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Background: The memory-associated protein KIBRA regulates cell polarity and migration in non-neuronal cells and a
cellular function of KIBRA in mitosis is not defined.
Results:KIBRA activates Aurora kinases and is required for precise chromosome alignment and proper spindle organization in
mitosis.
Conclusion: KIBRA plays a role in mitosis.
Significance: The findings mark the importance of KIBRA in association with the mitotic machinery.

The Hippo pathway controls organ size and tumorigenesis by
inhibiting cell proliferation and promoting apoptosis. KIBRA
was recently identified as a novel regulator of the Hippo path-
way. Several of the components of theHippopathway are impor-
tant regulators of mitosis-related cell cycle events. We recently
reported that KIBRA is phosphorylated by the mitotic kinases
Aurora-A and -B. However, the role KIBRA plays in mitosis has
not been established. Here, we show that KIBRA activates the
Aurora kinases and is required for full activation of Aurora
kinases during mitosis. KIBRA also promotes the phosphoryla-
tion of large tumor suppressor 2 (Lats2) on Ser83 by activating
Aurora-A, which controls Lats2 centrosome localization. How-
ever, Aurora-A is not required for KIBRA to associate with
Lats2. We also found that Lats2 inhibits the Aurora-mediated
phosphorylation of KIBRA on Ser539, probably via regulating
protein phosphatase 1. Consistent with playing a role inmitosis,
siRNA-mediated knockdown of KIBRA causes mitotic abnor-
malities, including defects of spindle and centrosome formation
and chromosome misalignment. We propose that the KIBRA-
Aurora-Lats2 protein complexes formanovel axis that regulates
precise mitosis.

Mitosis is tightly controlled to achieve proper separation of
chromosomes during cell division. Aberration in mitosis often
causes genome instability or aneuploidy, a phenotype that
many human malignant tumors exhibit (1). Various cellular
surveillance mechanisms ensure the fidelity of cell cycle pro-
gression (1, 2). The spindle assembly checkpoint ensures that

mitosis proceeds accurately by arresting the cells in mitosis
until all chromosomes are properly aligned at the metaphase
plate (3). Defects inmitosis such as chromosomemisalignment
or abnormal spindle formation will, therefore, result in activa-
tion of the spindle assembly checkpoint and subsequent cell
cycle arrest inmetaphase. Thus, several anti-mitotic drugs have
been developed, and they induce abnormal or prolonged cell
cycle arrest inmitosis by perturbing themicrotubule dynamics,
leading to mitotic catastrophe or cell death (4–6).
Large tumor suppressor 2 (Lats2)4 is a serine/threonine

kinase and was originally identified as a tumor suppressor in
Drosophila (the kinase is known as Warts in Drosophila) (7, 8).
Overexpression of Lats2 arrests HeLa cells in G2/M phase
through inhibiting the activity of the mitotic kinase cyclin-de-
pendent kinase 1 (9) and induces apoptosis via down-regulation
of anti-apoptotic proteins such as Bcl2 and Bcl-xL (10). Mouse
embryonic fibroblasts from Lats2-deficient mice show strong
mitotic defects including centrosome fragmentation, multi-
nucleation, chromosomemisalignment, cytokinesis failure, and
accelerated mitotic exit (11). Interestingly, at the centrosome
Lats2 is phosphorylated on Ser83 by Aurora-A (a mitotic
kinase that plays critical roles in spindle assembly, centro-
some function, and mitotic progression (2, 12)) and the
phosphorylation of Lats2 on Ser83 is required for its centro-
some localization during mitosis (13). Therefore, Lats2 func-
tions as a tumor suppressor, at least partially, through regu-
lating mitotic progression.
Lats2 and its homolog Lats1 are core kinases of the Hippo

