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I
t has been well recognized that multiple factors,
whether individually or in combination, contribute to
noncontact anterior cruciate ligament (ACL) injury.

The ongoing mission of the ACL Research Retreat is to
bring clinicians and researchers together to present and
discuss the most recent advances in ACL injury epidemiol-
ogy, risk factor identification, and injury-risk screening and
prevention strategies and to identify future research
directives. The sixth retreat held March 22–24, 2012, in
Greensboro, North Carolina, was attended by more than 70
clinicians and researchers, including representatives from
Canada, Iceland, Japan, The Netherlands, Norway, and
South Africa. The meeting featured keynote presentations
and discussion forums by expert scientists in ACL injury risk
and prevention and 34 podium and poster presentations by
attendees. Keynotes delivered by Ajit Chaudhari, PhD (The
Ohio State University), Malcolm Collins, PhD (Medical
Research Council and University of Cape Town, South
Africa), and Tron Krosshaug, PhD (Oslo Sports Trauma
Research Center, Norway) described their ongoing work
related to proximal trunk control and lower extremity
biomechanics, genetic risk factors associated with ACL
injury, and methodologic approaches to understanding ACL
loading mechanisms, respectively. Discussion forums led by
Jennifer Hootman, PhD, ATC, FNATA, FACSM (Centers
for Disease Control and Prevention) and Scott McLean, PhD
(University of Michigan), focused on strategies for imple-
menting injury-prevention programs in community settings
and took a critical look at the strengths and limitations of
motion-capture systems and how we might continue to refine
our research approaches to increase the relevance and
influence of our biomechanical research, respectively.
Podium and poster presentations were organized into
thematic sessions of anatomical, genetic, and hormone risk
factors; the role of body position in ACL injury risk; pubertal
and sex differences in lower extremity biomechanics; injury-
risk screening and prevention; and methodologic consider-
ations in risk factor research. Substantial time was provided

for group discussion throughout the conference. From these
discussions, the 2010 consensus statement1 was updated to
reflect recent advances in the field and to chart new
directions for future research. Following is the updated
consensus statement. The presentation abstracts organized by
topic and presentation order appear online at http://nata.
publisher.ingentaconnect.com/content/nata/jat.

CONSENSUS STATEMENT

As in past retreats, participants were divided into 3
interest groups: anatomical, genetic, and hormonal risk
factors; neuromechanical contributions to ACL injury; and
risk factor screening and prevention. Within each group,
relevant sections of the previous consensus document were
discussed and updated as to important knowns and recent
advances based on new evidence emerging in the literature
and presented at the retreat and important unknowns and
future directions that are needed to advance our under-
standing. Working drafts from each group were then
presented to all participants for further discussion and were
recirculated after the meeting for further refinement.

From these discussions, the following global observa-
tions, themes, and recommendations emerged from the
2012 meeting. First, the biomechanical research community
should consider the degree to which the movement patterns
studied during the dynamic activities of risk factor
screening tests should be expected to correspond with
biomechanical loading profiles known to be associated with
ACL strain. For example, cadaveric work overwhelmingly
supports the notion that internal rotation of the tibia with
respect to the femur loads the ACL; however, we do not
know if those individuals at risk for future ACL injury
commonly move with excessive amounts of knee internal
rotation during screening tests or on the field. It is entirely
possible that those individuals may adopt a movement
strategy to avoid loading of the ACL or other structures
during controlled screening tasks that is completely
different from the movement strategies they use on the
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field in the course of athletic participation. That is, the
movement strategies we prospectively identify as risk
factors from screening tests may be different than the
biomechanical mechanisms observed in vitro to increase
strain on the ACL.

Another general biomechanical theme was the need to
transfer relatively technical biomechanical modeling find-
ings into a form that can be more easily accessed by the
clinician or practitioner. Most importantly, risk factor
screenings that incorporate biomechanical data should to
some degree use clinician- and practitioner-friendly
language in the interpretation and explanation of the
findings. From an injury-prevention perspective, much
remains unknown about which specific elements of
successful injury-prevention programs (movement training,
strengthening, plyometrics, etc) are necessary to produce
the desired protective effects, why these programs are
limited to short-term success, and to what extent program
components need to be age, sex, and sport specific. If we
are to streamline ACL injury-prevention programs to
improve compliance and efficacy, thus making them more
palatable to the public, high-quality randomized control
trials are needed to address these critical questions. At the
same time, we have yet to effectively translate our highly
controlled ACL injury-prevention research to real-world
community settings in which the public health benefit can
be maximized.1 To that end, it will be important to identify
the barriers and facilitators (eg, feasibility, cost, and parent
and coach buy-in) to maximize acceptance, compliance,
and retention of these interventions within the context of
these community settings.

Finally, as our understanding of this multifactorial problem
continues to grow, the need for multidisciplinary, multicenter
work is becoming more apparent. As a research community,
we need to leverage our combined resources to bring together
interdisciplinary teams and to achieve the population sizes
needed for integrated examination of these different factors.
Developing such integrated approaches is not without
challenges, and concerted efforts are needed to identify and
reduce the barriers that impede this important work.

