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Abstract
Repeated exposure to amphetamine (AMPH) induces long-lasting behavioral changes, referred to
as sensitization, that are accompanied by various neuroadaptations in the brain. To investigate the
chemical changes that occur during behavioral sensitization, we applied a comparative proteomics
approach to screen for neuropeptide changes in a rodent model of AMPH-induced sensitization.
By measuring peptide profiles with matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry and comparing signal intensities using principal component analysis and variance
statistics, subsets of peptides are found with significant differences in the dorsal striatum, nucleus
accumbens and medial prefrontal cortex of AMPH-sensitized male Sprague-Dawley rats. These
biomarker peptides, identified in follow-up analyses using liquid chromatography and tandem
mass spectrometry, suggest that behavioral sensitization to AMPH is associated with complex
chemical adaptations that regulate energy/metabolism, neurotransmission, apoptosis,
neuroprotection, and neuritogenesis, as well as cytoskeleton integrity and neuronal morphology.
Our data contribute to a growing number of reports showing that in addition to the mesolimbic
dopamine system, which is the best known signaling pathway involved with reinforcing the effect
of psychostimulants, concomitant chemical changes in other pathways and in neuronal
organization may play a part in the overall effect of chronic AMPH exposure on behavior.
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Introduction
The repeated use of stimulant drugs such as amphetamine (AMPH) leads to long-lasting
changes in behavior. For example, sensitization, which is an enhanced responsiveness to a
drug on subsequent exposures, has been described in humans for AMPH- and
methamphetamine-induced psychosis (Robinson & Berridge 1993, Bartlett et al. 1997, Ujike
& Sato 2004) and AMPH-induced euphoria, drug “liking” and motor activation (Strakowski
et al. 2001, Boileau et al. 2006). Moreover, sensitization has been hypothesized to contribute
to the development of compulsive behaviors that characterize addiction (Kalivas et al. 1998,
Robinson & Berridge 1993). Drug-induced sensitization has been successfully modeled in
animals; specifically, in rats and mice, repeated but intermittent exposure to AMPH
typically leads to progressive and long-lasting augmentation of species-specific motor
behaviors such as locomotion, head movement and sniffing, and stereotyped (i.e., repetitive)
head, limb, and orofacial movements (Segal & Schuckit 1983). An extensive literature
search suggests that the mesencephalic dopamine system, which includes cell bodies in the
substantia nigra and ventral tegmental area (VTA) that terminate largely in the dorsal
striatum (dSTR), nucleus accumbens (NAc) and prefrontal cortex (PFC), is a critical
component of the neural circuitry that underlies both behavioral sensitization and addiction
(Robinson & Berridge 2000). Accordingly, this has led us to investigate the
neuroadaptations resulting from repeated drug exposure in specific brain regions that govern
the behavioral sensitization processes.

Mass spectrometry (MS)-based approaches are proving efficacious for the analysis and
identification of signaling proteins and protein signatures associated with repeated exposure
to drugs of abuse in animal models and human addicts (Romanova et al. 2009, Zvonok et al.
2010, Uys et al. 2010, Abul-Husn & Devi 2006, Rossbach et al. 2009, Faure et al. 2009,
Yang et al. 2008b). Likewise, clinical MS is pushing comparative metabolomic and
proteomic matrix-assisted laser desorption/ionization (MALDI) profiling for diagnostic
purposes (Rajalahti et al. 2010, Hanrieder et al. 2011, Darde et al. 2010). Using comparative
mass spectrometric profiling aided by biostatistics and mass spectrometric sequencing, we
ascertained that a broad range of endogenous peptides change their levels in reward-related
brain regions of rats with AMPH-induced behavioral sensitization. Specifically, we
employed two MS ionization approaches: direct MALDI for relative quantitation of peptides
from large numbers of small-volume samples, and electrospray ionization (ESI) combined
with high performance liquid chromatography (HPLC) to identify and characterize the
observed MS peaks (Fenn et al. 1989, Hillenkamp & Karas 2007). MALDI-time-of-flight
(TOF) MS is used for robust, label-free analysis of raw tissue extracts, primarily due to its
high tolerance to salts. Importantly, the small-volume sample requirements inherent to
MALDI-TOF MS make it well suited for measuring peptides from individual small brain
regions, thereby offering the potential capability to correlate individual behavioral data with
region-specific peptide profiles. We used a one-step sample preparation approach for the
extraction of peptides from brain tissue using prolonged tissue incubations in 2,5-
dihydroxybenzoic acid (DHB) (Romanova et al. 2008), a method that has been successfully
combined with MALDI-TOF MS to identify peptides associated with a heightened
sensitivity to cocaine (Romanova et al. 2010). By implementing this approach we profiled
peptide extracts from brain regions of individual rats and compared profiles using principal
component analysis (PCA) (Brereton 2009), which reduced the dimensionality of the MS
data and revealed unique AMPH-induced trends in the peak patterns in dSTR, NA and
mPFC tissues.

