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Isopeptidases are essential regulators of protein ubiquitination and
sumoylation. However, only two families of SUMO isopeptidases
are at present known. Here, we report an activity-based
search with the suicide inhibitor haemagglutinin (HA)-SUMO-
vinylmethylester that led to the identification of a surprising
new SUMO protease, ubiquitin-specific protease-like 1 (USPL1).
Indeed, USPL1 neither binds nor cleaves ubiquitin, but is a potent
SUMO isopeptidase both in vitro and in cells. C13orf22l—an
essential but distant zebrafish homologue of USPL1—also acts on
SUMO, indicating functional conservation. We have identified
invariant USPL1 residues required for SUMO binding and
cleavage. USPL1 is a low-abundance protein that colocalizes with
coilin in Cajal bodies. Its depletion does not affect global
sumoylation, but causes striking coilin mislocalization and impairs
cell proliferation, functions that are not dependent on USPL1
catalytic activity. Thus, USPL1 represents a third type of SUMO
protease, with essential functions in Cajal body biology.
Keywords: SUMO protease; ubiquitin-specific protease
family; USPL1; zebrafish C13orf22l; Cajal body
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INTRODUCTION
Reversible attachment of SUMO (small ubiquitin-related modifier)
is an essential protein modification in all eukaryotic cells [1,2].
Hundreds of proteins are regulated by transient sumoylation,
which affects activity, localization and/or interactions of its
targets. SUMO’s role as a molecular switch depends on rapid
and tightly controlled cycles of sumoylation and desumoylation,
and hence on both, conjugating enzymes and isopeptidases. E1,
E2 and E3 ligases are involved in ATP-dependent conjugation of
SUMO proteins to lysine side chains in targets. This results in
mono-sumoylation and/or chain formation. Deconjugation is
accomplished by SUMO-specific proteases. Well-characterized
enzymes include two ubiquitin-like-specific proteases in yeast
(Ulp1 and Ulp2) and six sentrin-specific proteases (SENP1, 2, 3, 5,
6 and 7) in mammals [3,4]. Ulp and SENP proteases belong to the
C48 family of cysteine proteases. They share a conserved catalytic
domain that includes a His–Cys–Asp catalytic triad. Ulp/SENP
proteases are not only required as isopeptidases, but also as
carboxy-terminal hydrolases in SUMO maturation. Recently, a
different protease family was implicated in desumoylation: two
small proteins with a PPPDE domain (permutated papain fold
peptidases of the double-stranded RNA viruses and eukaryotes)
were found to desumoylate the transcription repressor BZEL [5].
These proteins, designated DeSI-1 and DeSI-2, seem to have
restricted target specificity, as they fail to cleave sumoylated PML.
Finally, the putative metalloprotease S.c. Wss-1 has been shown
to exert desumoylation activity in vitro [6]. Whether it functions as
a SUMO isopeptidase or a SUMO-directed ubiquitin isopeptidase
in vivo is at present unclear.

The small number of known SUMO proteases stands in striking
contrast to almost 100 different ubiquitin proteases belonging to five
different families [7,8]. The largest of these is the C19 cysteine
protease family of ubiquitin-specific proteases (USPs) with more than
50 members [9,10]. This encouraged us to embark on an activity-
based search with suicide substrates (HA-SUMO-vinylmethylester)
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that should irreversibly crosslink with SUMO proteases. Similar
substrates had been used, for example, for identification of active
proteases of the ubiquitin family [11] or the characterization of
known SUMO isopeptidases [12]. As shown below, this resulted
in the unexpected identification of ubiquitin-specific protease-like 1
(USPL1) as a highly specific SUMO isopeptidase with an essential
role both in human cells and in zebrafish.

RESULTS AND DISCUSSION
An activity-based search for novel SUMO isopeptidases
To search for new SUMO isopeptidases, we generated HA-tagged
SUMO1 and SUMO3 derivatives ligated by intein chemistry to
vinylmethylester (Fig 1A). SUMO1-Vme and SUMO3-Vme were
both able to crosslink with the catalytic domain of SENP1 in vitro
(Fig 1B), confirming functionality. Subsequently, we incubated
HeLa lysates with increasing amounts of SUMO1-Vme or
SUMO3-Vme, and enriched crosslinked proteins by anti-HA
immunoprecipitation (IP). Number and size of the observed bands
on immunoblot analysis suggested the existence of numerous
SUMO isopeptidases (supplementary Fig S1 online). Finally, we
carried out a large-scale consecutive IP experiment: 25 ml HeLa
extract was incubated with HA-SUMO1-Vme, bound proteins
were enriched by immobilized anti-HA antibodies and the

