
ORIGINAL ARTICLE

Effective size of a wild salmonid population is greatly
reduced by hatchery supplementation

MR Christie1, ML Marine1, RA French2, RS Waples3 and MS Blouin1

Many declining and commercially important populations are supplemented with captive-born individuals that are intentionally
released into the wild. These supplementation programs often create large numbers of offspring from relatively few breeding
adults, which can have substantial population-level effects. We examined the genetic effects of supplementation on a wild
population of steelhead (Oncorhynchus mykiss) from the Hood River, Oregon, by matching 12 run-years of hatchery steelhead
back to their broodstock parents. We show that the effective number of breeders producing the hatchery fish (broodstock
parents; Nb) was quite small (harmonic mean Nb¼25 fish per brood-year vs 373 for wild fish), and was exacerbated by a high
variance in broodstock reproductive success among individuals within years. The low Nb caused hatchery fish to have decreased
allelic richness, increased average relatedness, more loci in linkage disequilibrium and substantial levels of genetic drift in
comparison with their wild-born counterparts. We also documented a substantial Ryman–Laikre effect whereby the additional
hatchery fish doubled the total number of adult fish on the spawning grounds each year, but cut the effective population size
of the total population (wild and hatchery fish combined) by nearly two-thirds. We further demonstrate that the Ryman–Laikre
effect is most severe in this population when (1) 410% of fish allowed onto spawning grounds are from hatcheries and
(2) the hatchery fish have high reproductive success in the wild. These results emphasize the trade-offs that arise when
supplementation programs attempt to balance disparate goals (increasing production while maintaining genetic diversity
and fitness).
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INTRODUCTION

The large-scale release of plants and animals into the wild can have
unintentional negative effects on the genetic diversity of the recipient
populations (Laikre et al., 2010). One widely-used strategy for
creating large numbers of individuals suitable for release into the
wild is to implement captive-breeding programs. Despite the large
numbers of such programs, there remains a distinct lack of appro-
priate and effective monitoring of individuals released into the wild
(Waples, 1999, Laikre et al., 2010). Ideally, the genetic monitoring of
populations would consist of sampling before and after the release of
individuals into the wild. In practice, however, these comparisons are
not feasible for many populations due to the lengthy history of
anthropogenic intervention. Nevertheless, a long-term evaluation of
the individual- and population-level effects of large-scale releases,
particularly when combined with detailed pedigree analyses
(Pemberton, 2008), can yield valuable insights into the demographic
and genetic effects of population supplementation.

Wild populations of Pacific salmonids have declined sharply over
the past century due to a combination of habitat destruction,
hydropower and overfishing (McClure et al., 2003; Quinn, 2005;
Naish et al., 2008). Consequently, 23% of Pacific salmon stocks are at
moderate to high risk (Augerot and Foley, 2005) and 54% of
evolutionarily significant units are currently listed as threatened or
endangered under the US Endangered Species Act (Gustafson et al.,

2007; ESA salmon listings, 2009). In order to alleviate the continued
population declines, supplementation programs have been commonly
implemented throughout the Northern Pacific. The term ‘supple-
mentation’ is used by programs where the main objective is to help
wild populations recover, but sometimes the term is used for
programs that also have a goal of harvest augmentation. Here we
are considering the former. Supplementation programs generally use
either hatchery fish (of various backgrounds) or returning wild fish as
broodstock and release the hatchery-raised smolts at or near the wild
spawning grounds. After returning from the ocean, a portion (or in
many cases all) of the returning adult hatchery fish are allowed onto
the spawning grounds with the wild-born fish. Wild broodstock are
preferred in some supplementation programs because they can
produce offspring that have much higher fitness in the wild than
offspring from older, domesticated hatchery stocks (though even first
generation hatchery fish can have reduced fitness in the wild; Araki
et al., 2007a; Araki et al., 2009; Williamson et al., 2010; Berntson et al.,
2011; Theriault et al., 2011; Christie et al., 2012).