Because MALDI-TOF MS consumes a small fraction of the sample, the altered peaks were
characterized with a more conventional peptidomics approach, multi-stage HPLC coupled to
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ESI-tandem MS (MS/MS) (Svensson et al. 2007, Fricker et al. 2006, Li & Sweedler 2008,
Wei et al. 2006), from a pooled sample created by combining the unused portions of the
individual extracts (Fig 1). In this way, different subsets of endogenous peptides originating
from known proteins have been identified in individual animals. Our data suggest that there
are alterations in energy metabolism, neuroprotection pathways, neuronal structure and
cytoskeleton integrity that correlate with AMPH-induced behavioral sensitization in rats.

Experimental procedures
Animals

Male Sprague-Dawley rats (n = 12), which were the offspring of breeder rats purchased
from Harlan Laboratories (Indianapolis, IN, USA) and maintained in our animal facility,
were housed individually starting at ~2 months of age in an acrylic tub (46 × 25 × 22 cm)
lined with hardwood bedding. Rats, which were 2.5–3 months old at the start of
experiments, were maintained on a 12:12 h light:dark cycle (lights on at 08:00) with food
and water available ad libitum. Prior to being used in the study, rats were handled on five
separate occasions for 15 min. Animal care, euthanasia and all other experimental
procedures were approved by the Institutional Animal Care and Use Committee, University
of Illinois at Urbana-Champaign, and were consistent with the Principles of Laboratory
Animal Care (NIH Publication no. 85-23); in addition, the ARRIVE guidelines have been
followed.

Repeated saline or AMPH treatment and behavioral measures
Tests of saline- and AMPH-induced changes in locomotor activity were performed in four
separate open-field activity chambers as described previously (Stanis et al. 2008). Rats were
first habituated to the procedure by placing them in the open-field arena for 30 min. They
were then removed, injected with saline (1 ml/kg, intraperitoneal (i.p.)), and returned to the
arena for 60 min. On the next day (i.e., treatment day 1), the same procedure was repeated,
except one group of rats (n = 4) was randomly chosen to receive an injection of saline and
the remainder (n = 8) were given an i.p. injection of d-AMPH sulfate (3.0 mg/kg; dose
calculated based on the weight of the salt). Beginning on treatment day 2 and continuing on
alternating days until treatment day 9, rats were brought to the laboratory, injected with
saline or AMPH, and allowed to behave for 60 min in an acrylic tub (46 × 25 × 22 cm) lined
with hardwood bedding. On treatment day 10, the open-field testing procedure used on
treatment day 1 was repeated. Thus, rats received a total of 10 saline or AMPH injections
(cumulative dose = 30 mg/kg) over the course of 19 d, with automated (i.e., photobeam)
activity measures obtained on the first and final injection days. Two dependent measures of
behavior were taken from the activity monitoring software (TruScan, v 2.0; Coulbourn
Instruments, Whitehall, PA, USA). The first was ambulation, which was calculated by
tabulating consecutive photobeam breaks and converting this to distance (in meters). The
second was stereotypy, which is a measure of repetitive behavior such as head and body
swaying, head bobbing, and sniffing, and is calculated by tabulating repetitive beam breaks
in a focused area that do not contribute to large changes in location in the open-field. The
statistical significance of group differences in activity following injection was determined
using three-way, mixed factor ANOVA (group × injection number × time post-injection)
followed by post-hoc analysis with two-way ANOVA and Tukey tests. To analyze the
relationship between individual differences in AMPH-induced sensitization and MS peptide
profiles, a sensitization index was also calculated for each AMPH-exposed rat. This was
obtained by dividing the cumulative ambulation or stereotypy value for the 60 min following
the tenth injection by the same value following the first injection. Thus, values above 1 are
indicative of sensitization. The statistical significance of group differences in these measures
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was determined using one-way ANOVA. Mean behavioral scores were then analyzed
against MS peptide profiles using PCA.

Tissue sampling and peptide extraction
Immediately following their removal from the open-field arena, rats were euthanized by
rapid decapitation. Their brains were carefully removed, rinsed in ice-cold 0.9% saline,
sliced in 2 mm coronal sections with the assistance of a calibrated brain matrix, and placed
on a glass dish kept on ice. Within 1.5–3 min after decapitation, samples of the ventral
mPFC and the core and shell regions of the NAc and dSTR, were isolated from these slices
via biopsy punches of different diameters (0.75 mm – mPFC; 1.2 mm–NAc; 2.0 mm –
dSTR). Punches were centered on brain regions at the approximate stereotaxic coordinates
(Paxinos & Watson 2007) of 3.80 AP, 0.5 ML, and 3.8 DV for mPFC; 1.5 AP, 0.8 ML, 7.6
DV for NAc; and 1.5 AP, 2.6 ML, 5.0 DV for dSTR. The resulting individual tissue samples
had a standard volume of 0.86 mm3, 2.2 mm3, and 6.2 mm3 respectively. A total of 72 tissue
samples (12 rats × 3 brain regions × 2 hemispheres) were collected from the two groups of
rats. For peptide extraction, bilateral tissue punches from each animal were combined and
placed in 15, 20 or 30 μL volumes of DHB (20 mg/mL) optimized in initial experiments for
the mPFC, NAc and dSTR regions respectively, and incubated for 48 h to maximize peptide
extraction as described elsewhere (Romanova et al. 2008). Thus, a total of 36 extracts were
used for the peptide profiling experiments described below.