signaling pathway, which plays critical roles in controlling
organ size, tumorigenesis, stem cell self-renewal, and cell con-
tact inhibition by regulating both cell proliferation and apopto-
sis (14–16). Interestingly, recent studies demonstrated that
some othermembers of theHippo pathway such asMst1,Mst2,
Mob1/Mats, andWW45 are also involved inmitotic regulation
(17–22).
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The WW domain-containing protein KIBRA (enriched in
kidney and brain (23)) was recently identified as a novel regu-
lator of the Hippo pathway in bothDrosophila andmammalian
cells (24–27). KIBRAwas originally identified as amemory per-
formance-associated protein in humans (28–32), and this func-
tion was recently confirmed in mice (33). The physiological
function of KIBRA in non-neuronal cells is much less defined,
although KIBRA has been shown to be involved in cell migra-
tion in podocytes (34) and NRK cells (35) and in epithelial cell
polarity (36). KIBRA also interacts with the motor protein
dynein light chain 1 to positively regulate cell growth in breast
cancer cells (37). Interestingly, KIBRA expression is frequently
down-regulated by promoter methylation in B-cell acute lym-
phocytic leukemia (38) and chronic lymphocytic leukemia (39)
but not in epithelial cancers, including breast, colorectal, kid-
ney, lung, and prostate, suggesting a potential cell type-specific
tumor suppressive function of KIBRA. However, a role of
KIBRA in cancer (including leukemia) development has not
been established.
We recently reported that KIBRA associates with Aurora-A

(40) and Lats2 (27). Furthermore, we showed that KIBRA is
phosphorylated by Aurora-A and -B kinases during mitosis
(40). Functions of Aurora kinases and Lats2 in mitosis are well
defined, but whether KIBRA has a mitotic role is currently
unknown. It is largely unclear how KIBRA, Aurora, and Lats2
proteins regulate each other within the KIBRA-Aurora-Lats2
axis. In this report, we show that KIBRA activates Aurora
kinases and stimulates the phosphorylation of Lats2 on Ser83
through activating Aurora-A kinase. Lats2, in turn, inhibits
Aurora-mediated phosphorylation of KIBRA. Importantly,
KIBRA knockdown causes mitotic defects. We propose that
KIBRA, in conjunction with Aurora-A and Lats2 proteins, is a
novel mitotic component that regulates proper mitosis.

EXPERIMENTAL PROCEDURES

Plasmids—The human KIBRA, Mst1, Lats1, Lats2, Auro-
ra-A, and Aurora-B constructs and their corresponding deriv-
atives have been described previously (27, 40). Truncated con-
structs were made by PCR and verified by sequencing and
restriction enzyme digestion. Point mutations were generated
by the QuikChange site-directed PCR mutagenesis kit (Strat-
agene, La Jolla, CA) and verified by sequencing.
Cell Culture and Transfection—HEK293T, HeLa, and

MCF-7 cell lines (purchased fromAmerican Type Culture Col-
lection (ATCC),Manassas, VA) weremaintained in Dulbecco’s
modified Eagle’s medium containing 10% fetal bovine serum
and antibiotics (Clontech Laboratories, Mountain View, CA).
Transfection, immunoprecipitation, and Western blotting
were done as described previously (40). Aurora-A siRNA (40)
(SMARTpool) and siRNA against Lats2 (SMARTpool) were
purchased from Dharmacon, Inc. (Lafayette, CO). PP1c siRNA
(40) was purchased from Santa Cruz Biotechnology (Santa
Cruz, CA). siRNA-1 and -2 against KIBRA have been described
previously (27). All other chemicals were either from Sigma or
Thermo Fisher (Waltham, MA).
Establishment of Tet-On-inducible Cell Lines—The parental

HeLa-rtTA cell line was purchased from Clontech Laborato-
ries. The cell lines expressing wild-type KIBRA or KIBRA

