
Time-Dependent Profiling of Metabolites from Snf1 Mutant and
Wild Type Yeast Cells

Elizabeth M. Humstona, Kenneth M. Dombekb, Jamin C. Hoggarda, Elton T. Youngb, and
Robert E. Synoveca,*

aUniversity of Washington, Department of Chemistry, Box 351700, Seattle, WA 98195
bUniversity of Washington, Department of Biochemistry, Box 357350, Seattle, WA 98195

Abstract
The effect of sampling time in the context of growth conditions on a dynamic metabolic system
was investigated in order to assess to what extent a single sampling time may be sufficient for
general application, as well as to determine if useful kinetic information could be obtained. A wild
type yeast strain (W) was compared to a snf1Δ mutant yeast strain (S) grown in high glucose
medium (R) and in low glucose medium containing ethanol (DR). Under these growth conditions,
different metabolic pathways for utilizing the different carbon sources are expected to be active.
Thus, changes in metabolite levels relating to the carbon source in the growth medium were
anticipated. Furthermore, the Snf1 protein kinase complex is required to adapt cellular metabolism
from fermentative R conditions to oxidative DR conditions. So, differences in intracellular
metabolite levels between the W and S yeast strains were also anticipated. Cell extracts were
collected at four time points (0.5, 2, 4, 6 h) after shifting half of the cells from R to DR conditions,
resulting in 16 sample classes (WR, WDR, SR, SDR) × (0.5, 2, 4, 6 h). The experimental design
provided time course data, so temporal dependencies could be monitored in addition to carbon
source and strain dependencies. Comprehensive twodimensional (2D) gas chromatography
coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was used with discovery-based
data mining algorithms1, 2 to locate regions within the 2D chromatograms (i.e., metabolites) that
provided chemical selectivity between the 16 sample classes. These regions were mathematically
resolved using parallel factor analysis (PARAFAC) to positively identify the metabolites and to
acquire quantitative results. With these tools, 51 unique metabolites were identified and
quantified. Various time course patterns emerged from these data and principal component
analysis (PCA) was utilized as a comparison tool to determine the sources of variance between
these 51 metabolites. The effect of sampling time was investigated with separate PCA analyses
using various subsets of the data. PCA utilizing all of the time course data, averaged time course
data, and each individual time point data set independently were performed to discern the
differences. For the yeast strains examined in the current study, data collection at either 4 h or 6 h
provided information comparable to averaged time course data, albeit with a few metabolites
missing using a single sampling time point.

INTRODUCTION
Studies of the metabolome, the complete collection of low molecular weight molecules
present in a cell of a particular state exposed to a specific environmental condition, provide
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information to better understand cellular processes.3–5 The inner workings of a cell are
controlled by a number of feedback mechanisms involving the genome, transcriptome,
proteome, and metabolome.6 Studying and integrating as many of these as possible would
provide the most complete picture of the cellular physiology.7–9 The metabolome is often
thought to best describe the phenotype because it is a collection of the end products of the
various physiological processes. Changes in gene expression can be amplified at the
metabolite level10 and post translational and transcriptional modifications may be apparent
in the metabolome that might not be seen at the genome or proteome levels.11 Metabolome
studies present unique challenges because of the magnitude of molecular species present, the
large dynamic range of concentrations, and the compositional heterogeneity of metabolites.
The metabolome consists of amino acids, fatty acids, sugar phosphates, carbohydrates,
vitamins, lipids, inorganic species, and elements spanning many sizes, polarities, and
volatilites.8, 12 Hence, there is no single chemical analysis method currently available to
study all of the classes of metabolites simultaneously.12, 13

Comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass
spectrometry (GC × GC-TOFMS) is a powerful tool that is well suited for complex samples,
and has been employed for numerous metabolomic studies.1, 14–24 While this is not the only
approach (nuclear magnetic resonance (NMR) spectroscopy, infrared (IR) spectroscopy,
mass spectrometry (MS)),5, 25 chromatographic methods allow for more than a fingerprint
analysis. GC methods with exceptional resolution and well-established mass spectral
libraries have been touted as the “gold standard” even with a bias toward smaller
metabolites and the need for a chemical derivatization step to improve metabolite volatility
and thermal stability.8, 26 GC × GC provides excellent resolving power and increased peak
capacity, generally by combining a longer non-polar column with a shorter polar column,
i.e., a “traditional” arrangement; however, a reverse column arrangement could also be
implemented.27–33