Analysis of peptide profiles by MALDI-TOF MS
For peptide measurements, peptide extracts were spotted on a stainless steel MALDI target
in technical duplicates, 0.7 μl per spot, and co-crystallized with 0.7 μL of freshly prepared
concentrated DHB matrix (50 mg/mL, in a 50% water/acetone mix). Positive ion mass
spectra for all samples were acquired manually in the m/z 800–6000 region using a Bruker
Ultraflex II mass spectrometer (Bruker Daltonics, Billerica, MA, USA) in reflectron mode
with external calibration. Given the microliter volumes of the extraction solutions and the
small volumes consumed in each of the MALDI measurements, we performed technical
replicates for each sample, leaving sufficient material for the peptide characterizations via a
pooled sample, as described below.

Statistical data analysis
The raw MALDI MS data were imported into ClinProTools 2.2 software (Bruker Daltonics),
with an m/z 1000–5000 mass filter, corrected with the Convex Hull method for a baseline
flatness of 0.1, processed by five cycles of the Savitzky–Golay method over an m/z 1.0
width to smooth isotopic envelopes, normalized to total ion count, and scaled. For peak
picking, spectra from technical duplicates were combined into a representative sample
spectrum. Average centroid peaks were selected based on maximal intensity in the mean
spectrum of the entire group with a signal-to-noise cut-off of 5 in order to improve
meaningful peak peaking. The PCA reduced the dimensionality of the data, with the
resultant principal components (PCs) each representing a set of linearly uncorrelated m/z
values. To create the PCs, the following peak restrictions were applied: the 50 most-intense
peaks for dSTR and NA, and 100 most-intense peaks for mPFC. Following PCA, peptide
profiles of the mean spectra were compared by the Anderson-Darling normality test and
ANOVA or t-test (depending on the number of groups compared) for normal distributed
data (Stephens 1974). Data not showing normal distribution (pAD ≤0.05) were evaluated by
the Wilcoxon/Kruskal-Wallis tests, respectively (Wilcoxon 1945, Kruskal & Wallis 1952).
To decrease the number of false positives, the Benjamini-Hochberg method as incorporated
into ClinProTools, was automatically applied for p-value adjustment during analysis (Dudoit
& Shaffer 2003).
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Peptide identification by LC-MS/MS
Following MALDI MS profiling of the individual samples, the remaining peptide extracts
from the individual samples were pooled together (e.g., all brain regions from all animals),
and this combined sample (of about 730 μL) was processed for peptide identification as
described previously (Romanova et al. 2010). Briefly, a significant portion of the DHB was
removed from the extracts by solid phase extraction (SPE) prior to multi-stage reversed
phase (RP)-liquid chromatography (LC) separation of peptides. Initial fractionation of the
SPE-purified extract was done on a Magic 2002 system (Michrom Bioresources,
Sacramento, CA, USA) using a C18 microbore column and gradient of solvent A: 95%
H2O, 5% acetonitrile (ACN), 0.1 formic acid (FA), 0.01% heptafluorobutyric acid (HFBA);
and solvent B: 95% ACN, 5% H2O, 0.1% FA, 0.01% HFBA. Complex LC fractions were
scanned by MALDI-TOF MS and fractions containing peptides matching by mass to those
with higher loading scores from our PCA measures were subjected to a 2nd stage separation
with on-line mass spectrometric sequencing. Two different LC-MS/MS platforms were used
for sequencing the second stage fractions to improve the number of peaks characterized.