Aside from creating differences in reproductive success between
wild and captive-born individuals, supplementation programs may
also affect important population genetic parameters (Waples and Teel,
1990). For example, genetic diversity, allelic richness and patterns of
genetic drift may be altered by population supplementation. Further-
more, the effective population size for individuals produced in captive
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breeding programs can be reduced relative to their wild-born
counterparts because (1) typically small numbers of individuals are
used as broodstock (especially for populations or species of concern)
and (2) there can be substantial variance in reproductive success
among the individuals chosen as broodstock (for example, a small
portion of the broodstock produce a high percentage of the surviving
offspring). Supplementation practices can thus create a ‘Ryman–
Laikre effect’, where the inbreeding effective population size of the
entire population is reduced relative to that of the original wild
population (Ryman and Laikre, 1991; Ryman et al., 1995). Even
though this effect was pointed out over 20 years ago, the problems
associated with inundating a wild population with the offspring of a
handful of founders have been largely ignored in current practice. In
fact, the recent trend toward producing first-generation hatchery fish
could exacerbate the problem because their reproductive success is
usually much higher in the wild than that of domesticated stocks.

Steelhead trout, Oncorhynchus mykiss, are typical of most Pacific
salmonids in that their declining populations have led to the creation
of numerous supplementation programs (Kostow, 2009). In this
study, we examined 12 run-years of steelhead from Hood River,
Oregon for which all anadromous fish were genotyped at eight highly
polymorphic microsatellite loci. We first used pedigree data to
calculate the effective number of broodstock breeders represented in
the returning hatchery offspring. Owing to the small effective number
of breeders we predicted that, in comparison to wild fish, hatchery
fish would have (i) high genetic drift among years, (ii) reduced
genetic diversity, (iii) increased relatedness, and (iv) substantial
linkage disequilibrium (LD) among loci. We further tested for a
Ryman–Laikre effect and examined how the strength of the Ryman–
Laikre effect is affected by (i) the proportion of hatchery fish allowed
onto spawning grounds and (ii) the reproductive success of those
hatchery fish in the wild (relative to wild-born fish).

MATERIALS AND METHODS
Sample collection and typing
Samples were collected from the Hood River, Oregon, where winter-run

steelhead are listed as threatened under the US Endangered Species Act (Busby

et al., 1996). Genetic samples for steelhead employed in this study were

collected from run-years 1995–2006, which corresponds to fish born in brood-

years 1993 through 2003. These run-years also encompass the initiation of the

supplementation program (though programs with domesticated, non-local

broodstock existed previously; see Olsen, 2003). Winter-run steelhead begin

returning to their natal rivers in early December, the year of which designates

the run-year, and do not spawn until spring of the next year. Thus a steelhead

that spawns in May of 2000 will belong to run-year 1999 (even if it returned in

March) and its offspring will belong to brood-year 2000. Because of the

accelerated growth rate in hatcheries (that is, smoltification in 1 year vs a

typical time of 2 years in the wild), 71% of hatchery-born steelhead return to

spawn after 2.5 years, whereas 64% of wild-born steelhead return after 3.5 years

(Figure 1; Araki et al., 2007a). Fish from a single run-year come from multiple

brood-years. Steelhead that returned to spawning grounds in the Hood River

were first passed over the Powerdale dam, which was a complete barrier to

migrating fishes. Every fish passed over the dam was individually handled, and

samples of scales and fin tissue were collected by staff of the Oregon

Department of Fisheries and Wildlife for subsequent aging and genetic analysis.

Steelhead returning to the Hood River are easily categorized as hatchery or wild

origin because all hatchery fish have their adipose fin removed before release.

All wild fish and an approximately equal number of hatchery fish were

passed over the dam each year (wild run sizes ranged from 221 to 1027 fish).

The winter-run hatchery fish were created using either two wild fish or one

wild fish and a first-generation hatchery fish as parents (see Araki et al.,

2007a,b). Most fish were spawned with two (or occasionally more) partners,

which created returning hatchery fish that were full sibs, half sibs or unrelated.