GC × GC-TOFMS creates a cube of data for each sample analyzed, with two dimensions of
separation and a full mass spectrum at every point in 2D separation time. This cube of data
contains numerous metabolite signals that can appear unmanageable when trying to
determine differences between the samples. Using a hypothesis driven experimental design,
with sample class membership known a priori, a discovery-based analysis approach is
readily applied. Here, sample class refers to different sample types and/or conditions, and
not to different classes of compounds. One of the first steps is to find the regions of the 2D
chromatograms (i.e., analytes) that offer the most chemical selectivity to distinguish the
sample type classes. There are a number of algorithms that can accomplish this.23, 24, 34–36

Principal component analysis (PCA), Fisher ratio analysis (F-ratio)1, and ratio of signal (S-
ratio)2 are a few of the data analysis methods we have employed for data such as these. All
of the methods locate metabolites within the data set that have the greatest differences
between sample type classes. These metabolites, which offer the most insight to a biological
system, are targeted for further investigation. Parallel factor analysis (PARAFAC) is a
chemometric method for mathematical resolution (deconvolution) that provides resolved
chromatographic peak profiles and mass spectra by removing background noise and
overlapping analytes (and interferences).37–39 PARAFAC is applied to the sample class
distinguishing data locations to provide metabolite identification and quantification.
PARAFAC takes advantage of the inherent trilinear data structure for a GC × GC-TOFMS
data cube, where an analyte signal is represented by the outer product of the peak profile on
the first column, the peak profile on the second column, and the mass spectrum. This
discovery-based approach combined with PARAFAC is applicable to any metabolic study in
which differences between sample classes are sought.
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The yeast metabolome is dynamic and metabolite levels can change dramatically over time
as environmental conditions change. Notably, yeast utilize different metabolic pathways
depending on the available carbon source. Yeast Saccharomyces cerevisiae extract carbon
and energy from glucose, the preferred carbon source,40 via fermentation (Figure 1). The
metabolic activity of the yeast undergoes a profound reorganization when a fermentable
carbon source is no longer available in the growth medium and non-fermentable carbon
sources, such as ethanol or glycerol are oxidized via respiratory pathways. More than one
quarter of the yeast transcriptome is altered during this switch from fermentative to
oxidative pathways, termed the diauxic shift.41 These changes allow the yeast cells to feed
the available non-fermentable carbon source into the tricarboxylic acid (TCA) cycle, the
glyoxylate cycle, and gluconeogenesis, to generate energy and essential biosynthetic
intermediates. When the concentration of glucose in the growth medium is high, the proteins
required for these processes are not highly expressed, and the physiological state of the cells
is referred to as glucose repressed (R). During the diauxic shift, when glucose is depleted
from the growth medium, expression of proteins required for these processes is activated or
derepressed (DR). The Snf1a protein kinase is one of the important players involved in the
diauxic shift.40 The Snf1 complex is the yeast homolog of the AMP-activated protein kinase
(AMPK) found in higher organisms.42 Snf1-dependent phosphorylation regulates the
expression and activity of several metabolic enzymes and transcriptional factors required for
the expression of many glucose-regulated genes involved in the utilization of non-
fermentable carbon sources. This makes it essential for growth in the absence of glucose.40

Studies at the transcriptional level have shown that there are over 400 SNF1b-dependent
genes, and of the 40 most glucose-repressed genes, 29 are also SNF1-dependent.41 Mutant
cells lacking the Snf1 protein complex are an important topic for metabolomic studies
because mutations in the activating subunit of the complex are implicated in cardiac disease,
and the major drug used to treat diabetes, metformin, is an inhibitor of AMPK.43, 44

Metabolomic studies might identify new AMPK-dependent metabolic pathways and reveal
some consequences of reduced AMPK activity. In addition, the primary signal that is used to
sense the change in carbon source is thought to be one or more metabolites of glucose
metabolism.

In this report, GC × GC-TOFMS was used to determine differences in metabolite levels
between wild type yeast cells (W) and snf1Δ mutant cells (S) in repressing (R) and
derepressing (DR) conditions, resulting in four strain/condition classes (WR, WDR, SR,
SDR). Time course data were generated at 0.5, 2, 4 and 6 h to follow the dynamic, time-
dependent changes after shifting from repressing to derepressing conditions, for each strain/
growth condition resulting in 16 sample classes overall. The previously reported data mining
tool referred to as the S-ratio method2 was used to find sample class distinguishing locations
in the 2D GC separation space and PARAFAC was used to identify and quantify these
metabolites providing insight to the Snf1 protein complex. A non-polar to polar column
arrangement was implemented in order to utilize an in-house library of retention times (from
prior studies) to support the mass spectral identification of metabolites. The effect of
sampling time was investigated using PCA as a comparison tool. Careful analysis of the
results at various time points will illustrate the dynamic nature of the yeast metabolome,
providing insight into how to discern which time point(s) may provide the most useful
information for routine analysis.