Capillary liquid chromatography (capLC)-ESI-ion trap (IT)-MS/MS
The first system used to characterize the fractions was the HCT Ultra-PTM Discovery
system IT mass spectrometer (Bruker Daltonics) equipped with an ESI source. In the
capLC-ESI-IT-MS/MS experiments, peptide fractions were eluted from a capillary column
(LC Packings, Sunnyvale, CA, USA), 300-μm inner diameter × 15 cm, C18 PepMap100,
100 Å, using optimized solvent gradients at a 2.5 μL/min flow rate (solvent A: 95% H2O,
5% MeOH, 0.1% FA; solvent B: 95% MeOH, 5% H2O, 0.1% FA). The MS data was
acquired in a data-dependent manner with the dynamic precursor ion exclusion set to 3
spectra for each of the 3 parent ions selected by intensity during 60 s. The fragmentation
spectra were analyzed against the NCBI and MSDS protein databases using Biotools 3.0
(Bruker Daltonics) and the Mascot server (Matrix Science, Boston, MA, USA) within the
Rattus taxonomy. Only peptides identified with ion scores that fell within the significance
threshold of 0.05 are reported. The following search parameters were used: (i) enzyme –
none; (ii) fixed modification – none, (iii) variable modifications – oxidation (M),
acetylation-N – amidation-C; (iv) peptide mass tolerance – 0.5 Da; (v) tandem mass
spectrometry mass tolerance – 0.5 Da; (vi) peptide charge – +1, +2, +3; (vii) instrument –
ion trap; (viii) allowing up to two missed cleavages. For identifying peptides related to
known prohormones, database searching was repeated on fragmentation peak lists exported
in the form of a Mascot generic file format against an NCBI database of the rat peptide
prohormones using Peaks Studio 4.6 (Bioinformatics Solutions, Waterloo, ON, Canada).
The search parameters for the Peaks software included: (i) unsuspected cleavage site, (ii) N-
terminal pyro-glutamic acid, disulfide bonds, acetylation and C-terminal amidation, (iii) and
mass tolerances of 0.5 Da and 0.3 Da for precursor and fragment ions, respectively. Results
generated by Peaks Studio were verified by manual de novo analysis using Data Analysis
4.0 and Biotools 3.0 (Bruker Daltonics).

NanoLC-nanoESI-Fourier transform (FT) MS/MS
The second system used was a 12 Tesla LTQ-FT Ultra mass spectrometer (ThermoFisher
Scientific, Waltham, MA, USA), interfaced to a 1D NanoLC pump (Eksigent Technologies,
Dublin, CA, USA). The sample was analyzed on a ProteoPep™ II column (C18, 300 Å, 5
μm, New Objective, Woburn, MA, USA). The operating flow rate was 300 nl/min (solvent
A: 95% H2O, 5% ACN, 0.2% FA; solvent B: 95% ACN, 5% H2O, 0.2% FA). Data
acquisition on the LTQ-FT instrument consisted of a full scan event (90,000 resolving
power), and data-dependent collision-induced dissociation MS/MS scans (40,000 resolving
power) of the five most abundant peaks from the previous full scan. The resulting LC-
FTMS/MS files (*.raw) were analyzed using neuroProSight (http://
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neuroprosight.scs.illinois.edu/) and ProSightPC 2.0 (Thermo Fisher Scientific) (Boyne et al.
2009). The ProSight experimental data, each consisting of the monoisotopic neutral masses
of precursor species and a list of monoisotopic neutral fragment masses, were searched in a
“neuropeptide” search mode (no protease specificity) against an intact rat database (UniProt
15.0, 4318021 protein forms) with a 100 Da precursor and 10 ppm fragment mass tolerance
(Lee et al. 2010). The Sequence Gazer tool in ProSight was used for manually determining
post-translational modifications on the identified peptides.

Results
AMPH-induced behavioral sensitization

Consistent with previous reports (Robinson et al. 1985, Stanis et al. 2008), we found that
repeated exposure to AMPH lead to significant changes in AMPH-induced ambulation and
stereotypy after the tenth injection as compared to the first (Fig. 2). For ambulation, three-
way ANOVA revealed significant main effects of group (F1,10 = 35.8, p < 0.001) and time
post-injection (F11,110 = 4.21, p < 0.001), along with a time post-injection × injection
number interaction (F11,110 = 2.47, p < 0.01). As shown in Fig. 2A, ambulation was
significantly greater in AMPH-injected compared to saline-injected rats following the first
and tenth treatments. Moreover, ambulatory behavior following the tenth AMPH injection
had a biphasic pattern characterized by a more rapid and sharp increase in activity that was
followed within 20 min by a reduction in ambulation relative to the first AMPH exposure.
This reduction was attributable to a sharp increase in stereotypy. For stereotypy, three-way
ANOVA revealed significant main effects of group (F1,10 = 75.5, p < 0.001), time post-
injection (F11,110 = 4.60, p < 0.001), and injection number (F1,10 = 8.22 p < 0.05). There
were also significant group × time post-injection (F11,110 = 9.03, p < 0.001), group ×
injection number (F1,10 = 7.90, p < 0.05), and group × time post-injection × injection
number (F11,110 = 2.66, p < 0.01) interactions. As shown in Fig. 2B, stereotypy was
significantly elevated for the last 45 min of the testing sessions following both the first and
tenth injection of AMPH. Comparison of the first and tenth AMPH injection also revealed
clear evidence of sensitization to the stereotypy-inducing effects of AMPH that emerged 25
min post injection. The predominance of sensitization to the stereotypy-inducing effects of
AMPH was also evident in the analysis of the sensitization index scores, which assessed the
relative change in behavior on the last compared to the first injection of each animal. For
ambulation, the scores for saline-treated rats (1.32 ± 0.17) were not significantly different
from those for AMPH-treated rats (0.93 ± 0.14). For stereotypy, however, there were
significant differences (F1,10 = 5.94, p < 0.05) between saline- and AMPH-treated rats (1.03
±0.09 and 1.58 ± 0.15, respectively). Rats exhibiting behavioral sensitization were compared
with normally behaving rats for the analysis of endogenous peptide levels in the dSTR, NA
and mPFC, with tissue samples from these animals individually assayed for their peptide
profiles.