As per Araki et al. (2007a,b), we use ‘wild’ to refer to any fish spawned in the

river under natural conditions, regardless of whether its parents have hatchery

ancestry. Furthermore, fish used as hatchery broodstock were collected

randomly from throughout the entire run period and were unlikely to be

related. We have DNA samples from all broodstock, and comprehensive

records on broodstock pairings in the hatchery. Extensive details on this study

system, management practices, steelhead life-history and reproductive success

can be found elsewhere (Olsen, 2003; Araki et al., 2007a,b; Kostow, 2009).

The winter-run steelhead samples averaged 907 fish per brood-year for a

total of 9977 samples (Table 1). We genotyped all samples at eight highly

polymorphic microsatellite loci (Omy 1001, Omy 1011, Omy 1191, Omy77,

One108, One2, Ssa407 and Str2), which average 36 alleles per locus (see Araki

et al., 2007a,b for details of microsatellite loci, Hardy–Weinberg proportions

and molecular methods). These data were previously employed to determine

the relative reproductive success of hatchery and wild steelhead (Araki et al.,

2007a,b), and of wild-born steelhead having hatchery vs wild parents (Araki

et al., 2009). Results from this work documented that hatchery fish created

with two wild parents averaged 85% the reproductive success of their wild

counterparts and that an additional generation in captivity reduced fitness in

the wild by an additional 50% (Araki et al., 2007a).

Effective number of broodstock parents
To calculate the effective number of broodstock parents, we first employed

parentage analysis to assign hatchery fish back to their broodstock parents.
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Figure 1 Distribution of run-years in which wild and hatchery fish returned.

Hatchery fish born in brood-year 1996 (run-year 1995 for their parents)

returned predominantly in run-year 1998, while wild fish returned

predominately in run-year 1999. Notice that fish in any given run-year come

from multiple brood-years.

Table 1 Number of returning adult winter-run steelhead samples

Brood-year Hatchery Wild

Female Male Female Male

1993 107 121 182 120

1994 181 109 135 77

1995 119 79 201 95

1996 93 79 802 436

1997 159 131 598 386

1998 323 319 568 334

1999 309 315 392 255

2000 154 149 323 194

2001 303 250 270 192

2002 79 75 203 153

2003 95 132 219 161

Total 1922 1759 3893 2403

Numbers are reported for fish grouped by brood-year (i.e., their year of birth) and separated by
sex and hatchery or wild status.
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We used genotypes of the known broodstock pairs sorted by the year in which

they were spawned as the putative parents. Genotypes of the hatchery fish,

sorted and grouped by brood-year, were employed as the putative offspring.

Because there can be some error associated with the aging of scales, we also

used hatchery fish±1 brood-year as putative offspring. Parentage analysis

revealed that very few hatchery fish (o3%) had been assigned via scale ageing

to the incorrect brood-year, which is not always the case with wild-born fish

(for example, Seamons et al., 2009). We used Mendelian exclusion to assign

hatchery fish to their broodstock parents (that is, each allele in an identified

offspring matched at least one allele in both parents). To allow for genotyping

errors, we allowed an offspring to mismatch to one allele in both parents

(Christie, 2010), although 81% of assignments contained no mismatches. No

hatchery fish matched to more than one broodstock pair because we had an

average of 36 alleles per locus and because we knew the hatchery broodstock

pairings, which reduced the required number of pairwise comparisons.

Broodstock fish (potential parents) had genotype data at all loci. Hatchery

fish that had missing data at more than two loci were not used in this study

(o1%), resulting in a total of 74 unassigned fish.

After assigning hatchery fish to known broodstock pairs we calculated the

mean (�k) and variance (Vk ) in reproductive success for male and female

broodstock from each run-year. We next estimated the inbreeding effective

number of breeders (Nb) for each sex as:

Nb¼
�kN � 2

�k� 1þ Vk

�k

ð1Þ

where N equals the number of broodstock males or females used in a run-year

(Crow and Kimura, 1970; Caballero, 1994). We next combined the estimates

for both sexes by setting

Nb¼
4ðNb½Female� � Nb½Male�Þ
Nb½Female� þNb½Male�

ð2Þ

Note that under some circumstances it may be necessary to adjust Vk/ �k to

account for errors in parentage assignment and missing parents (Araki et al.,

2007c). In our case, however, we had complete genotypes of all putative

parents, and using assignments with or without allowing for mismatching loci

did not substantially change our estimates (that is, we had very low type a and

b errors using the terminology of Araki et al., 2007c). Using records from the

Oregon Department of Fish and Wildlife, we compared the effective number of

breeders used in each year (as calculated above) to (1) the number of

broodstock actually used, (2) the total number of returning offspring that the

broodstock produced, and (3) the total number of wild fish passed over the

dam each run-year.

