those tests with different numbers of controls. These simulation results show
that when the number of diseases is not too small (say, greater than or equal to 4), using
controls does not provide any gain in the statistical power.

2 Material and Methods
2.1 Pearson’s Chi-square Tests for Associations

Suppose that a SNP has two alleles, A and B, and three genotypes, AA, AB, and BB, then
the counts of these three genotypes for the d diseases and a control group can be presented
as a (d + 1) × 3 contingency table. To detect whether the genotype is associated with any
disease, we can use the following Pearson’s chi-square test:

(1)
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where nij is the number of subjects with disease i (the d + 1 disease is representing the

control) with genotype j, i = 1, 2, …, d, d + 1, j = 1, 2, 3, and  is the expected value of
the nij . Under the null hypothesis that no association between the genotype and any disease,
the genotypic frequencies for each disease should be the same as those of the control and the
statistic in (1) has an asymptotic chi-square distribution with 2d df.

If the controls in the dataset are ignored, we will have a d × 3 contingency table with the last
row being removed. The following chi-square test can be used:

(2)

where  is the expected value of the nij . Similar to the statistic in (1), the statistic in (2)
has an asymptotic chi-square distribution with 2(d −1) df under the null hypothesis of no
associations.

Another statistical procedure that can be used to detect associated SNPs by comparing one
disease with controls is based on the chi-square partition (CSP) method. For one disease, the
count data can be presented as a 2 × 3 table where the rows represent the disease and control
and the columns represents the three genotypes, AA, AB, and BB. The CSP method first
partitions the 2 × 3 table into two 2 × 2 tables – one is obtained from the first two columns
of the original 2 × 3 table and the other is obtained by collapsing the first two columns of the
original 2 × 3 table. For the two 2 × 2 tables, two one-sided tests with the same direction
(assuming allele B is at-risk) will be applied and the two p-values are obtained. Using Fisher
test, the two p-values can be combined as a new statistic. Similarly, another statistic can be
obtained by assuming allele A is at-risk. Then, the overall p-value is estimated from these
two statistics. For more details of the CSP method, one may refer to Chen (2011).

2.2 Real Data Example
A GWAS with four diseases (WTCCC & AAASC, 2007) and shared controls is studied
here. The summarized count data are publicly available and can be obtained from: http://
www.nature.com/ng/journal/v39/n11/suppinfo/ng.2007.17S1.html. The four diseases studied
in this GWAS were three autoimmune diseases: ankylosing spondylitis (AS) (922 cases),
autoimmune thyroid disease (AITD) (900 cases) and multiple sclerosis (MS) (975 cases),
and the breast cancer (BC) (1004 cases). 1466 shared controls were randomly selected
healthy British 1958 birth individuals (58C). Initially 14,436 nonsynonymous SNPs
(nsSNPs), 897 major histocompatibility complex (MHC) tag SNPs, and 103 SNPs in
pigmentation genes were genotyped using a custom-made Infinium array (Illumina). About
12,000 SNPs passed quality control for each disease and were tested for association
(WTCCC & AAASC, 2007).

For the real GWAS data, we compared different statistical methods based on two sets of
SNPs: major histocompatibility complex (MHC) SNPs and non-synonymous SNPs
(nsSNPs) outside of chromosome 6. According to WTCCC & AAASC (2007), many MHC
SNPs are associated with autoimmune diseases AS, AITD and MS. Except for a few SNPs,
most of the nsSNPs outside of chromosome 6 were not associated with any of the four
diseases. In the comparative study, MHC SNPs are treated as true associations and nsSNPs
outside of chromosome 6 are treated as true negatives.
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2.3 Monte Carlo Simulation
In order to study the effect of using controls in the statistical power of detecting associated
SNPs, a Monte Carlo simulation study is used to compare the power performance of the
overall chi-square tests with and without controls. In the simulation study, we consider the
number of diseases d = 2, 4, 6, and 8 with 1,000 cases for each disease, and the ratio of
number of controls to the number of cases in each diseases, ρ = 0, 0.5, 1, 1.5 and 2. Note
that ρ = 0 is the case without controls. We assume Hardy-Weinberg Equilibrium (HWE)
holds for controls and the minor allele frequency (maf) 0.1, 0.3 and 0.5 are considered. The
genotype frequencies of the three genotypes for each disease and control are assumed to be
trinomial distributed. For given genotype frequencies of controls, the relative risk of
genotype AB to genotype AA (denoted as λ1) and the relative risk of genotype BB to
genotype AA (denoted as λ2, the genotype frequencies for the three genotypes of the disease
can be generated (see, for example, Chen, 2011; Chen and Ng, 2012). Various genetic
models are considered in the simulation study. In particular, we consider λ2 = 1.4 with λ1
varies from 1.0 to 1.4 with increment 0.05. These settings cover several special genetic
models, such as the dominant model (λ1 = 1.4, λ2 = 1.4), the recessive model (λ1 = 1.0, λ2
= 1.4), and the additive model (λ1 = 1.2, λ2 = 1.4). We assume that the SNPs are only
associated with one of the d diseases. The significance level of the statistical test is set to be
a = 10−3 and 105 replications are used to estimate the type I error rates and power values of
different test procedures.