Comparative analysis of the peptide compliment in different brain regions
To assess changes in the chemical state of the brain following AMPH-induced sensitization,
we used MALDI-MS-based high-throughput exploratory analysis that did not focus on
specific pathways nor require a priori information on the identity of the compound of
interest. As postmortem degradation is inevitable in any experiment involving animal
sacrifice (Fountoulakis et al. 2001), our larger goal was to ensure that sample quality was
consistent across the entire sample set in order to allow comparisons of peptide profiles
while minimizing sample to sample differences in postmortem proteolysis. We standardized
the sampling approach to achieve as uniform a sample quality as possible when manually
isolating tissues, and used a one-step DHB extraction method that extracts and preserves
peptides, and minimizes loss due to sample handling (Romanova et al. 2008). With
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optimized MS spectrum acquisition parameters, summation of technical duplicates, and
normalization of signal intensity, we achieved reproducible measurements that led to
insightful interrogation of biological samples. While 150–300 MS peaks were detected in
the region-specific profiles, only a small subset of these putative peaks defined statistically
significant differences between brain regions, and between saline- and AMPH-treated
animals.

Our control set of samples when analyzed alone verified that the brain regions examined
were reliably grouped by PCA, according to characteristic features found in the brain-
region-specific mass spectral profiles. As shown on the PCA plot for the first three PCs in
Fig. 3A, the dSTR, NA and mPFC samples were well segregated. In total, four PCs
explained 98% of the variance among the control set of samples, PC1 ~81%, PC2 ~9%, PC3
~5%, PC4 ~3%. The three-dimensional score plot for the first three PCs is shown in Fig. 3A,
with PC1 indicating the most variability between morphologically different samples, and
PC2 and PC3 accounting for variability between samples of the same kind. A follow-up
ANOVA test revealed many known and putative peptides that were detected at statistically
significant different levels, thus serving as features delineating the studied brain regions
(Supporting Information, Table S1). Given the ability to classify region-specific peptide
profiles in control samples, the AMPH-effected changes described next should represent
true biological trends and not sampling artifacts.

When we compared the control (saline treated) and AMPH-treated samples, the entire data
set (2 groups × 3 brain regions each) exhibited a degree of higher variability than the control
group alone, which required six main PCs to describe the data (Fig. 3B). Distribution of the
NAc and mPFC samples according to the treatment, saline or AMPH, is clear from the plot.
Significant changes in the relative peak intensities that contributed to the observed
segregation of peptide profiles between normally behaving and sensitized rats on the PCA
plot are summarized in Fig. 4A–C. Statistical details on the specific peaks used in Fig. 4 for
each brain region are included in the Supporting Information Tables S2–4. While not
obvious from the PCA plot, a follow-up ANOVA test revealed several known truncated
proteins detected at significantly higher intensities in the dSTR of AMPH-treated rats (Fig.
4A). Some of these marker peptides have been identified in the follow-up experiment
described in the next section, and are listed in Table 1. As mPFC plays an important role in
organizing behavior through functional regulation of numerous subcortical structures (Kolb
1984, Lindvall et al. 1978), it is not surprising that we find the largest number of peptide
changes in the mPFC of sensitized rats (Fig. 4C). Among the observed peptides known to be
modulated in the mPFC was an acetylated peptide from the PKC-interacting histidine triad
nucleotide-binding protein 1 (Hint1) (Fig. 5), which increased nearly two-fold in signal
intensity. In contrast, neuromodulin (P07936) peptide and a truncated form of
synaptogyrin-1, a vesicle-associated membrane protein (Q62877), were found to decrease.
We observed a 1.9–fold increase in the actin sequestering proteins thymosin beta-4 (P62329)
and -10 (P63312) in both the NAc and mPFC following chronic AMPH exposure.

Multi-platform characterization of putative peptide markers
Using anatomically defined brain regions allowed us to lessen the anatomical complexity of
the sample, improve the signal-to-noise ratio of MS measurements, and detect analytes
unique to the brain region under investigation in the profiling experiments. We then pooled
individual samples before their characterization so that greater effort could be directed to a
larger combined sample, thereby facilitating our peptide identifications. Putative marker
peptides were targeted for identification via multi-stage HPLC purification and MS/MS
(Supporting Information, Tables S5 and S6). Implementing this tactic offered an advantage
by allowing the multi-platform peptidome characterizations to be correlated with individual
animal behavior. Not all of the peptides observed by MALDI-TOF MS profiling were
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detected in the targeted sequencing experiments, and many of the sequenced peptides were
not observed in the profiling experiments. We attribute this discrepancy to several reasons,
including the documented ‘complementary’ nature of the ESI and MALDI platforms (Molle
et al. 2009, Bodnar et al. 2003, Stapels & Barofsky 2004).

