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Abstract

Background: Pancreatic cancer is the fourth leading cause of cancer death in the U.S. and the etiology of this highly lethal
disease has not been well defined. To identify genetic susceptibility factors for pancreatic cancer, we conducted pathway
analysis of genome-wide association study (GWAS) data in 3,141 pancreatic cancer patients and 3,367 controls with
European ancestry.

Methods: Using the gene set ridge regression in association studies (GRASS) method, we analyzed 197 pathways identified
from the Kyoto Encyclopedia of Genes and Genomes database. We used the logistic kernel machine (LKM) test to identify
major contributing genes to each pathway. We conducted functional enrichment analysis of the most significant genes
(P,0.01) using the Database for Annotation, Visualization, and Integrated Discovery (DAVID).

Results: Two pathways were significantly associated with risk of pancreatic cancer after adjusting for multiple comparisons
(P,0.00025) and in replication testing: neuroactive ligand-receptor interaction, (Ps,0.00002), and the olfactory transduction
pathway (P = 0.0001). LKM test identified four genes that were significantly associated with risk of pancreatic cancer after
Bonferroni correction (P,161025): ABO, HNF1A, OR13C4, and SHH. Functional enrichment analysis using DAVID consistently
found the G protein-coupled receptor signaling pathway (including both neuroactive ligand-receptor interaction and
olfactory transduction pathways) to be the most significant pathway for pancreatic cancer risk in this study population.

Conclusion: These novel findings provide new perspectives on genetic susceptibility to and molecular mechanisms of
pancreatic cancer.
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Introduction

Pancreatic cancer is the fourth leading cause of cancer-related

death in the United States, accounting for more than 37,660

deaths per year [1]. Because no effective screening test exists for

pancreatic cancer, it is important to identify genetic factors that

contribute to the development of this cancer. Recent genome-

wide association studies (GWAS) and post-GWAS analyses have

identified chromosome regions containing the ABO, NR5A2, and

CLPTM1L-TERT genes [2,3], as well as the HNF1A gene [4], as

susceptibility loci for pancreatic cancer. However, single-marker

association tests have limited power to identify genes that are

genuinely associated with disease status but may not reach a

stringent genome-wide significance threshold in GWAS. Thus,

many important disease genes may still remain unidentified with

this approach. Furthermore, cancer development typically

involves dysfunction of multiple functionally related genes acting

concordantly in a network or pathways [5]. Thus, pathway

analysis of GWAS data, which jointly considers multiple variants

in interacting genes and multiple genes in a biological pathway,

as a complementary approach to single-marker association tests

[6], may have the potential to reveal the polygenic basis of

disease susceptibility. Pathway-based GWAS analyses have

provided novel insights into the etiology of cancers, such as

colon cancer [7], lung cancer [8], and melanoma [9], and other

complex diseases, including schizophrenia [10], bipolar disorder

[11], and rheumatoid arthritis [12]. A recent study analyzed the

GWAS data focusing on 23 selected pathways or groups of genes

and identified the pancreas development pathway genes as

susceptibility factors for pancreatic cancer [13]. While this data

supports the candidate pathway analysis as a useful approach in

genetic association study, it is limited by the number of

pathways/genes examined, suggesting that a more comprehen-

sive agnostic analysis of all known pathways may have the

potential to uncover novel genes that were previously not

considered in pancreatic cancer.

Gene set ridge regression in association studies (GRASS) is one

of the newly developed pathway-based approaches [7]. In
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GRASS, principal components analysis (PCA) is used to capture

the genetic variation within a gene to reduce the dimensionality of

the single-nucleotide polymorphism (SNP) data and regularized

logistic regression is performed to assess the association of

pathways with disease. In this study, we first used GRASS on

GWAS data to assess the association of pathways with pancreatic

cancer. Then, we applied the logistic kernel machine (LKM)

method to screen the major contributing genes to each pathway

[14]. Finally, we conducted functional enrichment analysis of the

most significant genes using the Database for Annotation,

Visualization, and Integrated Discovery (DAVID) method

[15,16]. In this study, the first comprehensive analysis of GWAS

data in pancreatic cancer using an agnostic approach, we have

identified novel pathways and genes that are significantly

associated with the disease risk. These findings may open new

avenues of research on the molecular mechanism and etiology of

pancreatic cancer.

Methods

Study Population and Data Source
The study population included a total of 7,019 individuals:

1,871 cases and 2,026 from PanScan1 including 12 nested case–

control studies and one hospital-based case control study and

1,528 cases and 1,594 controls from PanScan2 including 6

case–control studies on pancreatic cancer [2,3]. Cases were

defined as primary adenocarcinoma of the exocrine pancreas.

Controls, which were free of pancreatic cancer at the time of

recruitment, were matched to cases according to birth year, sex,

and self-reported race/ethnicity. GWAS had been performed at

the National Cancer Institute’s Core Genotyping Facility using

the HumanHap550, HumanHap550-Duo, and Human 610-

Quad arrays (all from Illumina, San Diego, CA) [2,3]. The

original GWAS data were downloaded from the Database of

Genotypes and Phenotypes (dbGaP) [17]. On the basis of

International HapMap Project genotype data (phase 3 release

#3, NCBI build 36, dbSNP b126, 2010-05-28) for three

populations (CEU, JPT/CHB, and YRI) [18] and minor allele

frequency (MAF) .5%, we selected 10,155 SNPs with r2,0.004

to use in population structure analysis [19]. A total of 6,508

individuals (3,141 cases and 3,367 controls) with European

ancestry (i.e., 0.75–1 similarity to CEU) were selected from the

starting study population of 7,019 individuals in the current

pathway analysis.