3 Results
3.1 Real Data Example

Based on the GWAS described in Section 2.2, we first compare the overall chi-square tests
with and without controls when they are applied to MHC SNPs. Figure 1(a) plotted the
negative log10 of the p-values from the two tests. For most of the MHC SNPs, the two tests
give similar p-values. For those MHC SNPs with relatively smaller p-values from both tests,
the p-values from the overall chi-square test without controls are usually smaller than the
corresponding p-values from the overall chi-square test with controls. Then, we compare the
overall chi-square test without controls with the CSP method which test associations based
one each individual disease with the common controls (Chen, 2011). Figure 2 plotted the
negative log10 p-values from the two methods applied to the four diseases. In most cases,
we can observe that the overall test without controls gives smaller p-values than the CSP
method applied to each disease. This indicates that the overall chi-square test without
controls can detect associated SNPs more effectively than the CSP method applied to a
single disease.

For nsSNPs outside of chromosome 6, the negative log10 p-values of the overall chi-square
tests with and without controls are presented in Figure 1(b). Most of the nsSNPs had p-
values larger than 10−3 from each test and there are only a few SNPs have small p-values
from both tests. Figure 3 presents the quantile-quantile (QQ) plot of the test statistics
obtained by the overall chi-square test without controls compared with a chi-square
distribution with 6 df. It shows that except for some possible associated SNPs, the test
statistic from the overall chi-square test without controls for nsSNPs outside of chromosome
6 follows a chi-square distribution.

Table 1 listed 12 nsSNPs outside of chromosome 6 that have p-values less than 10−4 from
either the overall chi-square tests with or without controls. The p-values from CSP method
for individual disease with common controls of these 12 SNPs are also listed. Most of the
confirmed associated SNPs (WTCCC & AAASC, 2007) were also found by the overall chi-
square test without controls. However, the overall chi-square test without control also gives
very small p-values for some SNPs which are not detected previously based on individual
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tests using common controls. For instance, SNP rs278981 has p-value 6.79 × 10−7 from the
overall chi-square test without controls, while the p-values from tests based on each
individual disease with shared controls are all larger than 0.01.

3.2 Monte Carlo Simulation Study
Monte Carlo simulation study described in Section 2.3 is used to investigate the behaviors of
the overall chi-square tests with and without controls. The estimated type I error rates of the
overall chi-square tests with different maf, number of diseases d = 2, 4, 6, 8, and control-to-
case ratio ρ = 0, 0.5, 1, 1.5, 2 are presented in Table 2. For all of the settings considered
here, the estimated type I error rates were close to the prefixed significance level 10−3,
which indicates that these statistical tests can well control the type I error rate close to the
desired level.

Then, we investigate the power properties of the overall chi-square tests with and without
controls. The estimated power values for the overall chi-square tests with controls (ρ > 0)
and without controls (ρ = 0) with maf = 0.1 and 0.5 are presented in Figure 4 and Figure 5,
respectively. For the case with only two diseases (d = 2, see Figures 4(a) and 5(a)), we
observe that the overall chi-square test without control (ρ = 0) is more powerful than the
overall chi-square test with 500 controls (ρ = 0.5), but it is less powerful than the overall
chi-square tests with 1000, 1500 and 2000 controls (ρ = 1, 1.5 and 2). For ρ ≥ 1, the power
increases as the value of ρ increases. For the cases with four, six and eight diseases (d = 4, 6,
8, see Figure 4(b)–(d)), in most genetic models, the overall chi-square test without controls
is the most powerful test compare to overall chi-square tests with controls. This illustrates
that the use of controls may reduce the power in detecting associations under these settings.
Note that we have also considered the case with mad = 0.3 and the situations when HWE
does not hold for the control. Similar conclusions described above can be obtained,
therefore, for the sake of reducing the length of the manuscript, the simulation results are not
presented here.

Through simulation, Chen et al. (2012) have shown that the overall chi-square test with
controls is more powerful than the tests using one case group with common or expanded
controls (i.e., treating all other cases besides the disease of interest as controls). It has been
shown that the power gain of the overall chi-square test can be drastic sometimes. Since the
overall chi-square test proposed in this paper is usually outperforming the overall chi-square
test with controls, therefore, it is also more powerful than other tests comparing cases with
common or expanded controls.

4 Discussion
Our analyses have shown that the overall chi-square test is more powerful than the
individual tests comparing single disease with shared controls in detecting associations.
These results also confirm that GWAS with multiple diseases can be more efficient compare
to GWAS with single disease.