Population effects of supplementation
We first calculated FST between the wild and hatchery fish grouped by brood-

year using FSTAT 2.9.3 (Goudet, 1995). These results were illustrated with a

principal coordinates analysis performed with the package ade4 (Thioulouse

et al., 1997) as implemented in R version 2.12 (R Development Core Team,

2011). Correspondence analysis on the genotype data produced a very similar

pattern (data not shown). Given the high number of alleles per locus, we also

calculated the multi-allele analog, GST, using RECODEDATA (Meirmans,

2006). The numbers of hatchery and wild fish in each group were both large

(range: 154–1238) and roughly equal, such that the observed differentiation

was not due to differences in sample sizes.

For all 11 years of data, we next calculated the allelic richness and FIS for

both wild and hatchery fish using FSTAT. For allelic richness, samples were

rarefied to smallest sample size (n¼ 154). Using 5000 permutations in FSTAT,

we tested whether differences in allelic richness, within sample gene diversity,

and observed heterozygosity were different between hatchery and wild fish. We

also calculated the percentage of locus pairs in LD with GENEPOP 4.0

(Raymond and Rousset, 1995) using 10 000 batches and 10 000 iterations per

batch. Lastly, we calculated Queller and Goodnight’s (1989) pairwise measure

of relatedness as implemented in GENALEX 6.41 (Peakall and Smouse, 2006).

We performed 999 bootstraps and 999 permutations to determine whether the

estimates were different from zero and whether estimates for hatchery and wild

fish differed from one another, respectively.

Ryman–Laikre effect
To test for a Ryman–Laikre effect, we first estimated the effective number of

breeders per brood-year for wild fish. We used LDNe 1.2 (Waples and Do,

2008) to estimate the effective number of wild breeders (Nw). We used a LD-

based method because the presence of resident steelhead (that is, rainbow

trout) in the river prevented assignment of a large portion of wild offspring to

parents using pedigree methods (see Christie et al., 2011 for a detailed analysis

of resident fish). We selected 0.02 as the lowest allele frequency to be used in

LDNe, which has been shown to generally provide a good balance between

maximizing precision and minimizing bias (Waples and Do, 2008). Selecting

smaller values had little effect on our estimates, whereas larger values greatly

increased the variance. We calculated confidence intervals by jackknifing over

loci. We next calculated the effective number of breeders for hatchery fish (Nc)

using LDNe and pedigree-based methods (see the methods described above).

Using the equation presented in Ryman and Laikre (1991), we calculated the

effective number of breeders for hatchery and wild fish combined as:

1

Ne
¼ x2

Nc
þ ð1� xÞ2

Nw
ð3Þ

where Nc and Nw are the effective number of hatchery and wild breeders,

respectively. Because x theoretically equals the contribution of hatchery fish to

the next generation (Ryman and Laikre, 1991), we calculated x as:

x¼ NHatchery � RRS

Ntotal
ð4Þ

where NHatchery equals the total number of hatchery fish passed over the dam,

RRS equals the reproductive success of hatchery fish relative to wild fish and

Ntotal was the total number of fish (wild and hatchery) passed over the dam for

a given brood-year. We used an RRS of 0.85, which was the average

reproductive success of a hatchery fish created with two wild parents (Araki

et al., 2007a). We took the reciprocal of Equation (3) to calculate NeT, the

effective number of breeders for the combined hatchery and wild components

of the population.

We next calculated NNo Hatchery, which equals the best estimate of what the

effective number of breeders would have been in the wild had there been no
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Figure 2 Genetic bottlenecks created by the supplementation program.

Triangles (‘Wild Fish’) represent the total number of wild fish passed over the

dam for 11 consecutive years. Circles (‘Broodstock’) are the total number of

wild fish removed from the run and used in the supplementation program.