Quality Control
The original GWAS data passed quality control procedures

before posted on dbGaP. We pruned the genotype data by further

excluding 13,822 SNPs with call rate ,98%, 45,653 SNPs with

MAF ,5%, and 38,857 SNPs deviating from Hardy–Weinberg

equilibrium (P,0.001), as well as SNPs in the gene desert regions,

resulting in 82,881 SNPs in the final analysis from a starting

number of 468,111 SNPs.

In order to evaluate the impact of population structure, we

made the quantile-quantile (Q-Q) plot and calculated the inflation

factor (l) in individuals with European ancestry only. The inflation

factor was calculated according to method by de Bakker et al. [20],

adjusted for a sample size of 1,000 cases and 1,000 controls using

the formula:

lcorrected~1z(lobserved{1)|(
1

ncase

z
1

ncontrol

)=(
1

1000
z

1

1000
)

Where, ncase and ncontrol are actual number used to calculate

lobserved ; 1,000 is the sample size to be corrected. Q-Q plot shows

little inflation of test statistics compared with expected distribution

(l= 1.03), excluding the possibility of potential population

structure between cases and controls.

Pathways and Genes
A total of 214 human biological pathways are listed in Kyoto

Encyclopedia of Genes and Genomes (KEGG) [21]. After

excluding pathways with ,10 or .500 genes, we analyzed 197

pathways using the GRASS approach [22]. We identified 19,058

Reference Sequence (RefSeq) genes in the GWAS data from the

human genome 18 (hg18) database using the University of

Table 1. Pathways significantly associated with pancreatic cancer risk.

KEGG code Pathway description
No. of
genes

No. of SNPs/No.
of eigenSNPsa P valueb Major contributing genesc

hsa04080 Neuroactive ligand-
receptor interaction

263 6116/1374 0.00002 CCKBR CHRM5 EDNRA LPAR1 NMUR1 P2RX4 SSTR3 F2RL3 OPRK1 GZMA
S1PR2 SSTR2 CHRNB3 SCTR THRB CALCRL DRD4 VIPR1

hsa04664 Fc epsilon RI signaling
pathway

77 1714/405 0.00012 RAF1 AKT3 RAC2 NRAS MAPK1 PLA2G2A FCER1G HRAS

hsa04730 Long-term depression 68 2649/540 0.00006 RAF1 ITPR2 NRAS MAPK1 GNAS GUCY1A2 PLA2G2A HRAS

hsa04950 Maturity onset diabetes
of the young

24 299/91 0.00006 HNF1A HNF4G NR5A2 PDX1 HNF1B NEUROG3

hsa04270 Vascular smooth muscle
contraction

113 3791/806 0.00024 ITPR2 RAF1 EDNRA ADCY9 KCNMA1 KCNMB2 GUCY1A2 GNAS PLA2G2A
CALCRL MAPK1 PLA2G5 ADCY3 MYLK3

hsa04740 Olfactory transduction 353 4084/1122 0.0001 OR13C4 OR13C3 OR1L4 OR1L6 OR9G1 OR2G3 OR2G2 OR1L1 OR1L3
OR13C8 OR13C5 OR5M11 OR8B8 OR1N1 OR10P1 OR13C2 OR9G4
OR2H1 OR1J4 OR1J2 OR13C9 OR1N2 OR1L8 OR5M10 OR1C1 OR51G1
OR8U8 CNGA4 OR4A16 OR52W1 OR13A1 OR10H4 OR10C1 OR1M1
OR13F1 OR52B2 OR5M1 OR51B4 OR51A2 OR14A16 OR51F2 OR10G3
OR5L1 OR51A4 OR51G2

Note: All 6 pathways were significant after Bonferroni correction (P,2.5061024).
a‘‘No. of SNPs’’ refers to the actual number of SNPs; ‘‘No. of eigenSNPs’’ refers to the number of uncorrelated linear combinations of SNPs used in GRASS analysis.
bP value obtained from GRASS analysis based on 50,000 permutations.
cGenes associated with pancreatic cancer with P,0.001, identified using the logistic kernel machine (LKM) method.
doi:10.1371/journal.pone.0046887.t001
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California Santa Cruz (UCSC) Table Browser data retrieval tool

[23]. We tested 5,127 genes in the 197 pathways for association

with pancreatic cancer. For each gene region, we included SNPs

within 20 kb upstream or downstream of the gene in this study.

Statistical Methods
We used GRASS to test the association of each pathway with

pancreatic cancer. Genotype data were coded in an additive

model using PLINK version 1.07 [24] with 0 for homozygote

common allele, 1 for heterozygote, and 2 for homozygote mutant

allele. The GRASS tests the null hypothesis that none of the SNPs

in a given pathway was associated with the disease [6]. To avoid

undue influence of varying gene and pathway sizes, the GRASS

uses normalized gene-level statistics and sample (subject) permu-

tations. The details of GRASS have been previously described [7].

Briefly, the method consists of three steps. First, PCA is used to

summarize SNPs in each gene as uncorrelated (orthogonal) linear

combinations of the original SNPs, called eigenSNPs, accounting

for $95% of the genetic variation. The number of resulting

eigenSNPs is usually much smaller than that of the original

genotyped SNPs and serves as predictors in the regularized logistic

regression model. A penalized likelihood function is used to

estimate the regression coefficients of the eigenSNPs. Second, a

standardized gene-level statistic is calculated according to the

regression coefficients of the eigenSNPs. The statistic, analogous to

z-statistic, is defined as

Table 2. GRASS analysis of significant pathways in PanScan1 and PanScan2 dataset.

