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Introduction

After ejaculation, mammalian sperm acquire energy from
nutrient molecules found in the seminal plasma and in the
female reproductive tract environment. As in other animal
cells, most of this energy is transformed into ATP and other
high-energy compounds and used for biological work. Among
different functions, ATP in sperm is used for movement, for
fusion events during the acrosome reaction, and to transport
ions and other molecules through membranes against concen-
tration gradients. In addition, ATP is used in multiple
metabolic reactions, including regulatory signaling pathways
such as the production of cAMP and phosphorylation by
protein kinases.

One of the problems in the quantitative study of ATP
generation and use in sperm is that these cells are highly
polarized. By a simple microscopic examination, two main
regions are easily visualized, the head and the flagellum. Each
of these regions can be subdivided in different compartments
(Fig. 1A). The head is composed of the acrosome, the
equatorial segment, and the postacrosomal region; the
flagellum is compartmentalized into the midpiece, the principal
piece, and a short terminal endpiece [1]. Regarding ATP
formation, the midpiece concentrates the mitochondrial
machinery, and the principal piece is enriched by all the
enzymes needed for glycolysis. Figure 1 summarizes these
pathways in sperm. More information about the compartmen-
talization of metabolic pathways in sperm can be obtained in
recent reviews [2–4].

How Do Sperm Produce ATP?

In this issue of Biology of Reproduction, Goodson et al. [5]
used a battery of glycolysable and nonglycolysable metabolic
substrates to analyze the contribution of glycolysis and
oxidative phosphorylation in ATP formation, sperm motility,
hyperactivation, and the capacitation-associated increase in
protein tyrosine phosphorylation. First, the authors demon-
strated that in the absence of metabolic substrates, ATP is
rapidly consumed and, consequently, the sperm become
immotile and unable to hyperactivate. Glucose, mannose,
fructose, and sorbitol in the glycolytic pathway sustained a
high percentage of motile sperm and supported the increase in

tyrosine phosphorylation. However, fructose and sorbitol did
not support hyperactivation. On the other hand, the non-
glycolysable substrates, pyruvate, lactate, and hydroxybutyrate,
maintained motility with only low levels of tyrosine phosphor-
ylation and hyperactivation. In the presence of citrate, most
sperm became immotile after a 2-h incubation.

To further investigate these pathways, the authors disrupted
either glycolytic or mitochondrial ATP production using a-
chlorohydrin or carbonyl cyanide 3-chlorophenylhydrazone
(CCCP), respectively, without affecting the alternative pathway
[6]. a-Chlorohydrin blocked neither the percentage of motile
cells nor ATP production when sperm were incubated in the
presence of the nonglycolysable substrates pyruvate and
hydroxybutyrate. However, these parameters were significantly
reduced when glucose and fructose were used. To inhibit
oxidative phosphorylation, the authors used CCCP, a com-
pound that collapses the H

þ
gradient responsible for ATP

production by ATP synthase (Fig. 1D). As expected, this
compound completely blocked motility and ATP production in
sperm incubated with pyruvate and b-hydroxybutyrate, without
affecting these parameters when either glucose or fructose was
used. Interestingly, hyperactivation in the presence of fructose
was up-regulated by CCCP (see below). Overall, these data
indicate that although both glycolytic and mitochondrial
oxidative phosphorylation are functional in mouse sperm, only
glycolysis is capable of fully supporting tyrosine phosphory-
lation and hyperactivated motility. These data are consistent
with findings reported by other authors [7, 8], and they
highlight the conclusion that ATP produced in different
compartments plays different roles. Although motility can be
supported by both ATP sources, the ATP produced in the
principal piece is more efficiently used for processes such as
hyperactivation.

What Can We Learn from the Study of Goodson et al. [5]?

In previous studies, the same group used alternative genetic
approaches to investigate similar questions by knocking out the
sperm-specific glyceraldehyde phosphate dehydrogenase, sper-
matogenic (GAPDHS) and phosphoglycerate kinase 2 (PGK2).
In both cases, mice null for these enzymes were almost
completely infertile [9, 10]. Considering that mitochondrial
pathways are active in mouse sperm and that GAPDHS only
participates in the glycolytic pathway, it is surprising that
sperm from these mice are not capable of using pyruvate or
lactate present in the incubation media to support ATP
synthesis and motility. Despite these findings, GAPDHS-null
sperm consume oxygen at wild-type levels, suggesting that the
citric acid cycle (Fig. 1C) is functional. These data suggest that
in addition to the expected problems in glycolysis, sperm from
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FIG. 1. Diagram of bioenergetics pathways in sperm. A) Mouse sperm was stained with anti-tubulin antibody (red), MitoTracker and peanut agglutinin
(PNA) (green), and Hoechst (blue). Because of the strong MitoTracker signal in the midpiece, the tubulin was only observed in the principal piece. Original
magnification 360. B) Glycolysis. It is well established that all the enzymes for this process are found in the sperm principal piece. Interestingly, most of
the steps in this process are catalyzed by sperm-specific isoforms of the respective proteins. During glycolysis, glucose is oxidized to pyruvate with a final
net gain of 2 ATP and 1 e� in the form of NADH. Fructose enters the glycolytic pathway after phosphorylation by hexokinase (HK) or, alternatively, through
the Hers pathway initiated by fructokinase. Alpha-chlorohydrin has been shown to block sperm glycolysis [6]. The final product of glycolysis is pyruvate,
which is used to regenerate NADþ from NADH in a coupled reaction in which this metabolite is converted into lactate by LDH. The NADþ regeneration is
essential for continuing glycolysis. Note that in the upper section of A, the alternative use of glucose by the first enzyme of the pentose phosphate pathway
is presented. Glucose is oxidized to 6-phosphoglucono-d-lactone with reduction of NADPþ to NADPH. In turn, NADPH can be used by glutathione
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these mice have defects in coupling H
þ