When multiple diseases are considered simultaneously in GWAS, our results from the real
data analysis and Monte Carlo simulation study suggest that GWAS without controls can be
more efficient in terms of the power of the overall chi-square test. Moreover, the proposed
overall chi-square test without control can well control the type I error rate close to the
desired level. The power gain of the proposed overall chi-square test without controls is due
to the fact that it has a smaller df than the chi-square test with controls. Compare to the usual
case-control GWAS, the advantages of conducting GWAS with multiple diseases without
controls are reducing the cost and time of the data collection process and increasing the
power in detecting significant associations.
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Although we gain in power while using the overall chi-square test without controls, there are
several possible limitations of this study design and testing method in GWAS. First, without
the controls, it may be difficult to identify which disease(s) is(are) associated with a SNP
that is significant from the overall test. One of the possible solutions to this problem is to
find the genotypic frequencies of healthy people (i.e., people without the diseases of
interest) of the same population from previous studies if available, or genotype those
“associated” SNPs (e.g., SNPs with small p-values from the overall test) from healthy
people of the same population and then compare these data with each disease. Usually the
number of “associated” SNPs in a GWAS is relatively much smaller than the total number
of SNPs being studied, therefore, the cost of the extra genotyping for healthy people is
relatively minor compare to the total cost. Second, another possible limitation for the
proposed method is that the overall test will have no power if all the diseases in the study are
associated with the genotype and have the same genetic models (i.e., same values of λ1 and
λ2). However, this is not a major concern because this situation will rarely happen and it can
be avoided by choosing unlinked diseases in the study. Third, the lack of ability to detect
problematic SNPs which are deviated from HWE based on the control data could be another
limitation of the proposed study design. Though, this issue can be solved similarly by using
extra genotyping of the significant SNPs from healthy people of the same population.

It should be pointed out that many SNPs in a GWAS are correlated due to linkage
disequilibrium. Consequently, the corresponding p-values of these correlated SNPs are also
dependent. Some usual approaches to correct the significance level for multiple
comparisons, such as Bonferroni method, may be too conservative and/or they may not
control the family-wise error rate at the desired level. Different approaches have been
proposed to solve this problem by estimating the cutoff p-value using the subject-level data
(Churchill and Doerge, 1994; Cheverud, 2001; Li and Ji, 2005; Conneely and Boehnke,
2007; Dudbridge and Gusnanto, 2008; Gao et al., 2008; Moskvina and Schmidt, 2008; Pe’er
et al., 2008; Chen and Liu, 2011). Further investigations are needed to find out which
approach is better for the proposed overall chi-square test for GWAS with multiple diseases
but no controls and we hope to report the findings in another manuscript.
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Appendix: Sample Size Determination and Power Estimation
We have shown that the overall chi-square test without controls can be outperform the tests
with controls when the number of diseases d ≥ 4. In planning GWAS with multiple diseases
and no controls, it is important to determine the required sample size and/or estimate the
power values. In this subsection, we present the formula for sample size determination and
power estimation when the overall chi-square test is used to test for association in GWAS
with multiple diseases and no controls. Under the alternative hypothesis, the overall chi-
square test statistic without controls in (2) has an asymptotic non-central chi-square
distribution with df 2d and a non-centrality parameter γ (Guenther, 1977).

Let us denote the genotypic frequency of genotype j (j = 1, 2, 3, which representing AA,
AB, and BB, respectively) for disease i (i = 1, 2, …, d) under the alternative hypothesis as
pij, and the genotypic frequency of genotype j as pj . For a given alternative hypothesis, pij is
known and pj can be calculated by

where n1 is the number of cases of associated disease (here we assume the first disease

group is associated with the SNP),  and  are the genotypic frequency of genotype j
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under the null and alternative hypotheses, respectively. Usually,  are calculated based on

 and relative risks (i.e., λ1 and λ2) using the following formulas (Chen, 2011; Chen and
Ng, 2012):

Thus, the non-centrality parameter γ can be expressed as (Guenther, 1977):

(3)

where ni is the sample size for disease i, and n is the total sample size; cij satisfies

For a specific alternative hypothesis and a given significance level α, the power of the
overall chi-square test without controls can be calculated as:

(4)

where  is the (1 − α)th quantile of the chi-square distribution with df 2d and γ is the
non-centrality parameter obtained from (3). Using numerical method, equation (4) can also
be used to determine the required sample size for a pre-specified desired power value and
fixed significance level.
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Fig. 1.
Negative log10 p-values from the overall chi-square tests with and without controls. (a) For
MHC SNPs, (b) For nsSNPs outside of chromosome 6.
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Fig. 2.
Negative log10 p-values for MHC SNPs from single CSP test (disease vs. control) and the
overall chi-square test without controls (i.e., 4 diseases only).
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Fig. 3.
Quantile-Quantile plot of the statistics from the overall chi-square test without controls for
nsSNPs outside of chromosome 6 vs. a chi-square distribution with df = 6.
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Fig. 4.
Estimated power values of the overall chi-square tests with number of diseases d = 2, 4, 6, 8,
each has 1,000 cases and different numbers of controls (1,000× ρ) at significance level 10−3.
HWE with maf = 0.1 is assumed for controls.
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Fig. 5.
Estimated power values of the overall chi-square tests with number of diseases d = 2, 4, 6, 8,
each has 1,000 cases and different numbers of controls (1,000× ρ) at significance level 10−3.
HWE with maf = 0.5 is assumed for controls.
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