Pathway code Pathway description Combined Panscan1 Panscan2
Stouffer’s
meta-p Random1 Random2

Stouffer’s
meta-p

hsa04080 Neuroactive ligand-receptor interaction 0.00002 0.00006 0.002 ,1.061025 0.0256 0.279 0.0365

hsa04664 Fc epsilon RI signaling pathway 0.00012 0.11 0.18 0.065 0.0624 0.0076 0.0025

hsa04730 Long-term depression 0.00006 0.1232 0.14 0.057 0.5422 0.0418 0.1254

hsa04950 Maturity onset diabetes of the young 0.00006 0.00006 0.91 0.038 0.0856 0.0676 0.0215

hsa04270 Vascular smooth muscle contraction 0.00024 0.10 0.10 0.035 0.357 0.0352 0.0620

hsa04740 Olfactory transduction 0.0001 0.0015 0.002 1.061025 0.0036 0.0816 0.0020

doi:10.1371/journal.pone.0046887.t002

Figure 1. Genes significantly associated with pancreatic cancer (P,0.01 in LKM) in all 197 pathways analyzed in this study.
doi:10.1371/journal.pone.0046887.g001
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b̂bg~
b̂blg
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,
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b̂blg
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���~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂b2

g1zb̂b2
g2z . . . zb̂b2

gkg

q

is the square root of summation of squared regression coefficient

for each eigenSNP estimated under the optimal tuning parameter

l; m̂mg and ŝsg, estimated from permutations, are mean and standard

deviation of b̂blg

���
���under the null hypothesis that gene g is not

associated with the disease. Thus, each gene, regardless of its size,

contributes equally to the gene set association statistic, as described

below. The third step involves calculating gene set (pathway)

association statistic (Tl) and p value. Tl is the square root of

summation of squared standardized gene-level statistics; P value is

estimated using
T0

b (l)
�

§Tl; b~1,2, . . . Bg
B

, where T0
b (l) is

computed from the permutated data and B is the number of

permutations. Because of the large number of genes and pathways

analyzed, we applied the Bonferroni correction to adjust for

multiple comparisons. The significance threshold was P,0.00025

(0.05/197). Due to the intensive computation entailed by GRASS,

we adopted a two-stage permutation test procedure, similar to that

implemented in PLINK [24]: we first conducted 5,000 permuta-

tions to each gene set in this study, and for those gene sets with p-

value less than 0.00025, we increased the number of permutations

to 50,000.

We applied the LKM test to assess the association of each gene

with pancreatic cancer as previously described [14]. Briefly, this

method comprises two steps: forming SNP sets for each gene and

testing the association of SNP sets with disease status. The gene

database, gene region definition, and genotype coding used here

were the same as those in GRASS. The LKM model integrates a

regular logistic model with a semi-definite kernel function (a linear

kernel was used here) that is specifically designed for genetic data.

The variance-components score test of Zhang and Lin [25] was

used to test gene–disease association. In this analysis, we tested the

associations of 5,127 genes (in the 197 pathways) with pancreatic

cancer after adjusting for age (in 10-year groups), sex, study

(categorical), and five principal components (quantitative) captur-

ing population structure obtained from a PCA analysis using

EIGENSTRAT [26]. P values from the KLM analysis were

adjusted for multiple comparisons using the Bonferroni correction.

The significance threshold was P,9.7561026 (0.05/5,127).

Finally, as a complementary approach to the GRASS pathway

analysis, we investigated the functional enrichment of the most

significant genes in gene-based association tests (P#0.01 in LKM)

using the web-accessible bioinformatics tool DAVID [15,16]. The

DAVID consists of an integrated biological knowledgebase and

analytic tools aimed at systematically extracting biological

meaning and over-represented biological functions from large

gene or protein lists based on the hypergeometric (Fisher’s exact)

Figure 2. Genes significantly associated with pancreatic cancer in (A) the Fc epsilon RI signaling pathway; (B) long-term depression;
(C) MODY; (D) olfactory transduction; (E) neuroactive ligand-receptor interaction pathway; and (F) vascular smooth muscle
contraction pathways. Genes with –log10(P) ,1 were not included in the plots. For clarity, not all genes are labeled. For details, see Tables S1 and
S3.
doi:10.1371/journal.pone.0046887.g002

Table 3. Genes associated with pancreatic cancer risk at P values ,0.0001 in LKM analysis.

Gene P valuea Full name
No. of SNPs/No. of
eigenSNPsb KEGG code

ABO 1.5661026 ABO blood group (transferase A, alpha 1-3-N-
acetylgalactosaminyltransferase; transferase B, alpha 1-3-
galactosyltransferase)

23/5 hsa00601

HNF1A 1.6961026 HNF1 homeobox A 16/4 hsa04950

OR13C4 6.6361026 olfactory receptor, family 13, subfamily C, member 4 13/4 hsa04740

SHH 8.1861026 sonic hedgehog 14/4 hsa05217 hsa05200 hsa04340

OR13C3 1.0361025 olfactory receptor, family 13, subfamily C, member 3 14/4 hsa04740

HNF4G 2.6261025 hepatocyte nuclear factor 4, gamma 14/5 hsa04950

MYC 2.7361025 v-myc myelocytomatosis viral oncogene homolog (avian) 4/1 hsa05222 hsa05221 hsa05220
hsa05219 hsa05216 hsa05213
hsa05210 hsa05200 hsa04630
hsa04350 hsa04310 hsa04110
hsa04012 hsa04010