S539A (both are siRNA-resistant constructs) were established
as described previously (40). Cells were maintained in medium
containing Tet system-approved fetal bovine serum (Clontech
Laboratories).
Cell Cycle Synchronization—A double thymidine block was

used as described previously with slight modification (41).
Briefly, thymidine was added to subconfluent HeLa cells (2.5
mM final), and the culture was incubated for 17 h. Cells were
washed three times with PBS and allowed to recover with fresh
medium for 10 h. The cells were then incubated with 2.5 mM

thymidine for another 18 h. The culture medium was replaced
with fresh medium without the drug to release the cells from
the block.
Antibodies—Rabbit polyclonal and mouse monoclonal anti-

bodies against human KIBRA have been described (40). The
rabbit polyclonal phospho-specific antibody against KIBRA
Ser539 has been described (40). Anti-FLAG, anti-HA, and anti-
Myc antibodies were from Sigma. Anti-HA and anti-Myc anti-
bodies from Santa Cruz Biotechnology were also used. Anti-�-
actin, anti-cyclin B, anti-PP1c (pan), and anti-GFP antibodies
were also from Santa Cruz Biotechnology. Mouse monoclonal
anti-Aurora-A antibody was from Sigma. Anti-Lats2 was pur-
chased from Bethyl Laboratories (Montgomery, TX). Rabbit
polyclonal anti-�-tubulin and mouse monoclonal anti-�-tubu-
lin were from Abcam (Cambridge, MA). Anti-phospho-Thr288
Aurora-A/Thr232 Aurora-B was from Cell Signaling Technol-
ogy (Danvers, MA). Mouse monoclonal anti-phospho-Ser83
Lats2 (13) was obtained from Abnova (Taipei, Taiwan).
Immunofluorescence Staining and Confocal Microscopy—

Cells were fixed for 10 min with 100%methanol at �20 °C, and
then permeabilized with 1% Triton X-100 in PBS for 15 min at
room temperature. Nonspecific epitopes were blocked with 4%
BSA in PBS for 1 h. After three washes with PBS (each for 10
min), cells were incubated with the primary antibodies diluted
in 4% BSA in PBS for 2 h at room temperature or overnight at
4 °C. Texas Red (GE Healthcare) and/or Alexa Fluor 594-con-
jugated (Molecular Probes, Eugene,OR) anti-rabbit/mouse IgG
were incubated with the cells for 40 min with 4% BSA in PBS at
room temperature. After washing the cells three times (each
wash for 10 min, with DAPI added in the final wash) with PBS,
the stained cells weremountedwith Fluoromount (Vector Lab-
oratories, Burlingame, CA) and visualized with an upright,
inverted, Axiovert 200 M Zeiss fluorescence microscope (Carl
Zeiss, New York, NY). The Slidebook software (version 4.2,
Intelligent Imaging Innovations, Denver, CO)was used for ana-
lyzing and processing all immunofluorescence images. For phe-
notypic analysis, we independently analyzed and scored the
mitotic defects in each experiment.
Statistical Analysis—Statistical significance was performed

using a two-tailed, unpaired Student’s t test.

RESULTS

KIBRA Activates Aurora Kinases—We previously identified
Ser539 of KIBRA as a major phosphorylation site for Aurora
kinases in mitosis (40). As many Aurora substrates also func-
tion as activators of the kinase, we testedwhether this is also the
case for KIBRA. To this end, we examined Aurora kinase activ-
ity by using the phospho-specific antibody against the auto-
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phosphorylation sites (Thr288 for Aurora-A, Thr232 for Auro-
ra-B, and Thr198 for Aurora-C). As shown in Fig. 1A,
overexpression of KIBRA strongly stimulated Aurora-A kinase
activation, as indicated by an increase of phosphorylation of
Aurora-A on Thr288. As expected, the phosphorylation of
Thr288 of Aurora-A-KD (kinase dead/inactive) form was not
increased by KIBRA. Interestingly, KIBRA S539A, a mutant
that is not phosphorylated by Aurora-A, also promoted the
phosphorylation of Aurora-A on Thr288 and did so as well as
wild-type KIBRA, suggesting that Aurora-mediated phosphor-
ylation is not required for KIBRA to activate Aurora-A. Simi-
larly, overexpression of KIBRA enhanced the phosphorylation
of Aurora-B on Thr232 (Fig. 1B). We noticed that there was still
some phosphorylation of Thr232 when Aurora-B KD was used
(Fig. 1B, lanes 4–6), suggesting the existence of another kinase
that phosphorylated Aurora-B on Thr232.
KIBRA Is Required for Aurora Activation During Mitosis—