aA capital letter followed by lowercase letters of a gene name indicates a protein (Snf1).
bA capital letter followed by uppercase letters, in italics, of a gene name indicates a normal or wild-type gene (SNF1); gene names in
italicized lower case letters indicate a defective or deleted gene (snf1).
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EXPERIMENTAL
Yeast cells and culture conditions

A wild type yeast strain W303-1a (MATa ade2 can1-100-his3-11,15 leu2-13,112 trp1-1
ura3-1) and a mutant yeast strain of W303-1a having the SNF1 open reading frame
completely replaced with a kanMX gene cassette (snf1Δ) were analyzed in this study. Both
strains were initially grown in repressing (R) synthetic complete (SC) medium containing
5% glucose as the sole carbon source. At time 0 h, the cell cultures were divided in half,
harvested by centrifugation at 4 °C and washed once with cold sterile synthetic medium,
SM, (SC lacking amino acids or carbon source). One aliquot of cells from each culture was
suspended in fresh R medium pre-warmed to 30 °C, while the remaining aliquot was
suspended in pre-warmed derepressing (DR) medium which contained 3% ethanol and
0.05% glucose as carbon sources. The cell density of each culture was monitored by
measuring the optical density at 600 nm and comparing to a calibration curve of optical
density plotted against cell number per mL of serial dilutions counted with a
hemocytometer. Glucose consumption was monitored by analyzing aliquots of medium
every h with a PGO enzymes kit (Sigma Aldrich, St. Louis, Missouri). Three cultures of
both wild type and snf1Δ cells were monitored for glucose levels in R conditions and one
culture of each for DR conditions.

Extraction
At times 0.5 h, 2 h, 4 h, and 6 h, the metabolic activity was quenched and small polar
molecules (metabolites) were extracted from the cells with the extraction procedure
previously described.45 At each time point, 1 mL of each cell culture was rapidly diluted
into 4 mL of −40 °C quenching buffer (10 mM tricene, pH 7.4, in 60% methanol). These
cell suspensions were spun at 1000 × g in a Sorvall RC-5B Plus centrifuge at −20 °C for 3
min. Each cell pellet was washed with 1 mL of −40 °C quenching buffer and resuspended in
1 mL of 80 °C extraction buffer (0.5 mM tricine, pH 7.4, in 75% ethanol). The suspended
pellet was held at 80 °C for ~3 min before being cooled on ice for 5 min. Large cellular
debris was removed by spinning the suspension twice at high speed in a microcentrifuge. A
volume of each ethanol metabolite extract corresponding to 1 × 107 cells was dried in a
SpeedVac at room temperature and stored at −80 °C under argon.

Derivatization of metabolites
After retrieval from the −80 °C freezer, any traces of water condensate on the sample tubes
were removed by drying in a SpeedVac at room temperature for 1 h prior to derivatization.
The metabolites were methoximated by adding 30 µL of a 20 mg/mL methoxyamine
solution in pyridine and heating at 30 °C for 90 min to protect carbonyl groups. The
methoximated extracts were then trimethylsilyated by adding 70 µL of BFTSA/TMCS
(99:1) reagent and heating to 60 °C for 60 min.46

Instrument Parameters
The yeast extracts were analyzed via GC × GC-TOFMS instrumentation, which employed
an Agilent 6890N gas chromatograph with an Agilent 7683 auto injector (Agilent
Technologies, Palo Alto, CA) in conjunction with a LECO Pegasus III TOFMS upgraded
with the commercially available 4D thermal modulator (LECO, St. Joseph, MI). The first
column was 20 m×250 µm i.d.×0.5 µm RTX-5MS phase coating (Restek, Bellefonte, PA)
and the second column was 2 m×180 µm i.d.×0.2 µm RTX-200MS phase coating (Restek,
Bellefonte, PA). The GC inlet and transfer line were set to 280 °C. The first column was set
at 60 °C for 0.25 min and the second column was set at 70 °C for 0.25 min at the
commencement of the analysis. Both columns were temperature programmed at a rate of 8
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°C/min to 280 °C where the columns were held constant for 10 min. The modulation period
between the first and second columns was 1.5 s and the modulator was kept 40 °C higher
than the first column. A constant flow rate of 1 mL/min hydrogen gas was maintained at the
head of the first column. The TOFMS ion source was set to 250 °C. Mass channels 40–500
m/z were collected at 100 spectra/s after a 5 min solvent delay. Three injections of 1 µL
were made for each of the 16 sample extracts for a total of 48 chromatographic runs.