NR5A2 6.7661025 nuclear receptor subfamily 5, group A, member 2 55/12 hsa04950

ADPGK 7.9261025 ADP-dependent glucokinase 8/3 hsa00010

ABL1 8.9561025 c-abl oncogene 1, non-receptor tyrosine kinase 30/7 hsa05416 hsa05220 hsa05200
hsa05131 hsa05130 hsa04722
hsa04360 hsa04110 hsa04012

Note: The first four genes were significant after Bonferroni correction (P,9.75610–6).
aP value obtained from LKM analysis.
b‘‘No. of SNPs’’ refers to the actual number of SNPs; ‘‘No. of eigenSNPs’’ refer to the number of uncorrelated linear combinations of SNPs used in GRASS analysis.
doi:10.1371/journal.pone.0046887.t003
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test. We used the KEGG, GO and InterPro [27] databases to

define the gene sets. In addition, DAVID groups functionally

similar gene sets into clusters to reduce the redundant nature of

gene functional annotation systems, e.g., the hierarchically

organized GO.

As a replication effort, we analyzed the data from PanScan1

(1,796 cases and 1,880 controls) and PanScan2 (1,345 cases and

1,487 controls) separately. We also randomly split the entire

dataset into two groups and conducted separate analysis in each

group. We performed meta-analysis of the P values from

individual cohort/group using the Stouffer’s z-score method,

which has been demonstrated to be efficient in meta-analysis of

GWAS [28]. The test statistic for combining p-values from two

individual cohorts for a given pathway is computed as

z~½W{1(1{p1)zW{1(1{p2)�=
ffiffiffi
2
p

, where W{1 is inverse of the

standard normal cumulative function. The overall meta-analysis P

value is calculated as 1{W(z). Finally, we applied the GRASS

method to test the two largest significant pathways (as detailed in

Results) using the Wellcome Trust Case Control Consortium

(WTCCC) GWAS data [29] to empirically evaluate the impact of

pathway size and demonstrate the specificity of our results.

Results

Pathways Associated with Pancreatic Cancer
We analyzed 197 pathways with 5,127 genes using the GRASS

approach and found that six pathways were significantly associated

with pancreatic cancer after the Bonferroni correction

(P,2.561024) (Table 1). Three pathways were significant at P

values ,0.0001: neuroactive ligand-receptor interaction, long-

term depression, and maturity onset diabetes of the young

(MODY) pathways. Three pathways had a less significant P value

of $0.0001 but ,0.00025: the olfactory transduction, Fc epsilon

RI signaling, and the vascular smooth muscle contraction

pathways. In addition to the above six pathways, the glyceropho-

spholipid metabolism, pancreatic secretion and vascular endothe-

Figure 3. Ingenuity biologic systems map of the top 81 genes (P,0.05 in LKM) of the six pathways that are significantly associated
with risk of pancreatic cancer. The solid line and dashed line, respectively, shows the direct and indirect interactions between genes.
doi:10.1371/journal.pone.0046887.g003
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lial growth factor (VEGF) signaling pathways were associated with

pancreatic cancer at P = 0.0004 (Table S1, available online).

Pathway Replication Results
Two of the six significant pathways, i.e. the olfactory

transduction pathway and the neuroactive ligand-receptor inter-

action pathway showed consistent small P values across the

PanScan1 and PanScan2 cohorts, though not both P values were

significant after multiple testing corrections likely due to much

smaller sample size in each individual cohort and the resulting

lower statistical power (Table 2). The meta-analysis P values for

these two pathways (161025 and ,161025, respectively) were

significant after the Bonferroni correction. The MODY pathway

remained significant in PanScan1 (P = 0.00006) but not in

PanScan2 (P = 0.91), and the meta-analysis P value was 0.0589.

All three remaining significant pathways in the combined GRASS

analysis had P values .0.1 in the PanScan1 and PanScan2 cohort

(Table 2). When we randomly split the dataset into two groups, all

six pathways had a P value ,0.05 in one of the two groups but not

in both; and none of the meta-analysis P values was significant

after adjusting for multiple comparisons (Table S2). To investigate

if the significance of the olfactory transduction pathway (353 genes

and 1,122 eigenSNPs) and the neuroactive ligand receptor

interaction pathway (263 genes and 1,374 eigenSNPs) was simply

due to their large size, we tested these pathways by applying the

GRASS to the WTCCC GWAS data and obtained a P value of

0.5652 and 0.2332 for bipolar disorder and 0.246 and 0.0062 for

Crohn’s disease, respectively, (each disease had 2,000 cases and

3,000 controls). These results, along with the consistent small P

values across PanScan1 and PanScan2, indicate that the

significant P value of these two pathways in the GRASS analysis

is unlikely due to the pathway size. In addition, to investigate if the

pathway results were mainly driven by GWAS top hits reported in

PanScan1 and PanScan 2, we removed the gene NR5A2 from the

MODY pathway and re-performed GRASS analysis with 50,000

permutations. The P value for the combined dataset, PanScan1

and PanScan2 subset was 0.461024, 0.661024, and 0.88,

respectively. The respective P values were 0.661024, 0.661024

and 0.91 from the analysis including the NR5A2 gene, suggesting

that our pathway analysis unraveled signals independent from

Table 4. Functional enrichment analysis of top genes associated with pancreatic cancer (P,0.01 from KLM)a.