Squares (‘NbBroodstock’) are the effective number of broodstock breeders

calculated using pedigree data. The� represents the average effective

number of breeders for the wild population as calculated in Araki et al.

(2007c). Diamonds (‘Offspring’) represent the total number of hatchery

offspring assigned to the broodstock from a given run-year. Notice that the

ordinate is on a logarithmic scale and that solid lines connect years. A full

color version of this figure is available at the Heredity journal online.
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supplementation program. We calculated this value per brood-year as:

NNo Hatchery ¼Nw � 1þ Nbrood

Ntotal

� �
ð5Þ

where Nbrood equals the number of fish brought into the hatchery and Ntotal

was the total number of fish allowed to spawn in the wild per brood-year. It

should be noted that this correction to Nw yielded only slight qualitative

differences for the population in this study, but it would be particularly

important for hatchery programs that use a larger percentage of the returning

fish as broodstock. Lastly, we divided NeT by NNo Hatchery, to measure the Nb of

the entire population (hatchery and wild combined) relative to the Nb in the

wild had there been no supplementation program. Thus, a ratio ¼ 1 indicates

that there is no decrease in Nb owing to the hatchery program, whereas a ratio

o1 indicates a Ryman–Laikre effect. We next plotted these results as a

response to x (the contribution of hatchery fish to the next generation), where

RRS¼ 0.85 (see Equation (4)). We also varied RRS from 0 to 1 in the

calculation of x (Equation (4)) and divided the harmonic mean of NeT and the

harmonic mean of NNo Hatchery (for the 11 brood-years) to illustrate the effect

of RRS on the magnitude of the Ryman–Laikre effect.

RESULTS

According to hatchery records, a total of 40 to 80 fish were used as
broodstock each year. However, the effective number of broodstock
parents estimated from their returning offspring ranged from 16.5 to
36.7, with a harmonic mean of 24.9 individuals (Figure 2 and
Table 2). The small effective number of breeders was exacerbated by

Table 2 Point estimates for the effective number of breeders

estimated with LDNe and associated 95% confidence intervals

(Jackknife CI) for hatchery and wild fish by brood-year (Also

presented are the pedigree-based estimates for the effective number

of breeders for hatchery fish (Pedigree))

Brood-year Hatchery fish Wild fish

Pedigree LDNe Jackknife CI LDNe Jackknife CI

1993 16.5 23.6 21.7 25.7 222.4 196.9 251.6

1994 32.5 30.3 27.8 32.9 285.5 232.9 362.2

1995 25.0 22.2 20.0 24.6 180.1 157.3 208.2

1996 18.9 21.2 19.2 23.3 250.3 230.5 271.8

1997 34.3 30.7 28.1 33.6 426.6 372.7 491.6

1998 30.2 29.1 27.2 31.1 517.2 452.2 600.1

1999 36.7 38.7 35.3 42.2 588.9 500.1 710.4

2000 17.6 21.6 20.2 23.1 663.6 559.6 808.9

2001 26.6 27.8 25.3 30.5 577.3 492.0 694.4

2002 32.1 33.2 29.3 37.6 650.4 497.0 922.7

2003 30.1 27.7 24.7 30.9 866.1 604.9 1468.9
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Figure 3 Principal coordinates analysis of pairwise FST between all brood-

years of hatchery and wild fish. Circles represent wild fish and squares

represent hatchery fish. Notice that the FST between hatchery brood-years is

substantially greater than wild brood-years owing to the small effective

number of breeders. A full color version of this figure is available at the

Heredity journal online.
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as a consequence of the low effective number of breeders used to create

hatchery fish. (a) Allelic richness (averaged across loci) in hatchery fish was

lower than wild fish. Hatchery fish also had a much greater percentage of

locus pairs in LD than wild fish (b). (c) illustrates that the average

relatedness of hatchery fish was substantially greater than wild fish.
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the large variance in family size among broodstock fish
(Supplementary Figure S1). In general, there was very good agreement
(r2¼ 0.79) between effective number of breeders estimated with
pedigree and LD-based methods (Table 2 and Supplementary
Figure S2). Although hatchery and wild fish were passed above the
dam in approximately equal numbers, all the hatchery fish descended
from a handful of breeders, while the wild fish descended from several
hundred parents (harmonic mean Nb for wild fish¼ 373, see also
Araki et al., 2007c). The low hatchery Nb created many noticeable
differences between hatchery and wild fish. The point estimates for
FST between hatchery fish brood-years are an order of magnitude
greater than between wild fish brood-years (Figure 3). None of the
qualitative results differed between FST and GST; however, GST values
were approximately an order of magnitude greater than FST