supernatant was treated with HA-SUMO3-Vme. After a second
anti-HA-IP, proteins were eluted from either beads and identified
by mass spectrometry (Fig 1C,D). In addition to known isopep-
tidases, the most interesting candidate identified was USPL1
(swiss-prot/Q5W0Q7; Fig 1E). To confirm that USPL1 can be
crosslinked to SUMO-Vme substrates, we transfected cells with
YFP-USPL1 and added suicide substrates to cell extracts 24 h after
transfection. Indeed,YFP-USPL1 reacts with SUMO1-Vme and
with SUMO3-Vme (Fig 1F). We repeated the experiment with
purified recombinant USPL1 catalytic domain (USPL1cat), and
again observed covalent association with both suicide inhibitors
(Fig 1G). Importantly, mutating USPL1’s catalytic cysteine (C236)
to serine abolished the reaction (Fig 1G, lanes 5 and 6). Taken
together, these findings provided the first evidence for a role of
USPL1 as a SUMO protease.

USPL1 binds SUMO but not ubiquitin
USPL1 is a poorly characterized 120-kDa member of the C19
cysteine protease USP family. Sequence similarity to conventional
USPs is restricted to its catalytic domain, and highest for USP1
(19.5% residue identity). While USPL1’s catalytic domain
contains the catalytic triad (C236, H456, D472, supplementary
Fig S2 online), it has been assumed inactive (swiss-prot/Q5W0Q7;
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Fig 1 | Identification of USPL1 as a SUMO isopeptidase candidate. (A) Model: suicide inhibitor Strep-TEV-HA-SUMO-vinylmethylester (SUMO-Vme)

attacked by an isopeptidase. (B) SUMO-Vme is crosslinked to a known SUMO isopeptidase. The catalytic fragment GST-SENP1cat was incubated

with SUMO1- or SUMO3-Vme. Reaction products were analysed by SDS–PAGE. (C) Sequential IP approach to identify new SUMO isopeptidases.

(D) Analysis of peptide eluates (see C) by immunoblotting with anti-HA antibodies. (E) Schematic representation of USPL1 with catalytic domain

and Cys–His–Asp triad. (F) Transfected YFP-USPL1 reacts with SUMO-Vme in HEK 293T extracts. Analysis was by immunoblotting with anti-GFP

antibodies. (G) USPL1 requires its catalytic cysteine to react with SUMO-Vme. Recombinant USPL1cat (212–514) wt or C236S was incubated with

SUMO1- or SUMO3-Vme. Reaction products were analysed by SDS–PAGE. cat, catalytic fragment; GFP, green fluorescence; Gly, glycine; GST,

glutathione-S-transferase; HA, haemagglutinin epitope; IP, immunoprecipitation; Me, methyl; SENP1, SUMO/sentrin-specific protease 1; SDS–PAGE,

SDS–polyacrylamide gel electrophoresis; Strep, streptavidin; SUMO, small ubiquitin-related modifier; TEV, Tobacco Etch Virus protease cleavage site;

USPL1, ubiquitin-specific protease like 1; Vme, vinylmethylester; WT, wild type; YFP, yellow fluorescence protein.
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see also below). To test whether USPL1 can bind SUMO1,
SUMO2 or ubiquitin non-covalently, we immobilized untagged
mature Ubls on CNBr-activated sepharose and incubated them
with USPL1cat. Full-length USP5 was included as a control for
ubiquitin binding [13] and immobilized ovalbumin as a control
for unspecific binding. Strikingly, USPL1cat interacted with
SUMO2 but failed to bind ubiquitin (Fig 2A). Interaction
with SUMO1 could be detected with USPL1cat C236S (Fig 2B),
as this mutant bound SUMO proteins more stably than wild-type
(wt). Together, these findings indicate that USPL1 interacts
specifically with both SUMO proteins, but prefers SUMO2/3.