Likewise, pooling can present challenges due to the inherent cytological and chemical
complexity of brain tissue, which complicates the chemical analyses of proteins and peptides
at the tissue level. For example, if only a small population of cells in a tissue sample contain
a compound of interest, then adding cells devoid of that compound makes its detection and
identification difficult, in part, because the relative concentration of the particular analyte is
reduced in a pooled sample. While our sequencing with LC-ESI-MS/MS used pooled
samples in order to increase the amount of material available, the effects of dilution of low
concentration, sparsely distributed peptides may have reduced those peptides below the
instrumental detection limits, thus preventing their characterization. A number of distinct
peptides were detected and characterized with each methodology using the pooled sample.

Individual variations in the behavioral response to chronic AMPH exposure have little
effect on the classification of peptide profiles by PCA

Our individualized approach to the mass spectrometric analysis of tissue samples from the
brain regions of individual animals allowed us to determine if there was a correlation
between the variation in the behavioral responses to AMPH treatment and its effects on
peptide levels in the studied brain regions. We used the mean ambulation and stereotypy
values for the 60-min observation period post-injection, as well as the sensitization index, to
identify each individual animal in order to enable tracking on the PCA plots of peptide
profiles. When comparing the control and AMPH groups by brain region, we found that the
PCA scores did not significantly correlate with either the behavioral scores or the
sensitization index (data not shown). This finding suggests that, similar to the behavioral
scores, the differences in peptide profiles are more profound between control and
experimental groups than within the experimental group under the studied conditions.
Alternatively, the relatively small size of our sample set (n = 4 for saline, n = 8 for AMPH),
in combination with the broad range of behavioral responses (for the unsupervised PCA),
may not be sufficient for finer classification within the AMPH group. There is a possibility
that the effects we see are due to the final amphetamine injection, but these are more than
likely influenced by the adaptations caused by repeated exposure to AMPH. Testing whether
the differences in the PCA and sensitization scores may be due to the acute vs. chronic
effects would require testing of additional groups; for example, one that received saline
repeatedly and had a single challenge with AMPH, and one subjected to repeated AMPH
exposures but receiving saline on the day of sacrifice. These experiments were not
performed.

Discussion
As a substrate for transporters of biogenic amines, AMPH is known to produce long-lasting
changes in neuronal structure and function in the PFC, NAc, and dSTR following repeated
exposure (Kalivas et al. 2005, Kalivas & Volkow 2005). Enduring behavioral changes are
widely reported as a response to chronic exposure to AMPH, and are considered to be
mediated by drug-induced neuroadaptations within multiple brain regions that participate in
the processing of reward (Chen et al. 2009). In this work, we probed the neurochemical
changes in three of these regions—the dSTR, NA, and PFC—using a rodent model of
AMPH-induced sensitization. Our data indicate that despite the overlapping peaks detected
via MALDI-TOF MS, the dSTR, NAc and mPFC have differences in the composition and/or
abundance of the detectable peptides, and these distinctions are sufficient for categorizing
each brain region.
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The majority of peptides detected in this study represent truncated forms of previously
characterized proteins, some of which we earlier reported in isolated rat brain regions
(Romanova et al. 2010). Because peptides with altered levels in the AMPH-sensitized rats
originate from functionally characterized proteins, one can speculate on the neural pathways
perturbed by repeated AMPH exposure. The results of this MS-based, non-candidate and
label-free screening of AMPH-induced alterations in peptide levels in specific brain regions
point to changes in pathways that regulate energy/metabolism, neurotransmission, apoptosis,
neuroprotection, neuritogenesis, and cytoskeleton integrity. In what follows, the protein
connections to drug-induced neuroadaptation are discussed.

It is well known that robust sensitization to psychomotor activation following chronic
exposure to AMPH is associated with structural changes in the brain, such as alterations in
synaptic connectivity and neuronal morphology in regions that mediate the drug’s
psychomotor activating and rewarding effects (Robinson & Kolb 1997, Singer et al. 2009).
The dynamic architecture of actin, maintained by the polymerization and depolymerization
of actin filaments by severing proteins, plays a significant role in these drug-induced
structural changes via alterations in the morphology of dendritic spines (Toda et al. 2006).
Thymosin beta-4 is widely distributed in the nervous system and has multiple biological
activities that collectively contribute to wound healing in numerous tissues, as observed in
various animal models (Huff et al. 2001, Philp & Kleinman 2010). This intriguing, small
protein plays a role in synaptogenesis, axon growth, cell migration and plastic changes in the
CNS. It also appears to promote the survival and neurite outgrowth of cultured neurons
(Philp & Kleinman 2010, Yang et al. 2010, Romanova et al. 2006, Yang et al. 2008a) and is
considered a candidate neurorestorative agent (Morris et al. 2010). Thymosin beta-4 has also
been shown to offset ethanol-induced neurotoxicity in cultured cortical astrocytes through
inhibition of apoptosis signaling (Yang et al. 2010). One of the mechanisms underlying the
capacity of thymosin beta-4 to suppress apoptosis may in part be due to its anti-peroxidation
effect. In contrast to thymosin beta-4, thymosin beta-10 is known as an actin-mediated
tumor suppressor and acts as potent inhibitor of angiogenesis (Lee et al. 2005). Collectively,
thymosin beta-4 and -10 may prevent apoptosis of neurons via blockade of early
apoptogenic signals that are independent of actin remodeling actions (Choi et al. 2006) The
two-fold increase in signal intensity observed from thymosin beta-4 and -10 in the AMPH-
treated rats in our study provides further evidence for the role of cytoskeleton integrity in the
AMPH-induced neuroadaptations.