Cluster (Enrichment scoreb) Biological process Database code
No. of
genes P valuec

1 (6.61) GPCR, rhodopsin-like superfamily IPR017452 26 1.61610211

7TM GPCR, rhodopsin-like IPR000276 26 1.66610211

Olfactory receptor IPR000725 18 5.1161029

Sensory perception of smell GO:0007608 18 1.3061027

G-protein coupled receptor protein signaling pathway GO:0007186 29 1.5361027

Sensory perception of chemical stimulus GO:0007606 18 5.6061027

Cell surface receptor linked signal transduction GO:0007166 36 2.5861026

Sensory perception GO:0007600 22 4.0161026

Cognition GO:0050890 23 6.9161026

Neurological system process GO:0050877 25 6.7161025

Olfactory transduction hsa04740 18 2.3861023

2 (1.97) Homeostatic process GO:0042592 18 1.9761024

Chemical homeostasis GO:0048878 14 4.0361024

Cellular cation homeostasis GO:0030003 9 1.4561023

Activation of phospholipase C activity GO:0007202 5 2.2561023

Positive regulation of phospholipase C activity GO:0010863 5 2.2561023

Positive regulation of phospholipase activity GO:0010518 5 2.8061023

Cation homeostasis GO:0055080 9 3.0461023

Regulation of phospholipase activity GO:0010517 5 3.1161023

Positive regulation of lipase activity GO:0060193 5 3.7961023

Second-messenger-mediated signaling GO:0019932 8 3.9161023

Cellular ion homeostasis GO:0006873 10 4.5961023

Cellular chemical homeostasis GO:0055082 10 5.0961023

Cellular homeostasis GO:0019725 11 6.3361023

Regulation of lipase activity GO:0060191 5 6.4261023

Ion homeostasis GO:0050801 10 8.1061023

Activation of phospholipase C activity by G-protein coupled receptor
protein signaling pathway coupled to IP3 second messenger

GO:0007200 4 9.7761023

aDAVID analysis was based on GO, InterPro, and KEGG database.
bThe group enrichment score is the geometric mean (in -log scale) of member gene sets’ P values in a corresponding annotation cluster.
cThe P value is based on a modified Fisher’s exact test in the DAVID system, referring to one-tail Fisher’s exact probability value used for gene-enrichment analysis.
doi:10.1371/journal.pone.0046887.t004
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those by single-SNP analysis. Note that other GWAS top hits such

as ABO and TERT1 were not included in any of the 197 pathways.

Major Contributing Genes to Pathways
Applying the LKM method, we identified 365 genes with

nominal significance (P,0.05) and 118 genes with P,0.01 for the

197 pathways (Table S3, available online). The major contributing

genes to each of the six significant pathways identified by GRASS

are listed in Table 1. The major genes contributing to the 197

pathways and to the six significant pathways are presented in

Figure 1 and 2, respectively. After we adjusted for multiple

comparisons, four genes remained significant (P,9.7561026): the

ABO, HNF1A, OR13C4, and SHH genes (Table 3). In addition to

these four genes, ABL1, MYC, HNF4G, NR5A2 (a GWAS top hit)

and ADPGK had P values ,0.0001.

Functional Enrichment Analysis of Significant Genes
Finally, we conducted functional enrichment analysis, using

DAVID, on the set of 118 genes with P,0.01 from LKM analysis.

Forty-four clusters were identified on the basis of the KEGG, GO

and InterPro categories. The clusters of genes with P,0.01 from

DAVID are listed in Table 4 (See Table S4 for detailed list of

genes in each cluster). The superfamily of rhodopsin-like G

protein-coupled receptors (GPCRs), perception of smell and

olfactory transduction was the most significant group of genes

on the basis of the InterPro (P = 1.61610–13), GO (P = 1.30610–7)

and KEGG (2.3861023) databases, respectively, echoing our

findings from GRASS. Genes maintaining the homeostasis process

were also over-represented in pancreatic cancer (Table 4). The

biologic relationship map for the top 81 genes (P,0.05 in LKM) of

the six significant pathways is shown in Figure 3, which was

created with Ingenuity Pathway and Analysis software [30].

Discussion

In this GWAS pathway analysis, we identified two novel

pathways, i.e. the neuroactive ligand receptor interaction and

olfactory transduction pathways that are significantly associated

with pancreatic cancer risk after adjusting for multiple compar-

isons and in replication testing. These findings were also supported

by functional enrichment analysis. We also identified four genes

that are significantly associated with pancreatic cancer risk,

including three previously implicated genes ABO, HNF1A, and

SHH [2–4] as well as a novel gene OR13C4. These findings

provide new provocative insights into the polygenic basis of

pancreatic cancer susceptibility and etiology.

The GPCR protein superfamily of transmembrane receptors

accounts for ,4% of the whole human genome and .50% of

modern therapeutic targets [31]. Genes of the neuroactive ligand-

receptor interaction and olfactory transduction pathways are

major components of the GPCRs (Table S4). The neuroactive

ligand-receptor interaction pathway remained significant after

adjusting for multiple testing in PanScan1 (P = 0.0006) but not in

PanScan2 (P = 0.002). However, the P value from meta-analysis

was highly significant (P,161025). The contributing genes to this

pathway, e.g. CCKBR, CHRM5, EDNRA, LPAR1, SSTR2/3, and

SCTR, have diverse functions in regulating the endocrine and

exocrine functions of the pancreas, which are highly relevant to

pancreatic cancer [32,33,34,35].