USPL1 is a SUMO isopeptidase
To assess USPL1’s catalytic activities, we first tested for C-terminal
hydrolase activity using the artificial substrates ubiquitin-,
SUMO1- and SUMO2-AMC. As shown in Fig 2C, USPL1cat
showed no activity for ubiquitin-AMC even at elevated concen-
trations (0.4 mM), but cleaved both SUMO-AMC substrates at 1 nM
concentration. Rates were higher for SUMO2-AMC compared
with SUMO1-AMC, consistent with USPL1’s preference in SUMO
binding. USP5 served as a positive control for ubiquitin–AMC
cleavage. Turning to physiological substrates, we tested whether
USPL1cat exhibits SUMO maturation activity (Fig 2D). For this,
35, 170 and 860 nM USPL1cat were incubated with 8 mM
preSUMO1 and preSUMO2. For comparison, we used 20 nM
SENP1 catalytic fragment (SENP1cat), which is known to process
both precursors [14]. USPL1 was indeed able to process
preSUMO1 and preSUMO2, but was significantly less efficient
than SENP1cat (Fig 2D). Notably, in contrast to SUMO–AMC,
cleavage maturation of preSUMO1 and preSUMO2 was
comparable for both SUMO isoforms. A likely interpretation is
that the C-terminal extension of preSUMO1 is preferred over
that of SUMO2. In conclusion, USPL1cat has some C-terminal
hydrolase activity.

Next, we tested USPL1’s ability to function as a SUMO
isopeptidase. First, we tested USPL1cat activity on SUMO3 chains
(Fig 2E). SENP1cat and USP5 served as positive and negative
controls. USPL1 indeed functioned as a SUMO isopeptidase, as
revealed by the disappearance of SUMO3 chains. Finally, we
tested whether USPL1cat is able to cleave substrates such as
recombinant sumoylated RanGAP1 and YFP-Sp100 [15]. Indeed,
both were rapidly demodified by USPL1 (Fig 2F,G). Comparison of
cleavage rates for SUMO1- and SUMO2-modified RanGAP1
(2 mM substrate, 4 nM USPL1cat; Fig 2F) showed a clear
preference of USPL1cat towards SUMO2. Quantitative analysis
of USPL1cat on YFP-SUMO2*CFP-RanGAPtail (supplementary
Fig S3A online) revealed that it is an efficient SUMO isopeptidase
(kcat/KM¼ 4� 105 M�1 s� 1), albeit two orders of magnitude less
efficient than Senp2cat.

Finally, we tested whether USPL1cat targets sumoylated species
in a cellular context. For this, we overexpressed YFP-USPL1cat wt
and C236S mutant in HEK 293T cells and analysed cell extracts by
immunoblotting (Fig 2H). Indeed, overexpression of USPL1cat
caused a striking loss of SUMO2/3 conjugates. USPL1cat C236S
on the other hand increased SUMO2/3 conjugates, indicating a
dominant-negative effect. SUMO1 targets were affected less
severely, consistent with in vitro findings. As expected, ubiquity-
lated species were not influenced by USPL1cat overexpression
(supplementary Fig S3B online). Taken together, our findings

demonstrate that USPL1 is a SUMO isopeptidase that prefers
SUMO2/3 both in vitro and in vivo.

Zebrafish C13orf22l is also a SUMO isopeptidase
To expand our analysis of USPL1, we searched for homologues:
based on available sequences, the USPL1 family is restricted to the
metazoan kingdom, where it is found in species with and without
bilateral symmetry (supplementary Fig S2 online). Intact USPL1
sequences are present in vertebrates, chordates and selected
invertebrate phyla. The catalytic domain of USPL1 has been lost in
several lineages, including insects, where proteins with similarity
to the non-catalytic USPL1 amino terminus exist. Other phyla,
such as nematodes, are devoid of USPL1-like sequences. We got
especially interested in Danio rerio C13orf22l, as it had been
identified in a mutagenesis screen as essential for early develop-
ment [16]. Catalytic domains of C13orf22l and USPL1 share 34%
sequence identity, including short regions of higher conservation
(Fig 3A). Like USPL1, transfected wt Flag-C13orf22l and recombi-
nant C13orf22lcat (aa 312–649) could be crosslinked to human
SUMO3-Vme (Fig 3B,C). C13orf22lcat was highly active on
SUMO2-AMC and did not cleave ubiquitin-AMC (supplementary
Fig S4 online). It showed little activity in maturation assays
involving human SUMO precursors (Fig 3D), but cleaved SUMO3
chains (Fig 3E) and SUMO2-modified RanGAP1 efficiently
(Fig 3F). Taken together, zebrafish C13orf22l is a functional
homologue of human USPL1.