Data Analysis
The GC × GC-TOFMS data were collected with the LECO ChromaTOF software v2.2.1
(LECO, St. Joseph, MI). The data were then exported to Matlab v.7.0.4 (Mathworks, Natick,
MA) for S-ratio analysis. The S-ratios were calculated using a modification to the previously
published algorithm.2 The S-ratio method was initially designed as a data analysis tool for
yeast cells that demonstrated metabolic cycling behavior. For the previous cycling study, the
S-ratios provided information relating to the depth-of-modulation (i.e., the maximum
compared to the minimum) over two complete cycles. A large S-ratio corresponds to a large
difference between the maximum and minimum data values across all sample classes. In this
study, cyclical behavior was not anticipated so one maximum and minimum was located
rather than two. Four lists were generated by calculating S-ratios for all sample types (WR,
WDR, SR, SDR) at each time point. Using the LECO ChromaTOF software, the locations
with the largest S-ratio values were further investigated. The S-ratio list was complemented
with a comprehensive list of metabolites with differing levels between R and DR conditions
from previous work in our group.22, 47 Using the LECO software, the mass spectra at these
chromatographic locations were searched against the National Institute of Standards and
Technology (NIST) library along with standard metabolite libraries created in-house for
preliminary identification. An in-house developed target-analyte PARAFAC Graphical User
Interface (GUI) implementing the N-way toolbox was used to deconvolute overlapping
chromatographic peak profiles and mass spectra.38 The algorithm isolates the pure
component peak profile and the pure mass spectrum of an individual component from
overlapping peaks and background noise for quantification and identification, respectively.
The full mass spectrum for one sample type at each sampled time point was examined using
PARAFAC to obtain a full mass spectrum for a more confident identification of metabolites.
Selected mass channels were then used with PARAFAC for quantification purposes. Raw
PARAFAC peak volumes (i.e., signals) were normalized to the Total Ion Current (TIC).
TIC-normalized data are presented in some figures as indicated. For PCA analysis to
investigate the effect of time course sampling time, these TIC-normalized PARAFAC
volumes for a given metabolite were mean-centered for ease of comparison via PCA.

RESULTS and DISCUSSION
The experimental design used in this study allowed for the observation of changing
metabolite levels as cells moved from a repressed metabolic state towards a derepressed
state. This approach provided an opportunity for an in-depth look at the Snf1 protein
complex, time dependencies, and the impact of sampling time. Figure 2 shows cell
concentration as a function of time during the experiment. During the first 4 h, the number
of both wild type and snf1Δ mutant cells in R medium doubled at the same rate, every 2 h.
Between 4 and 6 h the growth of both slowed appreciably, a sign that the cells were exiting
exponential growth and starting to enter stationary phase. As shown in Figure 3A, the
concentration of glucose in the R medium at this time was approximately 80% of the initial
value indicating that the cells were still subject to glucose repression. In DR medium, wild
type cells grew considerably faster than snf1Δ mutant cells for the first 2 h with an
estimated doubling time of 3.6 h compared to 8.8 h for the snf1Δ mutant cells. At 2 h, wild
type cells had almost exhausted the 0.05% glucose present in the DR medium, as shown in
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Figure 3B, and their growth slowed to an estimated doubling time of 10 h. During this time,
the snf1Δ mutant cells were very slowly utilizing the 0.05% glucose in the DR medium and
essentially stopped growing, having a calculated doubling time of 26 h. These observations
are consistent with the known requirement of the Snf1 protein kinase for the utilization of
limiting glucose and ethanol as carbon sources.

Figure 4A shows a GC × GC-TOFMS chromatogram contour plot at mass channel 73
(indicative of the trimethylsilyl group added during derivatization) of a WR sample at 6 h.
Some of the largest reagent artifacts have been filtered out for clarity. Representative
chromatograms of the other strain/growth conditions (WDR, SDR, SR) at time 6 h are
provided in Supporting Information (Figures S1A, S1B, and S1C.) A comparison of these
plots shows that by 6 h significant differences could be observed between the
chromatograms of the various strains/growth conditions. Many of the peaks in the wild type
strains have higher intensity than those in the snf1Δ strain. It is possible by eye to identify
some metabolites that help to distinguish sample classes. However, metabolites with lower
S/N may not be visible at this mass channel and threshold that may have important
differences between strain/growth conditions. One possibility for finding more metabolites
is to view selective mass channels, but more powerful chemometric tools are better suited to
fully glean the desired information from the data.