The expression of Aurora-A is diminished in interphase cells,
whereas Aurora-A is stabilized and activated by phosphoryla-
tion during mitosis (41). To further explore the involvement of
KIBRA in the activation of Aurora kinase, we established doxy-
cycline-inducible HeLa cells expressing siRNA-resistant
KIBRA or KIBRA S539A and employed a double thymidine
block to synchronize these cells in mitosis (Fig. 1C). As shown
in Fig. 1D, Aurora kinases were clearly activated in control cells
(revealed by an increase of phosphorylation ofAurora-AThr288
and Aurora-B Thr232) 14 h after being released from the double
thymidine block (compare lane 3 with lane 1). However, acti-

vation of Aurora kinases is largely diminished in KIBRA knock-
down cells at the same time point, indicating that KIBRA is
required for full activation of Aurora kinases when cells enter
mitosis (Fig. 1D, compare lane 6 with lane 3). Aurora-A and
cyclin B levels are increased similarly in both control and
KIBRA knockdown cells when the cells are released into mito-
sis, suggesting that KIBRAknockdown did not affect the overall
entry intomitosis at the time points examined. Importantly, the
defect caused byKIBRA knockdownwas completely rescued by
re-expression of either siRNA-resistant wild-type KIBRA or
KIBRA S539A, further confirming that Aurora-mediated phos-
phorylation is not required for KIBRA to promote activation of
Aurora (Fig. 1D, compare lanes 9 and 12 with lane 6). Taken
together, the data show KIBRA activates Aurora-A and -B
kinases by stimulating their autophosphorylation.
KIBRA Promotes Phosphorylation of Lats2 on Ser83 through

Aurora-A—Ser83 of Lats2was shown to be phosphorylated dur-
ingmitosis byAurora-A (13).We recently reported that KIBRA
associates with both Lats2 (27) and Aurora-A (40). These find-
ings, along with the data from Fig. 1, led us to determine
whether KIBRA is involved in controlling phosphorylation of
Ser83 on Lats2. Fig. 2A shows that enhanced expression of
either KIBRA or KIBRA S539A similarly promoted the phos-
phorylation of Lats2 on Ser83. However, deletion of the WW
domains (which abolishes the interaction between KIBRA and
Lats2 (27)) did not affect the ability of KIBRA to stimulate the
phosphorylation on Ser83 of Lats2. At this point, we reasoned
that KIBRA promotes the phosphorylation of Lats2 on Ser83 by
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activating Aurora-A kinase. To test this hypothesis, we intro-
duced Aurora-A-KD (kinase dead/inactive) or Aurora-A
siRNA to determine the role of Aurora-A in mediating the
KIBRA-dependent phosphorylation of Lats2 on Ser83. As
shown in Fig. 2, B and C, overexpression of Aurora-A-KD or
knocking down Aurora-A greatly impaired the phosphoryla-
tion of Ser83 on Lats2 induced by KIBRA, suggesting that
KIBRA promotes Ser83 phosphorylation of Lats2 by activating
Aurora-A kinase and that the Aurora-A-KD form has a domi-
nant-negative function. Interestingly, although Aurora-A
robustly phosphorylated Lats2 on Ser83 (Fig. 2B, lane 3), over-
expression of Aurora-B did not increase the phosphorylation of
Lats2 on Ser83 and expression of Aurora-B-KD had no effect on
the ability of KIBRA to promote Ser83 phosphorylation of Lats2
(Fig. 2D).
Because KIBRA, Aurora-A, and Lats2 associate with each