Humans have .700 olfactory receptor (OR) genes (of which

$50% are functional) [36]. Genetic variants of the OR genes and

dysfunctions of OR signaling have previously been associated with

schizophrenia [37], fetal hemoglobin in sickle-cell anemia [38],

and proliferation of prostate cancer cells [39]. Although the links

between olfactory transduction and pancreatic cancer remain to

be elucidated, a previous sequencing analysis of human pancreatic

tumors did find many somatic mutations of the OR genes,

including seven genes identified in the current analysis: OR13C3,

OR13C5, OR10P1, OR1J2, OR4A16, OR51F2, and OR5D13 [40].

Expression of at least two OR genes has been reported in human

pancreas tissues [41]. The top two contributing genes to the

olfactory transduction pathway, OR13C4 and OR13C3, ranked as

the third and fifth most significant genes among the 5,127 genes

analyzed in this study. In the replication study, the olfactory

transduction pathway remained as one of the top pathways with

consistent small P values in PanScan1 and PanScan2 cohort with a

significant meta-analysis P value after adjusting for multiple

testing. On the other hand, we did not find any association of this

pathway with bipolar or Crohn’s disease in the WTCCC GWAS

data analysis. All these data suggest that the association of

olfactory transduction pathway and pancreatic cancer are unlikely

to be due to chance. Further replication of this association in other

dataset and functional studies of the biological and molecular links

between olfactory transduction signaling and pancreatic cancer

are warranted. GPCRs are the first gate through which outside

signals are transmitted into the cell. High activity of GPCRs may

contribute to transduction of outside detrimental signals, such as

insulin, glucose, or carcinogens, into a cell and induce a cascade of

responses related to carcinogenesis.

In addition to these two pathways, four additional pathways also

passed the Bonferroni correction for multiple comparisons, i.e. the

MODY, Fc epsilon RI, long-term depression and vascular smooth

muscle contraction pathways. However, the MODY pathway was

highly significant in PanScan1 but was not significant in

PanScan2. The diminished or weaker gene-risk association in

PanScan2 has previously been observed for other genes [3,4]. This

difference may be related to the fact that PanScan1 was pooled

from 12 cohort studies and one case control study while PanScan2

was drawn from eight case control studies. Because of the rapid

fatality of pancreatic cancer, case control study may subject to a

survival bias if the testing genes are associated with survival.

Although meta-analysis did not show a significant P value, this

pathway has been identified as the most significant pathway in

association with pancreatic cancer in a separate analysis of the

PanScan data using two different statistical methods [13]. The

MODY genes are an important part of the transcriptional network

that regulates pancreas development and differentiation in early

life and maintains pancreatic homeostasis in adulthood [42,43,44].

Three MODY genes (HNF1A, HNF4G, and NR5A2) were among

the top 10 genes with P values ,0.0001 in LKM analysis. Notably,

another two of the top 10 genes, SHH and MYC, are also known to

play an essential role in pancreas development [45]. Genes

involved in organ development and differentiation may contribute

to the ability of tumor cells to proliferate and survive, as well as

alter cell plasticity, thus reprogramming cells to a state that can

give rise to a tumor. MODY genes may also contribute to

pancreatic cancer by modifying the risk of diabetes [46] and

obesity [47,48], or by regulating epithelial cell growth and

differentiation, lipid metabolism [49], protein fucosylation [50],

and inflammation [51].

Fc epsilon RI is a high affinity receptor for IgE, and mast cell

activation mediated by Fc epsilon RI is a key event in the allergic

inflammatory response. Increasing evidence indicates that inflam-

mation around tumor, including infiltration by mast cells, facilities

tumor growth and angiogenesis in pancreatic cancer [52,53].

However, this pathway along with the long-term depression and

vascular smooth muscle contraction pathways did not have
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consistent results in the replication studies. Thus, these data need

to be treated with caution.

Compared to findings from the previously reported candidate

pathway/gene analysis [13], our findings on pathways that were

included in both studies were quite consistent, i.e. a positive

finding on the pancreas development (aka MODY) pathway/

genes and the negative findings on the DNA repair, apoptosis,

insulin signaling, wnt, notch and hedgehog pathways/genes.

This is by far the largest study in pancreatic cancer with the

most comprehensive analysis of all biological pathways identified

from KEGG using an agnostic approach. Using PCA in GRASS

greatly reduced the dimensionality of the GWAS data and

increased the probability of singling out useful information. Using

the LKM method overcame the influences of positive and negative

effects of SNPs and enabled us to identify new genes in addition to

replicating the gene regions discovered by previous marginal-

association studies [54]. By performing the GRASS analysis in two

independent cohorts, we have shown consistent findings on some

of the significant pathways. Further replication of these findings in

future additional pancreatic cancer GWAS data is warranted.

Overall, the pathway analysis approach with intensive control for

false positive findings has a great potential to uncover gene traits

that are associated with disease without a priori. Correct use of this

tool may open up new avenues of research on the molecular

mechanisms of pancreatic cancer and potential targets for the

prevention and treatment of this disease.

Supporting Information

Table S1 List of 197 biological pathways analyzed in this study.

(XLS)

Table S2 Results of GRASS analysis in subgroups and in

WTCCC GWAS dataset.

(XLS)

Table S3 List of 5,127 genes analyzed in this study.

(XLS)

Table S4 List of genes in each cluster identified in DAVID

analysis.

(XLS)

Acknowledgments

We thank all contributors to the PanScan GWAS. We thank Dr. Yuxin Fu

for his advice on the population structure analysis and Mr. Jin Yu for his

help with the intensive computation using the CLUSTER system at the

University of Texas, School of Public Health at Houston.