Data reduction methods are used to identify the most interesting regions of the 2D
separation space that distinguish one sample class from another and provide insight to the
biological function. S-ratio analysis located the regions offering the greatest chemical
selectivity between classes. Initially, the data sets for the 0.5 h and 4 h time points were
examined more extensively. Using the S-ratio results for the 0.5 h time point ensured that
metabolites differing early after derepression were located regardless of whether they
differed late after derepression. Conversely, using the results for the 4 h time point ensured
that metabolites differing later after derepression were located even if they did not differ
early after derepression. The 4 h time point was selected for the late time point because the
concentration of some of the metabolites began to drop by the 6 h time point. This may
reflect the slowing of growth and the entry into stationary phase of the cells growing in R
medium. Locations with S-ratios greater than 5.0 were investigated. An S-ratio of 5
represents a particular metabolite that is 5-fold more concentrated between two of the
samples. This discovery-based software approach located 51 sample class-distinguishing
metabolites as presented in Table 1. Figure 4B shows these 51 metabolites in the 2D
chromatographic space. Match values are presented from deconvoluted PARAFAC mass
spectra and retention times were confirmed with standards as indicated. Investigating
metabolites with an S-ratio less than 5 could be done, and a few more metabolites found,
however, for the purpose of this study we used this S-ratio threshold for brevity, since it was
providing complementary metabolites from our previous report.2, 22, 47

Using the prior list of metabolites based on the locations found with the S-ratio method
(discovery-based) software and our previous studies, metabolites were identified and
quantified using the PARAFAC target analyte GUI. The PARAFAC peak volumes obtained
were normalized to the TIC to correct for injection and detection variation. The TIC was
independent of yeast strain or growth condition with an average value of 5.9×109 and 13%
RSD. TIC normalization was more precise than use of 13C labeled internal standards
(alanine and serine). The dynamic nature of the metabolome is again highlighted by the
presence of four different time course patterns observed for the 51 metabolites, referred to as
time decay, time increase, peak, and un-patterned. Representative examples of these patterns
are shown in Figure 5. The following are descriptions of these representative time course
examples in relation to potential biological implications.
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An example of a metabolite exhibiting a “time decay” pattern is glucose, shown in Figure
5A. Of the metabolites identified in our analysis, it had the highest S-ratio value, 79, at the
0.5 h time point. It was most abundant in extracts from R cells with the largest difference
from DR cells seen at the 0.5 h time point. The DR/R ratio (i.e., concentration ratio) for
glucose was very low in both the wild type and the snf1Δ mutant strains. Glucose is
provided as the fermentable carbon source in R medium. However, simple contamination of
the cells with R medium cannot fully account for the elevated level of glucose in wild type R
cells because snf1Δ R cells have a 5-fold lower amount of detectable glucose and
contamination levels should be the same for both cell types. This difference in glucose levels
may reveal a previously not described SNF1-dependent glucose uptake system that is not
glucose repressed. Little glucose was detected in metabolite extracts from DR cells. This is
not surprising since DR growth medium contains only 1% the amount of glucose as the R
medium.

Trehalose is an example of a metabolite exhibiting a “time increase” pattern, shown in
Figure 5B. Of the metabolites identified, trehalose had the highest S-ratio, 148, at the 4 h
(and 6 h) time point. The relative concentration in WR cells increased over time becoming
most significantly elevated at the 4 and 6 h time points. As for glucose, the overall DR/R
ratio was low. However, in contrast to glucose in Figure 5A, the level of trehalose increased
with time instead of decreasing. There was also a significant difference between the wild
type and the snf1Δ mutant strain with the mutant strain having much less trehalose. In
previous studies of wild type cells, higher levels of trehalose were observed in DR as
compared to R conditions at 6 h.22 While the cells were treated differently in this study,
confirmation of a different trend was warranted. This result was verified in three additional
biological replicates of the experiment. The peak was further confirmed as trehalose by co-
migration with a trehalose standard that had been added to the sample (standard addition
method). Additionally, a strain that is unable to synthesize trehalose because it lacks the
TPS1 gene, which is required for the conversion of G6P and UDPG into trehalose-6-
phosphate, a precursor of trehalose, was analyzed and shown to lack the putative trehalose
peak. Trehalose is a non-reducing disaccharide that can serve as a carbohydrate energy
storage molecule and a protectant from heat, starvation, osmotic stress, and other stresses.48