other and Aurora-A is required for KIBRA to promote Lats2
phosphorylation, we further explored whether the interaction

between KIBRA and Lats2 is Aurora-A-dependent. Surpris-
ingly, neither overexpression of Aurora-A nor Aurora-A
knockdown affected the association between KIBRA and Lats2
(Fig. 2E). In addition, neither knockdownnor enhanced expres-
sion of KIBRA affected the interaction between Lats2 and
Aurora-A (Fig. 2F). These data suggest that KIBRA, Aurora-A,
and Lats2 interact with each other in an independent or mutu-
ally exclusive manner.
Lats2 Overexpression Enhances KIBRA Mobility—During

our experiments, we noticed themigration of KIBRA increased
on SDS gels when Lats2 was overexpressed ((27); Fig. 3A, com-
pare lane 2 with lane 1). The kinase activity and Aurora-A-
mediated phosphorylation on Ser83 were not required for this
function of Lats2 (Fig. 3A, compare lanes 2–4 with lane 1).
Interestingly, Lats2, but not Mst1 or its close homolog Lats1,
possessed this function (Fig. 3A, compare lanes 5 and 6 with
lanes 2–4), confirming the specificity. To further explorewhich
domain/region is required for Lats2 to enhance the mobility of
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KIBRA, we generated a series of truncated Lats2 constructs
(Fig. 3B). Deletion of the C-terminal 400 amino acids did not
significantly alter the ability of Lats2 to enhance the mobility of
KIBRA (Fig. 3C). However, deletion of an additional 100 amino
acids abolished the ability of Lats2 to increase the mobility of
KIBRA, suggesting that the region encompassing amino acids
588–689 is required for Lats2 to perform this function. Addi-
tional truncated constructs were made with deletions within
this region, and our data suggest that the highly conserved
region (amino acids 598–619 of human Lats2, Fig. 3B) is
required for Lats2 to enhance the mobility of KIBRA (Fig. 3D).
Internal deletion of these 22 amino acids in Lats2 (Lats2�22)
largely abolished its function to increase KIBRA mobility (Fig.
3E).
Lats2 Inhibits Phosphorylation of KIBRA on Ser539—We

previously reported that during mitosis Ser539 of KIBRA is
phosphorylated by Aurora kinases and that KIBRA migrates
differently on SDS-polyacrylamide gels depending on its phos-
phorylation status (40). Thus, we tested whether expression of
Lats2 might inhibit the phosphorylation of KIBRA using phos-
pho-specific antibodies. Overexpression of Lats2, but not
Lats2�22, strongly decreased the phosphorylation of KIBRAon
Ser539 (Fig. 4A). In addition, knockdown of Lats2 increased the
phosphorylation of transfected KIBRA on Ser539 (Fig. 4B).
Taken together, these data suggest that during mitosis Lats2
antagonizes Aurora-mediated phosphorylation of KIBRA on
Ser539.

We recently reported that PP1 can dephosphorylate Ser539 of
KIBRA (40). Thus, we explored whether PP1 is required for the

Lats2-dependent reduction of phosphorylation of KIBRA
Ser539. As shown in Fig. 4C, in the presence of siRNA against
PP1c (catalytic subunit), Lats2 inhibited the phosphorylation of
KIBRA on Ser539 less efficiently (compare lane 3 with lane 2),
indicating that Lats2 may inhibit KIBRA phosphorylation on
Ser539, at least partially through regulating PP1c.
KIBRA Knockdown Causes Mitotic Defects—We found that