USPL1-specific residues are required for activity
Our finding that USPL1 and C13orf22l are specific SUMO
isopeptidases was unexpected, considering that the C48
family of Ulp/SENP proteases bears no substantial relationship to
USPs [3,17]. Moreover, SUMO and ubiquitin differ significantly in
amino-acid composition and charge distributions [18]. However,
USPL1 lacks several key residues implicated in ubiquitin
binding (supplementary Fig S2 online), including a non-catalytic
histidine [19] and residues of the QQD box [20,21]. Aligning
catalytic domains of USPL1 homologues from Hydra to Homo
sapiens revealed clusters of conservation, some of which are
specific for the USPL1 subfamily (Fig 4A; supplementary Fig S2
online). Within these clusters, W229, W237, Q405 and H421 are
strictly conserved in USPL1 proteins, but different from residues in
all other USPs; E331 is conserved in all USPL1s and absent in most
other USPs; F335 and LL340/341 are localized in a hydrophobic
patch specific for the USPL1 family; and IV494/495 are part of a
hydrophobic patch similar in most USPs. To test contributions of
these residues, we generated His-GST-TEV-USPL1cat variants
and tested them for SUMO-AMC hydrolysis (Fig 4B) and SUMO
binding (Fig 4C). Four mutants showed severe and two mutants
moderate loss of activity. This was accompanied by severe or
moderate reduction in binding, consistent with the idea that these
conserved areas in USPL1 might be involved in SUMO recogni-
tion. Most striking was the effect of mutating W229 and W237 to
residues found in USP2 and other ubiquitin-specific USPs (W229L
and W237F): it dramatically impaired SUMO binding and
cleavage. These findings are intriguing in light of structural studies
of Ulp/SENP proteases [22,23]: two tryptophanes close to the
catalytic cysteine are needed to stably position the C-terminal
diglycine motif of SUMO in the substrate tunnel and seem to
allow trans–cis conversion of the scissile bond before cleavage.
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Fig 2 | USPL1 is a SUMO-specific protease. (A) USPL1 binds SUMO, not ubiquitin. Recombinant USPL1cat and USP5 were incubated with immobilized
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20 nM SENP1cat or USPL1cat (40, 17 and 860 nM) and samples were analysed by SDS–PAGE. (E) USPL1cat cleaves SUMO3 chains. SUMO3 chains of

12.5mM were incubated with 5 nM SENP1cat, 5 nM USPL1cat or 150 nM USP5 for the indicated times. Reaction products were analysed by SDS–PAGE.

(F,G) USPL1 cleaves sumoylated targets. (F) Two micrometre RanGAP1*SUMO1 or RanGAP1*SUMO2 were incubated with 4 nM USPL1cat for indicated

times. Reactions were analysed by SDS–PAGE. (G) YFP-SP100*SUMO2 was incubated with 5 nM SENP1cat or USPL1cat (4.3, 8.6 or 43 nM). Reaction

products were analysed by SDS–PAGE. (H) USPL1cat deconjugates SUMO targets in cells. HEK 293T cells were transfected with YFP empty vector,

YFP-USPL1cat wt or C236S, and analysed after 24 h by immunoblotting. AMC, 7-amino-4-methylcoumarin; OVA, ovalbumin; preSUMO, precusor of
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Whether USPL1 indeed shares these features with SENP proteases
will have to await structural analysis.

USPL1 is an essential Cajal body component
To gain insights into USPL1’s function, we generated affinity-
purified antibodies and confirmed their specificity with short
interfering RNA (siRNA) (Fig 5A). Immunoblotting, using recom-
binant USPL1 as a standard, indicates o5,000 USPL1 molecules
per HeLa cell. To investigate USPL1’s endogenous localization,
we turned to immunofluorescene. As shown in Fig 5B (upper
panel), anti-USPL1 antibodies decorate nuclear bodies. Based
on co-staining with anti-coilin, these are CBs. Specificity of
staining was confirmed using USPL1 siRNA (Fig 5B, lower

panel), and by transfection of tagged USPL1 (Fig 5C). While
HA-USPL1 was found exclusively in CBs (Fig 5C, upper panel),
YFP-USPL1 was present throughout the nucleoplasm when
expressed at high levels (Fig 5C, lower panel). This points to
limiting binding sites for USPL1 in CBs. CBs are highly dynamic
structures that change in number, size and composition during
cell cycle, development and stress [24,25]. Functions associated
with CBs reach from telomere maintenance to histone messenger
RNA processing, but one of the most rate-limiting functions
seems maturation and assembly of small nuclear
ribonucleoprotein particles: depletion of coilin, which leads to
early embryonic lethality in zebrafish, can be rescued by micro-
injection of mature human small nuclear ribonucleoprotein