Accumulation of trehalose in the WR cells at the late time points is consistent with the
observed slowing of growth and entry into the stationary growth phase, as shown in Figure
2, in the presence of glucose. A surprising observation from these results is that Snf1 seems
to be required for the accumulation of trehalose in medium with abundant glucose,
conditions where it is thought to be inactive. There is evidence in the literature that Snf1
may play a role in response to stress even when glucose is not growth-limiting.49

As for trehalose, fumarate demonstrated a “time increase” pattern as shown in Figure 5C.
The amount of fumarate detected in wild type cells showed a large increase with time that
was not observed in the snf1Δ mutant cells. This is reflected in the high DR/R ratio for wild
type cells at the 6 h time point and a ratio of close to 1 for the snf1Δ mutant cells. Fumarate
is an intermediate of the TCA cycle, which is most active when cells are growing on non-
fermentable carbon sources in the absence of glucose. The Snf1 protein kinase is required
for maximal expression of a number of genes encoding TCA cycle proteins under these
growth conditions.41 Our observations are consistent with the prediction that snf1Δ mutant
cells should have lower amounts of TCA cycle intermediates. The other detected members
of the TCA cycle also displayed a time-dependent increase that was absent in snf1Δ mutant
cells. Taken together, these results suggest that carbon flow through the TCA cycle is
severely reduced in the absence of the Snf1 protein kinase.

An example of the “time peak” pattern is provided by glucose-6-phosphate (G6P) shown in
Figure 5D. The amount of G6P in wild type R cells was observed to increase from the early
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time points until it reached its highest level by 4 h, 2.5-fold higher than the level at 0.5 h. It
then decreased almost 2-fold by the 6 h time point. The decrease in G6P in R wild type cells
observed at the later time points is consistent with a decreasing flow of carbon through
glycolysis that accompanies entry into stationary phase. In wild type DR cells, G6P was
detected at early time points. However, after 2 h, when the glucose of the DR medium was
fully exhausted, the level of G6P became undetectable. G6P in R snf1Δ mutant cells did not
increase as in the wild type cells, remaining relatively constant during the course of the
experiment and was undetectable in DR snf1Δ mutant cells. G6P is the first cellular
metabolite formed when glucose in taken up by yeast cells. It is located at the beginning of
the glycolytic and the pentose phosphate pathways and can be used to synthesize trehalose
in response to environmental stresses.48 Cellular level of G6P appear to be carefully
regulated to avoid excess intracellular G6P that seems to be toxic to cells.50 The peak in
G6P corresponds to the beginning of the trehalose accumulation in wild type R cells at the 4
h time point. This is nicely predicted by the hypothesis that trehalose synthesis can be used
by yeast to sequester G6P so that it does not accumulate in excess and cause a toxic
metabolic imbalance.

Examples of “unpatterned” metabolites are stearic acid and glutamic acid. Stearic acid is an
18 carbon saturated fatty acid whose amount remained essentially constant between sample
classes and time points as shown in Figure 5E. The DR/R ratio was approximately 1, the
wild type and mutant levels were also approximately equal at all time points. Similar results
were obtained for the amino acid, glutamic acid, as shown in Figure 5F. However, unlike for
stearic acid, the level of glutamic acid in the DR wild type strain was elevated compared to
the level in the DR snf1Δ mutant strain. Glutamic acid is directly synthesized from
oxoglutarate, an intermediate of the TCA cycle. Results presented earlier show that the
levels of TCA cycle intermediates are significantly reduced in DR snf1Δ mutant cells. This
may account for the observed lower level of glutamic acid.

The time course patterns offer interesting insight to the dynamic changes in metabolite
levels and perhaps how levels between metabolites are related to each other (i.e., G6P and
trehalose). However, the time course patterns can overshadow the overriding strain/growth
condition trends, which are also of interest. In order to comprehensively identify metabolite
concentration differences between yeast strain and growth conditions over the course of the
experiment TIC-normalized time point data were averaged together for each of the four
strain and growth condition combinations. The same six metabolites from Figure 5 are
shown in Figure 6 after time course averaging. Approaching the data in this way, the overall
relationship between the various metabolite levels and the condition and strain was clarified.