Relevant to the structural integrity of the CNS under AMPH exposure are the changes in
stathmin levels. A cytoplasmic phosphoprotein involved in plastic adaptation that is also
known as a marker for neuritic sprouting (Himi et al. 1994, Sobel 1991), stathmin binds to
microtubules and inhibits their assembly, resulting in neuritogenesis through the regulation
of dynamic microtubule instability (Belmont & Mitchison 1996). Stathmin mRNA levels
have previously been reported to increase after acute exposure to AMPH (Hiroshi et al.
2002). We recently showed that increased levels of acetylated stathmin peptide
(ac)ASSDIQVKELEKRASGQAFEL are associated with reduced sensitivity to the
behavioral effects of cocaine in rats (Romanova et al. 2010). Collectively, these previously
reported observations and our finding here of increased stathmin-derived peptide levels in
the NAc after AMPH treatment, support the hypothesis that rearrangement and structural
modification of neural networks in the brain are likely involved in behavioral sensitization.

A growing dataset provides extensive evidence of a connection between psychostimulant
exposure and myelin integrity in the nervous system (Melo et al. 2006, Chang et al. 2007,
Romanova et al. 2010, Albertson et al. 2006, Marshall et al. 2007). Our finding of a
decreased level of myelin basic protein-related peptide may reflect compromised
myelination of striatal neurons that could have developed with chronic exposure to lower
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doses of AMPH over time. Levels of a truncated form of a neuron-specific polypeptide,
PEP-19 (Slemmon et al. 1996), were also altered. One plausible explanation supporting this
observation is that PEP-19 binds to calmodulin through the IQ motif in a Ca2+-independent
manner (Slemmon et al. 1996, Putkey et al. 2003) and is thought to exert neuroprotective
effects in apoptosis by blocking several calmodulin-dependent pathways (Erhardt et al.
2000).

A group of peptides detected at altered levels in the AMPH-treated rats originates from
proteins known to be involved in neurogenesis; e.g., decreased neuromodulin in the mPFC,
thought to be involved in neurite plasticity in the late phase of stimulant-induced
sensitization (Gnegy et al. 1993), and synaptogyrin-1, a vesicle-associated membrane
protein. Reduced expression of synaptogyrin-1 has been reported in postmortem brains of
schizophrenia patients (Cheng & Chen 2007). Similar to AMPH-induced behavioral
sensitization, the etiology of schizophrenia involves alterations in neuronal functions
associated with dopaminergic signaling (Heinz & Schlagenhauf 2010).

Interestingly, the most dramatic differences between the control and AMPH-treated rats
were changes in the levels of the Hint1 peptide. An increased level of Hint1 peptide was
recently reported by us in mPFC extracts from rats given a single injection of cocaine and
was linked to the “low cocaine responder” behavioral phenotype (Romanova et al. 2010).
Additional evidence points to the role of Hint1 in modulating the effects of a number of
drugs of abuse. For example, Hint1 specifically interacts with the C-terminus of the μ-
opioid receptor, modulates receptor desensitization, and inhibits PKC-mediated μ-opioid
receptor phosphorylation (Guang et al. 2004). Hint1 knockout mice have an altered
postsynaptic dopamine function that modulates the behavioral response to AMPH (Barbier
et al. 2007). Further, with association, expression, and molecular studies, Jackson and
colleagues (Jackson et al. 2010) demonstrated that nicotine-induced modulation of Hint1
levels may be involved in the mechanisms of excess smoking in humans.

A few studies link alterations in energy metabolism to neuronal death, neurodegeneration,
and psychiatric disorders, including schizophrenia and drug abuse (Cunha-Oliveira et al.
2006, Lehrmann & Freed 2008, Lehrmann et al. 2003, Burrows et al. 2000) through a
possible malfunction in the biochemical cascade (for review, see (Rezin et al. 2009)). In
agreement with this hypothesis, we detected reduced levels of the ubiquitous subunit of
cytochrom C oxidase, Cox7c, which is expressed in all tissues and is related to
mitochondrial metabolic function (Lenka et al. 1998).