(Supplementary Table S1 and Supplementary Table S2).
The average allelic richness of hatchery fish was substantially lower

than wild fish across all brood-years (Figure 4a). Permutation-based
tests revealed that allelic richness (Po0.0002) and within-sample gene
diversity (Po0.0004) were significantly lower in hatchery fish than
wild fish. Observed heterozygosity was not significantly different
between the two groups (P¼ 0.113). Furthermore, out of 11 brood-
years examined, 99.9% of loci pairs were in LD for hatchery fish,
compared with an average of 8% for wild fish (Figure 4b). In all years,
there were slightly more wild fish than hatchery fish, which eliminates
a potential bias for statistical tests finding greater numbers of loci
pairs in LD for hatchery fish. Importantly, the brood-years for which
wild fish had a noticeable percentage of loci pairs in LD corresponded
with the return of the first generation of hatchery fish that mated in
the wild. The large amount of LD present in hatchery fish is due to
low Nb in the returning hatchery fish (Hedgecock et al., 2007) and is
further reflected in elevated levels of relatedness in hatchery fish
compared with wild fish (Figure 4c). Results from permutation tests
revealed that all hatchery estimates of relatedness were significantly
greater than wild estimates. The average relatedness of all hatchery
fish equaled 0.025, which is equivalent to third-cousins. FIS values
were not substantially different between wild and hatchery fish
(E0.01 in both groups).

We also documented a Ryman–Laikre effect (Table 3), in which the
effective population size of the entire population is reduced due to the
hatchery program. On taking the harmonic mean for 11 brood-years
and setting the RRS equal to 1, the effective number of breeders for
the entire population was 36.5% of the effective number of breeders

for wild fish alone despite a near doubling of the total population size.
This percentage was reduced to 32.8% when we estimated the effective
number of breeders for the wild population had no wild fish been
brought into the hatchery (see harmonic means for NeT and
NNo Hatchery in Table 3, which were simply divided to obtain these
percentages). These percentages changed to 46.3% and 41.6%,
respectively, when the population-specific RRS estimate of 0.85 was
used (See Table 3 for harmonic means). In brood-year 1996, there was
no evidence for a Ryman–Laikre effect, which was the brood-year for
which, relative to wild fish, the fewest hatchery fish were allowed onto
the spawning grounds. In fact, we found a strong negative relation-
ship (r2¼ 0.65) between the contribution of hatchery fish to the next
generation and the reduction in the effective number of breeders for
the combined hatchery and wild population (Figure 5a). We also
demonstrated, in this population, that a higher reproductive success
of hatchery fish resulted in a stronger Ryman–Laikre effect
(Figure 5b). Using a wide range of theoretical values for Nc, Nw,
RRS, and the proportion of hatchery fish allowed onto spawning
grounds, we further illustrate that the Ryman–Laikre effect is most
pronounced when (i) the effective number of broodstock breeders is
low relative to the wild, (ii) the proportion of hatchery fish allowed
onto spawning grounds is high, and (iii) the RRS of hatchery fish is
high (Supplementary Figure S3).

DISCUSSION

For this Hood River steelhead population, we demonstrate that the
effective number of breeders in the supplementation program can be
surprisingly low (harmonic mean across years¼ 25 fish). In each
cohort of hatchery fish, we also observed lower genetic diversity,
higher relatedness, substantial fluctuations in allele frequencies and
extensive LD in comparison with wild-born fish. Increased rates of
drift could contribute to fitness declines in fish from multi-generation
or conventional hatchery programs (for example, owing to random
fixation of deleterious alleles). The comparatively low amount of drift
among brood-years of wild fish is likely due to the much larger
effective number of breeders in the wild and the wild brood-years
consisting of offspring from a greater number of run-years.