Since it was impractical to show all of the metabolites found to change significantly per
growth condition and yeasts strain, PCA was employed as a data comparison tool to
determine similarities between metabolites and to investigate time dependencies. This is a
different approach to PCA than is typically used because the metabolites are not expected to
form tight clusters or groups. Instead the relative position in the PCA plot of the metabolites
to each other can be used to discern trends and patterns. This provides a qualitative platform
to discuss both similarities between metabolites and the impact of sampling time on
metabolite classifications and the conclusions drawn from the data. Each point in a given
PCA plot represents one metabolite. The metabolites’ coordinates are provided in
Supporting Information (Table S1). Using these coordinates, other metabolites of interest
can be compared to the patterns for the six metabolites selected as representatives in Figures
5 and 6.

For all of the PCA plots, the data values were mean centered to eliminate the undue
influence of data intensity and focus instead on data patterns. Figure 7A shows the results of
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the first analysis approach of using all of the time course data without time course
averaging. PC1 captured only 30% of the variance. Note that in this figure, and other PCA
scores plots presented, that PCA is used to discern trends in the metabolite patterns and not
necessarily to expect clustering, so in this regard it is a comparison tool and not a
classification tool. Using the same six metabolites shown in Figure 5, indicated in the PCA
plot, it was determined that PC1 captured the various time patterns creating a continuum
between one extreme and another. Trehalose (B) and fumarate (C) that both exhibit a time
growth pattern have negative scores on PC1, while glucose (A) with a time decay pattern
has the most positive score on PC1. Stearic acid (E) and glutamic acid (F) that do not show a
distinct time course pattern fall near the PC1 center axis and G6P (D) that shows the time
peak pattern has a positive score on PC1. The time patterns of the other metabolites can be
discerned based on their relative position in the scores plot to the six representative
metabolites.

Removing the time dependency from the data by time point averaging clarified the
relationship between the growth conditions and the strains, as demonstrated by the selected
metabolites in Figure 6. The PCA scores plot in Figure 7A was also clarified by prior time
point averaging, as shown in Figure 7B. This data analysis approach would be analogous to
pooling samples prior to analysis. Mapping the six metabolites onto the scores plot allows
one to discern the source of variance. With the time patterns averaged out, PC1 captured
67% of the variance and primarily captured the differences between DR and R conditions.
Fumarate (C) with a high DR/R ratio has a negative score on PC1. Stearic acid (E) and
glutamic acid (F) with DR/R ratios approximately equal to 1 are close to the PC1 axis.
Additionally, glucose (A), trehalose (B), and G6P (D) that have low DR/R ratios all have
positive scores on PC1. PC2 captured an additional 22% of the variance that can be
attributed to differences between the snf1Δ mutant strain and the wild type strain. The
metabolites with positive scores on PC2 (B, C, D, F) all had lower levels in the mutant strain
than in the wild type strain. Glucose (A) and stearic acid (E), which have comparable levels
in the mutant and wild type cells, have negative scores on PC2. This plot does not directly
show any time course information, but instead it contains a summary of all the time course
data. This is an important benefit over probing only one time point because a metabolite data
point is not lost from the plot as it might be if it is not present at a given time point.

Many experiments in the literature do not collect time course data or pool samples but
instead only investigate a single time point. In order to determine if a single time point
would provide as comprehensive a data set as time point averaged data, PCA plots for each
individual time point were examined. The PCA results from time 4 h are shown in Figure
7C. The results are most similar to those from the time course averages (Figure 7B). PC1
again captured the differences between R and DR resulting in 62% of the variance.
Additionally, PC2 captured the differences between the mutant and the wild type strains
(another 19% of the variance). The six metabolites map onto the scores plot in the same way
as in the summed averages plot.

Results from time 6 h and 2 h are also similar and are provided in Supporting Information
(Figure S2A and S2B). For example, at time 2 h, 48% and 30% variance are captured by the
first 2 PCs, respectively. The differences observed at 2 h between the strain/growth
conditions are less distinct than they become at later time points. At time 6 h, the first two
PCs capture 59% and 22%, respectively. However, some of the metabolites with the “time
peak” pattern have started to drop in concentration by 6 h, so the scores plot at time 4 h is
more similar to the average plot. While there are some differences between these time
points, the PCs still capture variance based on the same trends. This is not the case for the
scores plot at time 0.5 h provided in Supporting Information (Figure S2C). This plot is quite
different from all the other scores plots. The variance captured on PC1 was primarily related
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to the number of different classes in which the metabolite was present. Metabolites with
negative scores on PC1 have information in all four classes, as the scores on PC1 become
more positive there are fewer classes that contain information. Trehalose (B) has the most
positive score on PC1 and can only be detected in WR conditions at 0.5 h while stearic acid
(E) has one of the more negative scores on PC1 and can be detected in all four conditions/
strains. Because PCA focuses on this trend, rather than strain, growth condition, or time
pattern, conclusions made from only the 0.5 h time point would be misleading in regards to
strain and condition patterns.