Conclusions
Using modification of the behavioral response to AMPH as a model selection criterion, we
found dynamic subsets of peptides in three regions of the brain’s reward circuitry that were
altered under chronic AMPH treatment. Our results demonstrate that behavioral sensitization
to AMPH is associated with complex chemical adaptations in the brain reward circuit in
pathways that regulate energy/metabolism, neurotransmission, apoptosis, neuroprotection,
and neuritogenesis, as well as cytoskeleton integrity and neuronal morphology. The marker
peptides identified here originated from proteins that have been recognized for their roles in
neuroadaptation and drug-induced behavioral sensitization in humans and rodents, as well as
several intriguing peptides and proteins not previously associated with the effects of
repeated exposure to illicit drugs. These unexpected peptides may become potential new
pharmacological targets for treatment of AMPH dependence and toxicity. Overall, the data
imply that chemical changes in neuronal organization and pathways other than the
mesolimbic dopamine system contribute to the effect of chronic AMPH exposure on
behavior.
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Fig. 1.
Experimental workflow for comparative peptidomics of individual brain region samples.
Individual tissue samples were processed via a one-step peptide extraction method. Peptide
profiles of individual peptide extracts were obtained by high throughput MALDI-TOF MS
measurements. Mass spectral profiles of different brain regions and experimental groups
were compared statistically using principal component analysis followed by either ANOVA
or t-test to reveal potential biomarker peptides. Biomarker peptides were then identified via
mass spectrometric sequencing using LC-MS/MS and database searches.
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Fig. 2.
Individual animal behavioral tests included both (A) ambulatory distance and (B)
stereotypy, here shown after the first and tenth injection of saline (n = 4) or 3.0 mg/kg d-
amphetamine (n = 8; AMPH). Ambulation was quantified by photobeam breaks that resulted
in a coordinate change within the open-field arena but were not repetitive in nature.
Stereotypy movements were quantified by photobeam breaks that were repetitive and did
not result in large location changes that were progressively further from the starting point of
movement. *p < 0.05, compared to injection 1 at the indicated time point.
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Fig. 3.
Classification of brain regions from the control group and AMPH group of animals by
peptide profiles using principal component analysis (PCA). (A) PCA score plot for the
control group of animals. Four principal components (PCs) explain 98% of variance, PC1
~81%, PC2 ~9%, PC3 ~5%, PC4 ~3%, but only 3 PCs are shown. (B) PCA score plot for
the AMPH-treated and control groups of rats. Six PCs explain >95% of variance: PC1
~70%, PC2 ~12%, residual variance is accounted for by PC3–PC6. Only the first 3 PCs are
plotted. dSTR – dorsal striatum, NAc – nucleus accumbens, mPFC – medial prefrontal
cortex. Each data point represents an individual animal.
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Fig. 4.
Relative peak intensities of putative peptides detected at statistically significant different
levels in rats treated chronically with 3.0 mg/kg AMPH: (A) dorsal striatum, (B) nucleus
accumbens, (C) medial prefrontal cortex. Peaks are listed as an average centroid mass at the
half width/maximum height of the integration region for peak picking on the cumulative
processed group spectrum; the p-value is calculated for normally distributed data; error bars
represent standard deviation; p = 0.06 for peptides m/z 1672 and 2061 on (A). Peptides
identified in the follow-up peptidomics experiments are labeled.
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Fig. 5.
Identification of histidine triad nucleotide-binding protein 1 (Hint1) via its acetylated
peptide (2–33). The fragmentation spectrum shows the unambiguous identification of the
complementary ion series; the insert shows the isolation of the quadruple-charged ion of
Hint1 peptide.
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Table 1

List of identified marker peptides correlated with chronic AMPH treatment.

Accession Protein name Detected peptide Mass Brain region

P62329 Thymosin beta-4 acSDKPDMAEIEKFDKSKLKKTETQEKNPLP SKETIEQEKQAGES 4965.16 NA, mPFC

P63312 Thymosin beta-10 acADKPDMGEIASFDKAKLKKTETQEKNTLP TKETIEQEKRSEIS 4938.08 NA, mPFC

P13668 Stathmin acASSDIQVKELEKRASGQFEL 2349.47 NA

P02688 Myelin basic protein S KLGGRDSRGSPMAR 1575.24 mPFC

Q8CHN7 PEP-19 DIDMDAPETERAAVAIQSQ 2061.25 dSTR

B2RYT3 Cox7c protein SHYEEGPGKNLPFSVENKWRL 2488.72 mPFC

P02688 Myelin basic protein S acASQKRPSQRHGSKY 1672.44 dSTR

P07936 Neuromodulin APVADGVEKKEGD 1314.23 mPFC

P13638 Na+/K+ ATPase subunit
beta-2

RVAPPGLTQIPQIQKTE 1877.05 dSTR, mPFC

P62959 Histidine triad
nucleotide-binding
protein 1

acADEIAKAQVAQPGGDTIFGKIIRKEIPAKIIF 3478.95 mPFC

Q62877 Synaptogyrin-1 PSQDSSMPYAPYVEPSAGSD 2083.33 mPFC

Mass is the centroid of the average protonated molecular ion peak found on the cumulative processed group spectrum used for comparative
statistical analysis.

ac = acetylation.
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