gradients to ATP
production by ATP synthase (Fig. 1D). Although the presence
of members of the uncouple protein (UCP) family have not
been described in sperm, it is predicted that if present, up-
regulation of their activity will be consistent with the lack of
ATP production in sperm from these mice. Alternatively, the
low ATP levels could be due to their consumption in the first
half of glycolysis [4].

Pyruvate, lactate, and hydroxybutyrate were all able to
sustain high ATP levels and sperm motility, but citrate was not.
Despite being part of the citric acid cycle, citrate is not
permeable to mitochondria. It needs to be converted to malate
with the use of ATP to be able to enter the citric acid cycle. The
use of citrate is therefore less efficient than the use of other
nonglycolysable substrates. Whether this is the cause for the
observed decrease in sperm motility and ATP production has
not been defined. Alternatively, the enzymes responsible for
the conversion of citrate to malate and pyruvate outside the
mitochondria might not be present in mouse sperm, in which
case this metabolite would not be able to enter the citric acid
cycle.

The differential effects of fructose and glucose in the
promotion of hyperactivation are also noteworthy. Both of
these glycolysable compounds can serve as hexokinase
substrates to form the respective hexose-6 phosphate; in
addition, both can follow alternative metabolic pathways
(Fig. 1B). Fructose can be phosphorylated by fructokinase to
fructose 1-phosphate, which in turn can be converted to
glyceraldehyde 3-phosphate through the Hers pathway and
reenter glycolysis. On the other hand, glucose could be
oxidized to 6-phosphogluconate by glucose 6-phosphate
dehydrogenase in a reaction coupled to the formation of
NADPH, and NADPH can then be coupled to a reaction with
oxidized glutathione (GSSG) to form reduced glutathione
(GSH) (Fig. 1B). Because GSH can react with peroxides, it can
consequently decrease deleterious lipid peroxidation [4].
Therefore, through this alternative pathway, glucose offers
protection for oxygen radicals and facilitates hyperactivation,
whereas fructose does not. Goodson et al. [5] discuss this
possibility and present results consistent with this hypothesis.
The authors demonstrate that in the presence of fructose, sperm
produced significantly higher levels of oxygen radicals than in
the presence of glucose.

In many cell types, glycolysis is coupled to the citric acid
cycle. In this way, the NAD

þ
needed for glycolysis is

recovered through oxidative phosphorylation. In part, the
coupling between both processes is mediated by the affinity of
the N-terminal domain of hexokinase (porin-binding domain)
to mitochondrial porin. In sperm, the somatic hexokinase is not

present; it is replaced by three differentially spliced variants
that do not have the porin-binding region [11]. It is therefore
not surprising that in these cells, glycolysis and the citric acid
cycle function independently. It is also well established that the
sperm-specific lactate dehydrogenase, LDH-C4, is essential for
sperm function [12]. Mice lacking this enzyme are almost
completely infertile both in vivo and in vitro. The rationale for
this phenotype is that, similar to the case for anaerobic
glycolysis, NAD

þ
needs to be recycled to be used in the

GAPDHS reaction. Although sperm from these mice have a
reduced level of ATP, the level is not as low as in the case of
the GAPDHS-null sperm. The role of LDH-C4 in glycolysis is
further suggested by the finding that LDH-C4-null sperm are
unable to consume glucose. However, these sperm remain
capable of forming lactate from pyruvate, indicating that other
LDH homologues (e.g., LDHA) are present in these cells.
Interestingly, overexpression of LDHA in sperm is able to
rescue the LDH-C4-null phenotype [12].

Conclusions

Sperm are capable of producing ATP by glycolysis and by
oxidative phosphorylation; however, the glycolytic pathway is
uniquely compartmentalized in the principal piece to allow the
changes in motility pattern known as hyperactivation. The
relevance of the study by Goodson et al. [5] is given by the
thorough evaluation of the role of glycolysis and oxidative
phosphorylation in several sperm functional parameters. That
paper also provides strong evidence for the interconnection
between sperm metabolism and other signaling pathways (e.g.,
tyrosine phosphorylation and oxygen radical formation). The
study by Goodson et al. was conducted using the mouse as the
experimental model; similar studies in sperm from other
mammals might reveal species-specific differences, as is the
case for bull sperm [4]. In addition, it will be important to
determine where the ATP used for fusion and ion-channel
regulation during the acrosome reaction in the sperm head is, in
fact, produced. These questions, together with those mentioned
above, warrant future studies in the field of sperm bioenerget-
ics.
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