These results suggest that PCA can be used to observe metabolite patterns. There are a
number of ways to approach a rich time course data set such as this. PCA performed on the
time course information is most useful to see time patterns and less useful to see strain/
growth condition patterns. PCA on a time course averaged data set loses the time course
pattern information but is better to identify trends between strains and conditions. Averaging
time course data yields more effective data comparisons than using a single time point. And,
as stated earlier, one could also pool samples taken over a time course prior to analysis to
obtain the averaging effect while using less instrument time. Further yet, it is possible to
substitute a single time point for averaged time course data with the penalty of losing a small
subset of metabolites that are not detected at that time in the analysis. Additionally, because
the metabolome is dynamic, not all time point data sets will provide the same information.
Initial investigation should be done to determine the best time point for a given study.

For the yeast strains and growth conditions tested in this study if a single time point were to
be substituted, data collection at either 4 h or 6 h provided the most information. With all of
these results it was observed that carbon flow through the TCA cycle in DR conditions is
severely reduced in the absence of the Snf1 protein complex as expected. A surprising
observation is that the absence of the Snf1 protein complex altered metabolite levels in R
conditions as well where it was not thought to play a role.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Metabolic pathway activity based on available carbon source is illustrated. When glucose is
present, cells ferment and follow the dashed line. The presence of glucose represses other
metabolic pathways thus this condition is termed glucose repressed. When glucose is
limited, cells become derepressed and low glucose respiratory enzymes are synthesized.
This allows the cells to respire on ethanol, following the solid lines. The Snf1 protein
complex is required to make the shift to utilize ethanol. In the absence of the Snf1 protein
complex, cells are unable to respire effectively on ethanol.
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Figure 2.
Cell growth over 6 h. The strains in repressed conditions grew faster than the strains in
derepressed conditions. By the 6 h time point, the wild type and snf1Δ strains were entering
stationary phase in repressed conditions.

Humston et al. Page 14

Anal Chem. Author manuscript; available in PMC 2012 October 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Humston et al. Page 15

Anal Chem. Author manuscript; available in PMC 2012 October 05.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Available glucose in the medium in (A) repressed conditions, and in (B) derepressed
conditions. Strains in repressed conditions have adequate glucose to remain repressed over
the course of the experiment. The small amount of glucose provided in derepressed
conditions is used by 2 h in the wild type cells and slowly diminished over the 6 h in the
snf1Δ strain.
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Figure 4.
Location of analytes in the 2D separation space. A contour plot of mass channel 73 shows
the ion indicative of trimethylsilyl (TMS) group for a (A) wild type cells in repressed
conditions at 6 h. (B) The chromatographic location of the 51 metabolites identified in this
study.
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Figure 5.
Time course data for selected metabolites is presented, normalized to TIC only. (A) Glucose
is shown elevated in both wild type and mutant in R conditions. (B) Trehalose is a major
carbohydrate storage molecule. The relative concentrations increased over time in the WR
cells. This result was confirmed in three additional biological replicates. Additionally, a
tps1Δ strain was analyzed and the absence of this peak was observed. (C) Fumarate is a
member of the TCA cycle. The relative peak volumes increase steadily in WDR, but remain
low in the other classes. (D) Glucose-6-phosphate (G6P) is a member of glycolysis. The WR
peak profile is elevated compared to all other classes. (E) Stearic Acid remains essentially
constant between classes and time points. (F) Glutamic acid is an amino acid. Wild-type is
elevated over the mutant for both R and DR.
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Figure 6.
Averages of time course data are shown for the same metabolites as in Figure 5: (A)
glucose, (B) trehalose, (C) fumarate, (D) glucose-6-phosphate (G6P), (E) stearic acid, and
(F) glutamic acid.
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Figure 7.
PCA scores plots of PARAFAC signal volume patterns for each metabolite, normalized as
explained in the text. The same six metabolites shown in Figures 5 (and 6) are indicated on
these plots with letters corresponding to Figures 5 (and 6). (A) PCA results with time course
information when only injection replicates are averaged. There are 16 classes (WR, WDR,
SR, SDR) × (0.5, 2, 4, 6 h). (B) PCA results when all injections, and time points are
averaged for a given growth condition and yeast strain. There are four classes (WR, WDR,
SR, SDR). (C) PCA results for a single time, 4 h. There are four classes (WR, WDR, SR,
SDR).
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