KIBRA activates the important mitotic kinase, Aurora-A (Fig.
1). Moreover, KIBRA is a verified substrate of both Aurora- A
and -B (40). Therefore, we expected KIBRA to play an impor-
tant role in the process ofmitosis. To test the function ofKIBRA
in mitosis, we knocked down KIBRA in both MCF-7 and HeLa
cells using two different siRNAoligonucleotides. As seen in Fig.
5A, 48 h after transfection, both oligonucleotides efficiently
depleted KIBRA in HeLa as well as MCF-7 cells. We first
depleted KIBRA inMCF-7 cells and used immunofluorescence
to identify any mitotic defects. The depletion of KIBRA in
MCF-7 cells caused striking defects in spindle assembly (Fig. 5,
B and C) as well as the centrosome number (Fig. 5, B and D).
KIBRA activates Aurora-A and Aurora-A activity is known to
be required for proper spindle assembly and centrosome func-
tion. Hence, it is likely for these reasons that depleting KIBRA
caused defects in spindle assembly and centrosome number.
We observed that the knockdown of KIBRA strongly affected
the spindle structure (Fig. 5B). The spindle microtubules were
abnormally organized in KIBRA siRNA cells (Fig. 5B, middle
panels). Furthermore, the centrosomes appeared fragmented
(Fig. 5B, lowest panels). About 48% of the cells that were trans-
fected with KIBRA siRNA-1 and 35% of the cells that were

FIGURE 3. Overexpression of Lats2 enhances mobility shift of KIBRA. A, HA-tagged KIBRA was transfected into HEK293T cells with empty vector or various
DNAs as indicated. At 48 h post-transfection, total cell lysates were probed with the indicated antibodies. B, schematic diagram of various Lats2 constructs used
for C--E. C–E, FLAG-tagged KIBRA was transfected into HEK293T cells with empty vector or plasmids as indicated. At 48 h post-transfection, total cell lysates were
probed with the indicated antibodies. M(K) indicates positions where the relevant molecular markers migrated.
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transfected with KIBRA siRNA-2 displayed abnormally assem-
bled metaphase spindles (Fig. 5C). Furthermore, 38% of the
cells that were transfected with KIBRA siRNA-1 and �33% of

the cells that were transfected with KIBRA siRNA-2 exhibited
defects in centrosome numbers (Fig. 5D). These data show that
KIBRA plays a crucial role in mitosis by regulating centrosome
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function and spindle assembly, possibly via regulating Auro-
ra-A activity.
Because we detected abnormal spindles in KIBRA RNAi

MCF-7 cells, we expected that the knockdown of KIBRAwould
also impair chromosome alignment duringmitosis. To test this
hypothesis, HeLa cells were transfected with either a scram-
bled, non-targeting siRNA or with siRNA against KIBRA. Fur-
thermore, these cells were either treated with dimethyl sulfox-
ide (control) or with monastrol (an Eg5 inhibitor that arrests
cells in mitosis). The monastrol was then washed out, and the
cellswere allowed to proceednormally throughmitosis (42, 43).
All cells were then subjected to immunofluorescence analysis
to visualize abnormalities in chromosome alignment. Remark-
ably, the depletion of KIBRA from HeLa cells caused the
appearance of lagging chromosomes (Fig. 6A, panel iv), chro-
mosome bridges (Fig. 6A, panel v), and micronuclei (Fig. 6A,
panel vi) during different stages of mitosis. Additionally, we
observed that the knockdown of KIBRA by another siRNA in
HeLa cells also yielded abnormal metaphase chromosome
alignment (Fig. 6B). In addition, we observed that the enrich-
ment of mitotic cells by monastrol treatment further increased
the percentage of cells with lagging chromosomes that were
obtained upon knockdown of KIBRA (Fig. 6C). All these data
establish a very important role for KIBRA for the proper pro-
gression of mitosis.

Taken together, our results revealed a novel axis in which
KIBRA controls Lats2 phosphorylation by regulating Aurora
kinase activity, and Lats2, in turn, inhibits phosphorylation of
KIBRA, probably through PP1 (Fig. 7). In response to drugs
(such as nocodazole, a microtubule destabilizing agent that
arrests cells in mitosis)-induced mitosis or when cells enter
mitosis under physiological conditions, the KIBRA-Aurora-
Lats2 axis regulates the phosphorylation and/or activities of
each other to control propermitotic events during progression.