We also documented a substantial Ryman–Laikre effect in 10 of 11
brood-years. This effect revealed that although the supplementation
program doubled the total number of breeding adults in the river
each year, it cut the effective population size to roughly one-third of
what it would have been had there been no hatchery supplementation

Table 3 Estimates of the effective number of breeders with (NeT) and without (NNo Hatchery) a supplementation program

Brood-year Nc Nw NNo Hatchery XRRS¼1 NeTRRS¼1 XRRS¼0.85 NeTRRS¼0.85

1993 16.5 222.4 266.5 0.43 78.9 0.37 100.9

1994 32.5 285.5 318.5 0.58 91.8 0.49 120.1

1995 25.0 180.1 208.9 0.40 118.8 0.34 141.7

1996 18.9 250.3 257.8 0.12 258.5 0.10 264.6

1997 34.3 426.6 456.4 0.23 343.6 0.19 382.1

1998 30.2 517.2 545.0 0.42 156.4 0.35 202.0

1999 36.7 588.9 618.1 0.49 142.7 0.42 187.9

2000 17.6 663.6 717.8 0.37 119.9 0.31 158.6

2001 26.6 577.3 652.9 0.54 86.8 0.46 116.8

2002 32.1 650.4 746.0 0.30 278.9 0.26 345.0

2003 30.1 866.1 973.1 0.37 196.1 0.32 256.8

H Mean 25.4 373.5 415.2 — 136.3 — 172.9

NNo Hatchery equals the estimated effective number of breeders had there been no hatchery supplementation program and NeT equals the total effective number of breeders for both wild and
hatchery fish considered jointly with relative reproductive success values of 1 and 0.85 (RRS; hatchery relative to wild). Also presented is ‘x’, the contribution of hatchery fish to the next
generation, and point estimates for the effective number of breeders for the captive (Nc [Pedigree]), and wild fish per brood-year (Nw[LDNe]). Where appropriate, we report the harmonic mean
(Mean) for all brood-years.
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program. We further illustrated that allowing more than one hatchery
fish for every 10 returning wild fish onto the spawning grounds led to
a substantial reduction in the overall effective number of breeders
(Table 3). This result is due to the effective number of breeders for
hatchery fish equaling about one-tenth of the total effective number
of breeders. Clearly, if the goals of supplementation are to bolster the
wild population, then allowing only one hatchery fish access to the
spawning grounds per 10 wild fish will yield little demographic
benefit considering that an equivalent number of wild fish were
removed from the population to be used as broodstock. Allowing
more hatchery fish onto the spawning grounds, however, would
decrease the effective population size, which is also at odds with
conservation goals. Although it often occurs, the practice of allowing
all returning hatchery fish onto spawning grounds without the careful
monitoring of important genetic parameters (for example, Nb) could

have large impacts on the long-term conservation of that population
(for example, genetic variation important for future adaptation could
be rapidly reduced).

In this population, we further documented that the effective size of
the total population decreased as the reproductive success of the
returning hatchery fish increased, which is due to hatchery fish
with higher reproductive success having a greater contribution to
subsequent generations (see Equation (3)). This result is also at odds
with the goals of some supplementation programs, which aim to
create fish that have reproductive success equal to their wild
counterparts. Here we show that if supplementation programs meet
that goal, then they may be unintentionally decreasing the effective
population size. These results make it apparent that any supplemen-
tation program will involve some inherent trade-offs. Explicitly
accounting for the demographic, genetic and societal costs and
benefits of supplementation could pave the way for more prudent
management actions.