C
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particles [26]. During our analysis, we noted that USPL1
knockdown alters the number and size of coilin-positive
bodies (Fig 5D). While HeLa cells treated with control siRNA
usually had 1–2 CBs, sometimes 3–7 CBs and rarely no CBs
(Fig 5D, upper panel), USPL1 knockdown caused a marked
change in CB size and number (Fig 5D, lower panel) that was
accompanied by the appearance of coilin in nucleoli (Fig 5D,
lower panel; supplementary Fig S5 online). At least 98% of
all cells showed coilin partially or exclusively in the nucleolus
(Fig 5D,H). This was neither accompanied by changes in coilin
levels and appearance, nor by changes in global sumoylation
(supplementary Fig S6 online). However, cells treated with siRNAs
ceased to proliferate (Fig 5E), without obvious phenotypes.
Considering that USPL1 disruption is embryonic lethal in zebrafish

(strong necrotic phenotype in the central nervous system and eye
at 2 days post fertilization (d.p.f.), death at 4–5 d.p.f. [16]), we
tested whether the requirement of USPL1 for CBs was conserved
in this organism: upon breeding of heterozygous mutants
(c13orf22lhi3662Tg/hi3662Tg), we generated sections of the head
region from wt and mutant embryos (supplementary Fig S7A
online), fixed at 2 d.p.f., and stained with anti-coilin sera; indeed,
many cells of c13orf22lhi3662Tg/hi3662Tg mutants revealed a striking
accumulation of coilin in nucleoli (Fig 5F; supplementary
Fig S7B online). In conclusion, C13orf22l is required for integrity
of CBs in zebrafish embryos, indicating that this function of
USPL1 is conserved.

Finally, to test whether USPL1’s catalytic activity is required
for cell proliferation and CB integrity, we retransfected
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siRNA-treated cells with wt and mutant HA-USPL1 variants, and
analysed cell proliferation (relative to mock-treated cells;
Fig 5G) and coilin distribution (Fig 5H). Strikingly, USPL1
inactive variants were as competent as wt USPL1 in rescue.
These findings indicate that the new SUMO isopeptidase USPL1
has essential functions independent of catalysis. Whether these
require USPL1’s ability to bind SUMO or depend on other
unknown functions of USPL1 will be an intriguing question
for future studies.

METHODS
For plasmids, proteins, antibodies, oligos, synthesis of Strep-TEV-
HA-SUMO1/3-Vme and detailed protocols see supplementary
information online.
Nomenclature. SUMO1 (Smt3C; P63165), SUMO2 (Smt3A; also
known as SUMO3, P55854) and SUMO3 (Smt3B; also known as
SUMO2, P61956).
Identification of SUMO isopeptidases using HA-SUMO1/3-Vme.
HeLa extracts (10 mg ml� 1 protein) were prepared from frozen
cells. For identification of SUMO-Vme-labelled proteins by mass
spectrometry, 25 ml HeLa cell extract (250 mg proteins), 10mg
SUMO1-Vme and 10 mg SUMO3-Vme were used for consecutive
IPs. SUMO-Vme-labelled proteins were enriched using anti-HA-
agarose, and eluted with HA-peptide before immunoblotting or
mass spectrometry.
Mass spectrometry. Mass spectrometric analyses were performed
after in-gel digestion of the entire sample lane. Extracted peptides
were sequenced by liquid chromatography-coupled tandem mass
spectrometry on a Q-ToF Ultima (Waters) under standard
conditions. Fragment spectra were searched against the NCBInr
database using Mascot.
Binding and protease assays. For binding assays and generation of
sumoylated model targets see supplementary information online.
For fluorimetric hydrolase assays, recombinant enzymes were
incubated with ubiquitin-, SUMO1- or SUMO2-AMC (BostonBio-
chem) in 384-well plates at 30 1C. Fluorescence was measured
using a Fluoroskan Ascent FL (Thermo Scientific) with 380-nm
excitation and 450-nm emission filters.
siRNA knockdown. siRNA was transfected using RNAiMAX
(Invitrogen). For rescue, HeLa cells were transfected with siRNA-
s2, and retransfected with siRNA-resistant pcDNA3.1 HA-USPL1,
using Jet Prime reagent (for details see supplementary information
online). Growth was measured either using the Cell Titre-Glo
Luminescent Cell Viability Assay (Promega, Madison, WI, USA) or
the CCK-8 cell counting kit (Dojindo).
Immunostaining of zebrafish sections. The transgenic fish line
c13orf22lhi3662Tg/þ (AB/TU) was obtained from Zebrafish Interna-
tional Resource Centre (ZIRC). On breeding, mutant embryos
(c13orf22lhi3662Tg/hi3662Tg) and wt siblings (c13orf22lþ /þ ,
c13orf22lhi3662Tg/þ ) were fixed at 2 d.p.f. Fourteen micrometre
cryosections of the embryos were generated and the head region
was stained with anti-zebrafish Coilin [26]. Imaging was carried
out on a Leica TCS SPE confocal microscope.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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