Author Contributions

Conceived and designed the experiments: DL PW. Performed the

experiments: HT PW. Analyzed the data: HT PW. Contributed

reagents/materials/analysis tools: DL PW. Wrote the paper: PW HT

DL. Obtained permission for use of GWAS data in this analysis: DL.

Obtained data from KEGG, HapMap and other databases: HT.

Developed the R codes for the statistical analysis: PW.

References

1. American Cancer Society (2012) Cancer Facts and Figures 2012.

2. Amundadottir L, Kraft P, Stolzenberg-Solomon RZ, Fuchs CS, Petersen GM,
et al. (2009) Genome-wide association study identifies variants in the ABO locus

associated with susceptibility to pancreatic cancer. Nat Genet 41: 986–990.

3. Petersen GM, Amundadottir L, Fuchs CS, Kraft P, Stolzenberg-Solomon RZ,
et al. (2010) A genome-wide association study identifies pancreatic cancer

susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat Genet 42:
224–228.

4. Pierce BL, Ahsan H (2011) Genome-wide "pleiotropy scan" identifies HNF1A

region as a novel pancreatic cancer susceptibility locus. Cancer Res 71: 4352–
4358.

5. Schadt EE (2009) Molecular networks as sensors and drivers of common human

diseases. Nature 461: 218–223.

6. Wang K, Li M, Hakonarson H (2010) Analysing biological pathways in genome-
wide association studies. Nat Rev Genet 11: 843–854.

7. Chen LS, Hutter CM, Potter JD, Liu Y, Prentice RL, et al. (2010) Insights into
Colon Cancer Etiology via a Regularized Approach to Gene Set Analysis of

GWAS Data. Am J Hum Genet.

8. Fehringer G, Liu G, Briollais L, Brennan P, Amos CI, et al. (2012) Comparison
of pathway analysis approaches using lung cancer GWAS data sets. PLoS One 7:

e31816.

9. Schoof N, Iles MM, Bishop DT, Newton-Bishop JA, Barrett JH (2011) Pathway-
based analysis of a melanoma genome-wide association study: analysis of genes

related to tumour-immunosuppression. PLoS One 6: e29451.

10. Jia P, Wang L, Fanous AH, Chen X, Kendler KS, et al. (2012) A bias-reducing
pathway enrichment analysis of genome-wide association data confirmed

association of the MHC region with schizophrenia. J Med Genet 49: 96–103.

11. Holmans P, Green EK, Pahwa JS, Ferreira MA, Purcell SM, et al. (2009) Gene
ontology analysis of GWA study data sets provides insights into the biology of

bipolar disorder. Am J Hum Genet 85: 13–24.

12. Luo L, Peng G, Zhu Y, Dong H, Amos CI, et al. (2010) Genome-wide gene and
pathway analysis. Eur J Hum Genet 18: 1045–1053.

13. Li D, Duell EJ, Yu K, Risch HA, Olson SH, et al. (2012) Pathway Analysis of

Genome-wide Association Study Data Highlights Pancreatic Development
Genes as Susceptibility Factors for Pancreatic Cancer. Carcinogenesis 33: 1384–

90.

14. Wu MC, Kraft P, Epstein MP, Taylor DM, Chanock SJ, et al. (2010) Powerful

SNP-set analysis for case-control genome-wide association studies. Am J Hum

Genet 86: 929–942.

15. Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment

tools: paths toward the comprehensive functional analysis of large gene lists.

Nucleic Acids Res 37: 1–13.

16. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative

analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:

44–57.

17. NCBI website. Available: https://dbgap.ncbi.nlm.nih.gov/. Accessed 2010 Dec
9.

18. Frazer KA, Ballinger DG, Cox DR, Hinds DA, Stuve LL, et al. (2007) A second
generation human haplotype map of over 3.1 million SNPs. Nature 449: 851–

861.

19. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure

using multilocus genotype data. Genetics 155: 945–959.

20. de Bakker PI, Ferreira MA, Jia X, Neale BM, Raychaudhuri S, et al. (2008)

Practical aspects of imputation-driven meta-analysis of genome-wide association
studies. Hum Mol Genet 17: R122–128.

21. Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M (2010) KEGG for

representation and analysis of molecular networks involving diseases and drugs.

Nucleic Acids Res 38: D355–360.

22. Wang K, Li M, Bucan M (2007) Pathway-based approaches for analysis of
genomewide association studies. Am J Hum Genet 81: 1278–1283.

23. Karolchik D HA, Furey TS, Roskin KM, Sugnet CW, Haussler D, et al. (2004)
The UCSC Table Browser data retrieval tool. Nucleic Acids Res 32(Database

issue): D493–6.

24. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)

PLINK: a tool set for whole-genome association and population-based linkage
analyses. Am J Hum Genet 81: 559–575.

25. Zhang D, Lin X (2003) Hypothesis testing in semiparametric additive mixed
models. Biostatistics 4: 57–74.

26. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. (2006)
Principal components analysis corrects for stratification in genome-wide

association studies. Nat Genet 38: 904–909.

27. EMBL-EBI Website. Available: http://www.ebi.ac.uk/interpro/. Accessed 2012

April 5.

28. Willer CJ, Li Y, Abecasis GR (2010) METAL: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics 26: 2190–2191.

29. WTCCC (2007) Genome-wide association study of 14,000 cases of seven
common diseases and 3,000 shared controls. Nature 447: 661–678.

30. INGENUITY Website. Available: http://www.ingenuity.com/. Accessed 2012
April 5.

31. Lappano R, Maggiolini M (2011) G protein-coupled receptors: novel targets for
drug discovery in cancer. Nat Rev Drug Discov 10: 47–60.