Our results illustrate in a practical example some of the general
outcomes implied by the Ryman–Laikre equation (see Equation (3)
and Supplementary Figure S3), which is determined by the effective
number of hatchery and wild breeders (Nb) and ‘x’, the contribution
of hatchery fish to the next generation. Some points to keep in mind
about the Ryman–Laikre effect are that: (1) if Nb/N in the hatchery is
less than or equal to Nb/N in the wild, then NeT (the combined wild
and hatchery effective size) can never be larger than it would be
without the program; (2) if Nb/N is higher in the hatchery than in the
wild, then it may be possible to actually increase NeT via supple-
mentation. This could be accomplished by equalizing variance in
family sizes in the hatchery. However, this benefit would only be
realized if the hatchery contribution to the next generation, ‘x’, is
fairly low; (3) ‘x’ should be calculated by taking the relative
reproductive success of hatchery fish into account (see
Equation (4)), because what matters most is the fraction of genes
in the next generation that come from hatchery fish; and (4) the effect
of RRS on NeT increases as the proportion of hatchery fish relative to
wild fish allowed access to spawning grounds is increased
(Supplementary Figure S3). Thus, in order to balance demographic
gains with the loss of genetic diversity, supplementation programs
may be most useful for a quick demographic boost, when wild returns
are very low, and when the programs are only implemented for a
short period of time (Waples, 2004).

Our results also suggest several additional management practices
that might be considered. Supplementation programs create two large
bottlenecks, each corresponding to a reduction in the number of
breeders (Figure 2). The first bottleneck occurs simply by choosing a
limited number of individuals for broodstock. The second bottleneck
is created by the large variance in reproductive success among those
hatchery broodstock (Supplementary Figure S1). As mentioned
above, deliberately equalizing the variance in reproductive success
among broodstock could help to increase the genetic diversity of
hatchery fish without taking more breeders from the wild. Equalizing
family sizes should also reduce the rate of domestication (Allendorf,
1993; Christie et al., 2012). Of course, any variation in survival that
occurs after smolts are released will generally be beyond the control of
managers (for example, Reisenbichler et al., 2004). In this study, the
Vk/�k was surprisingly large—similar to that observed among breeders
in wild populations. Furthermore, broodstock family sizes were not
correlated with eggs used per female or any other phenotypic trait of
the parents that we could measure (that is, length, weight, age and
run-timing; Christie et al., 2012). Thus, determining the cause of the
high variance in family size in each brood-year of hatchery fish would
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Figure 5 Illustration of a substantial Ryman–Laikre effect. The ordinate

equals the total effective number of breeders (hatchery and wild fish pooled;

Nb Total) divided by the effective number of breeders for the population had

no hatchery program been implemented (NbNoHatchery). Thus the ordinate

equals the magnitude of the Ryman–Laikre effect (with smaller values

equating to a stronger effect). (a) Relationship between the contribution of

hatchery fish to the next generation (see Equation (4)) and the Ryman–

Laikre effect for 11 brood-years. The dashed line represents the median

ordinate value for all years. RRS was fixed at 0.85 such that the

contribution of hatchery fish directly reflects the proportion of hatchery fish

allowed onto the spawning grounds. (b) Relationship between relative

reproductive success of hatchery fish (RRS) and the Ryman–Laikre effect.

For visual clarity, we took the harmonic mean of Nb Total and the harmonic

mean of Nb No Hatchery across all 11 brood-years to generate a single point

estimate for each distinct RRS value.
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be particularly useful. Another practice that could mitigate the
Ryman–Laikre effect would be to spread the contribution of a single
brood-year over multiple release years. For example, it might be
beneficial to exclude the first year of returning hatchery fish onto the
spawning grounds (which come from a single brood-year), and there
might be merit in allowing a portion of hatchery steelhead take 2
years to smolt in the hatchery (1 year is typical hatchery practice).

In conclusion, we found that a contemporary supplementation
program greatly reduced the effective size of a wild population. These
results further illustrate that different conservation goals can be at
odds with each other in a supplementation program. For example, the
small Nb of hatchery fish created in a supplementation program can
have unintended genetic consequences, but bringing more wild
individuals into the breeding program can also have negative
consequences for the population. Furthermore, adding more hatchery
fish to the population may temporarily increase the census size, but
can drastically decrease the effective population size. Thus, we
recommend that (1) programs that release large numbers of
captive-born individuals into the wild be rigorously monitored, and
that (2) more consideration be given to balancing the competing goals
of increasing the census size of the population (while minimizing
domestication) and preserving the wild population’s genetic diversity.
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