DISCUSSION

Aurora kinases are important regulators of cell cycle progres-
sion and are potential oncogenes (2, 44, 45). Thus, identifica-
tion of modulators and/or substrates of Aurora kinases is
important for understanding the function and mechanisms of
action of Aurora kinase family proteins and the basic principles
of cell cycle regulation. In fact, many regulators or substrates of
Aurora kinase have been implicated in controlling mitotic
entry, chromosome alignment/segregation, and cytokinesis (2,
46). We previously showed that KIBRA is phosphorylated by
Aurora kinases in mitosis (40). In the present study, we have
further demonstrated that KIBRA is required for full activation
of Aurora kinases during mitosis (Fig. 1). Future studies are
needed to examine whether Aurora-mediated phosphorylation
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ofKIBRA is involved in themitotic defects induced by knocking
down KIBRA.
Both Aurora-A and Lats2 are localized to the centrosome

during mitosis (13), raising the possibility that KIBRA or phos-
phorylated KIBRA is also localized to thismitotic structure, but
this has not been investigated and demonstrated. Interestingly,
a previous report showed that KIBRA associates with the
microtubule motor protein dynein light chain 1 (37). These
findings, along with the demonstration of mitotic defects
induced by KIBRA knockdown, strongly suggest that KIBRA
may also be required for proper construction of the mitotic
apparatus. We are currently investigating the spatial and tem-
poral localization of KIBRA and phosphorylated KIBRA, and
such studies are anticipated to further strengthen the impor-
tance of KIBRA in cell cycle progression, especially in mitosis.
Themechanism throughwhich Lats2 regulates KIBRAphos-

phorylation is currently unknown. Phosphorylation of KIBRA
on Ser539 is regulated by Aurora kinase and PP1 (40). Thus, it is
possible that overexpression of Lats2 stimulates dephosphory-
lation of KIBRA by inhibiting Aurora kinase activity and/or
activating PP1. However, although we showed that PP1 is
required for Lats2 to inhibit phosphorylation of KIBRA on
Ser539 (Fig. 4), a solid connection between Lats2 and PP1 has
not been established.We previously demonstrated that KIBRA
also associates with PP1 (40). Therefore, it will be interesting to
explore whether Lats2 or Lats2�22 affects PP1 activity or the
interaction between KIBRA and PP1. Moreover, it is of partic-
ular interest to determine the difference between Lats2 and
Lats1 with regards to their activity toward inhibiting the phos-
phorylation of KIBRA.

We noticed that cells with Lats2 knockdown or knock-out
also exhibit defects similar to those caused by knocking down
KIBRA, including failure of centrosome maturation, spindle
disorganization, and chromosome misalignment (11), which
further supports the notion that KIBRA-Aurora-Lats2 may
form a novel signaling axis that regulates mitosis. It will be
interesting to explore to what extent these proteins regulate
mitosis in a mutually dependent way. Interestingly, recent
reports have also connected other members of the Hippo path-
waywithmitosis. For example, the tumor suppressorsMst1 and
Mob1 are involved in centrosome duplication (17), and Mob1
also localizes to the centrosome during mitosis (21). WW45
and Mst2 control centrosome disjunction and the localization
of Nek2 to centrosomes (20). In addition, Mats (Drosophila
ortholog of Mob1) is required for proper chromosomal segre-
gation in developing embryos (22). Thus, it may be a common
feature that Hippo pathway components control mitotic-re-
lated events and that deregulation of their function may result
in mitotic defects, contributing to genome instability/aneup-
loidy and subsequent tumorigenesis. One would expect that
YAP (yes-associated protein) and TAZ (transcriptional co-ac-
tivator with PDZ binding domain), downstream effectors in the
Hippo pathway, may also have a mitotic role. Therefore, it is
worth investigating whether Hippo pathway activity is cell
cycle-regulated. Indeed, Lats1 kinase activity peaks during
mitosis (47) and increases upon treatment with nocodazole
(48), supporting the hypothesis.
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