32. Rehfeld JF (2004) Clinical endocrinology and metabolism. Cholecystokinin. Best

Pract Res Clin Endocrinol Metab 18: 569–586.

33. Anney RJ, Lotfi-Miri M, Olsson CA, Reid SC, Hemphill SA, et al. (2007)

Variation in the gene coding for the M5 muscarinic receptor (CHRM5)
influences cigarette dose but is not associated with dependence to drugs of

addiction: evidence from a prospective population based cohort study of young

adults. BMC Genet 8: 46.

34. Darrah R, McKone E, O’Connor C, Rodgers C, Genatossio A, et al. (2010)

EDNRA variants associate with smooth muscle mRNA levels, cell proliferation

GWAS and Pancreatic Cancer

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e46887



rates, and cystic fibrosis pulmonary disease severity. Physiol Genomics 41: 71–

77.

35. Hayes GM, Carrigan PE, Dong M, Reubi JC, Miller LJ (2007) A novel secretin

receptor splice variant potentially useful for early diagnosis of pancreatic

carcinoma. Gastroenterology 133: 853–861.

36. Niimura Y, Nei M (2003) Evolution of olfactory receptor genes in the human

genome. Proc Natl Acad Sci U S A 100: 12235–12240.

37. Turetsky BI, Hahn CG, Borgmann-Winter K, Moberg PJ (2009) Scents and

nonsense: olfactory dysfunction in schizophrenia. Schizophr Bull 35: 1117–1131.

38. Solovieff N, Milton JN, Hartley SW, Sherva R, Sebastiani P, et al. (2010) Fetal

hemoglobin in sickle cell anemia: genome-wide association studies suggest a

regulatory region in the 59 olfactory receptor gene cluster. Blood 115: 1815–

1822.

39. Neuhaus EM, Zhang W, Gelis L, Deng Y, Noldus J, et al. (2009) Activation of an

olfactory receptor inhibits proliferation of prostate cancer cells. J Biol Chem 284:

16218–16225.

40. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, et al. (2008) Core signaling

pathways in human pancreatic cancers revealed by global genomic analyses.

Science 321: 1801–1806.

41. Feldmesser E, Olender T, Khen M, Yanai I, Ophir R, et al. (2006) Widespread

ectopic expression of olfactory receptor genes. BMC Genomics 7: 121.

42. Maestro MA, Cardalda C, Boj SF, Luco RF, Servitja JM, et al. (2007) Distinct

roles of HNF1beta, HNF1alpha, and HNF4alpha in regulating pancreas

development, beta-cell function and growth. Endocr Dev 12: 33–45.

43. Rukstalis JM, Habener JF (2009) Neurogenin3: a master regulator of pancreatic

islet differentiation and regeneration. Islets 1: 177–184.

44. Oliver-Krasinski JM, Kasner MT, Yang J, Crutchlow MF, Rustgi AK, et al.

(2009) The diabetes gene Pdx1 regulates the transcriptional network of

pancreatic endocrine progenitor cells in mice. J Clin Invest 119: 1888–1898.

45. Morris JPt, Wang SC, Hebrok M (2010) KRAS, Hedgehog, Wnt and the twisted

developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer
10: 683–695.

46. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, et al. (2010) Twelve

type 2 diabetes susceptibility loci identified through large-scale association
analysis. Nat Genet 42: 579–589.

47. Gerdin AK, Surve VV, Jonsson M, Bjursell M, Bjorkman M, et al. (2006)
Phenotypic screening of hepatocyte nuclear factor (HNF) 4-gamma receptor

knockout mice. Biochem Biophys Res Commun 349: 825–832.

48. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, et al. (2010)
Association analyses of 249,796 individuals reveal 18 new loci associated with

body mass index. Nat Genet 42: 937–948.
49. Kathiresan S, Willer CJ, Peloso GM, Demissie S, Musunuru K, et al. (2009)

Common variants at 30 loci contribute to polygenic dyslipidemia. Nat Genet 41:
56–65.

50. Lauc G, Essafi A, Huffman JE, Hayward C, Knezevic A, et al. (2010) Genomics

meets glycomics-the first GWAS study of human N-Glycome identifies
HNF1alpha as a master regulator of plasma protein fucosylation. PLoS Genet

6: e1001256.
51. Dehghan A, Dupuis J, Barbalic M, Bis JC, Eiriksdottir G, et al. (2011) Meta-

analysis of genome-wide association studies in .80 000 subjects identifies

multiple loci for C-reactive protein levels. Circulation 123: 731–738.
52. Esposito I, Menicagli M, Funel N, Bergmann F, Boggi U, et al. (2004)

Inflammatory cells contribute to the generation of an angiogenic phenotype in
pancreatic ductal adenocarcinoma. J Clin Pathol 57: 630–636.

53. Strouch MJ, Cheon EC, Salabat MR, Krantz SB, Gounaris E, et al. (2010)
Crosstalk between mast cells and pancreatic cancer cells contributes to

pancreatic tumor progression. Clin Cancer Res 16: 2257–2265.

54. Goode EL, Chenevix-Trench G, Song H, Ramus SJ, Notaridou M, et al. (2010)
A genome-wide association study identifies susceptibility loci for ovarian cancer

at 2q31 and 8q24. Nat Genet 42: 874–879.

GWAS and Pancreatic Cancer

PLOS ONE | www.plosone.org 10 October 2012 | Volume 7 | Issue 10 | e46887