Once again, we find that in the 2 years since the last ACL
Research Retreat, many advances in our knowledge have
reshaped the important unknowns and directions for future
research. We hope that these proceedings will continue to
foster quality research and clinical interventions.

Anatomical and Structural Risk Factors

The primary anatomical and structural factors examined
relative to ACL injury include ACL morphology, tibial and
femoral surface geometry, knee-joint laxity, and lower
extremity structural alignments. Most of what is known is
based on sex comparisons (driven by females’ greater
susceptibility to ACL trauma) and retrospective ACL-
injured case-control studies.

Important Knowns and Recent Advances

1. ACL Structure and Geometry: Compared to noninjured
controls, ACL-injured patients have smaller ACLs (area
and volume).2 When compared with males, females have
smaller ACLs relative to length, cross-sectional area, and
volume even after adjusting for body anthropometry.3

After adjusting for age and body anthropometrics, the
female ACL has less collagen fiber density (area of
collagen fibers/total area of the micrograph)4 and decreased
mechanical properties, such as strain at failure, stress at
failure, and modulus of elasticity.5

2. Knee-Joint Geometry—Tibial Plateau: Magnetic resonance
imaging (MRI) studies (imaging both the lateral and
medial tibial plateaus) demonstrate greater lateral posteri-
or-inferior tibial plateau slopes (but not necessarily medial
tibial slopes)6–9 and reduced condylar depth of the medial
tibial plateau7 in ACL-injured patients versus controls.
Compared with males, females have greater lateral and
medial posterior-inferior tibial slopes10,11 and reduced
coronal tibial slopes.10 Biomechanically, greater posteri-
or-inferior lateral tibial slopes are associated with greater
anterior joint reaction forces,12 greater anterior translation
of the tibia relative to the femur,13,14 greater peak anterior
tibial acceleration,15 and when combined with a smaller
ACL cross-sectional area, greater peak ACL strains.16,182

Greater relative posterior-inferior slope of the lateral
versus medial tibial plateau has been associated with
greater peak knee-abduction and internal-rotation angles.12

3. Knee-Joint Geometry—Femoral Notch: Femoral notch
dimensions have frequently been investigated as ACL
injury-risk factors. Authors of the majority of prospec-
tive17–20 and retrospective studies8,21–23 have generally
reported a smaller femoral notch width or notch width
index in ACL-injured cases. The presence of an anterior
medial ridge has also been noted on the intercondylar notch
in ACL-injured patients versus controls.8 When compared
with males, the female’s femoral notch height is taller,
whereas their femoral notch angle is smaller, which may
influence the femoral notch impingement theory.3 Femoral
notch width and angle are good predictors of ACL size
(area and volume) in males but not in females.3

4. Knee-Joint Laxity: Greater magnitudes of anterior knee
laxity,20,24,25 genu recurvatum,24,26–29 general joint lax-
ity,20,24,26,29,30 and internal-rotation knee laxity31 have been
reported in the contralateral knee of ACL-injured patients
compared with control cases. Compared with males, females
have greater sagittal-plane knee laxity (anterior knee laxity,
genu recurvatum),20,24,32–36 greater frontal (varus-valgus
rotation)- and transverse (internal-external rotation)-plane
knee laxity,37–40 and greater general joint laxity.20,24 Sex
differences in frontal- and transverse-plane knee laxity
persist even when males and females have similar sagittal-
plane knee laxity.37,39,40 Greater magnitudes of knee laxity
have been associated with the higher-risk landing strategies
more often observed in females.32,41–44

5. Lower Extremity Alignment: Lower extremity alignments
are different between maturation groups and also develop
at different rates in males and females between maturation
groups.45 Fully mature females have greater anterior pelvic
tilt, hip anteversion, tibiofemoral angle, and quadriceps
angles.35,46 No sex differences have been observed in tibial
torsion,35 navicular drop,35,36,46 and rear-foot angle.35,47

Currently, no compelling evidence links any one lower
extremity alignment factor with ACL injury.

Unknowns and Directions for Future Research

1. Anatomical and structural factors have often been
examined independently or in small subsets of variables.
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In order to determine the most important anatomical and
structural risk factors for ACL injury, we need to conduct
large-scale, prospective risk factor studies that account for
all relevant lower extremity anatomical and structural
factors to determine how they may combine or interact to
pose the greatest risk to the ACL. Because most anatomical
and structural factors are not acutely affected by the ACL
rupture, large, multifactorial, case-control study designs
are also ideal for examining structural factors.

2. To facilitate large-scale, multivariate risk factor studies, we
need to develop more efficient, affordable, reliable, and
readily available methods of measuring anatomical and
structural factors.

3. The lack of uniform measurement techniques for deter-
mining intercondylar notch dimensions make it difficult to
clearly identify which specific dimensions are most
predictive of increased risk for ACL injury.48 Specifically,
we need to determine whether the size and geometry of the
notch itself, the volume of the ACL, or some combination
of these factors best characterizes risk for impingement and
injury.

4. Recent researchers have begun to elucidate the influence of
anatomical and structural factors on weight-bearing knee-
joint neuromechanics;12,15,16,43,44,49 which may be impor-
tant in our injury-prevention efforts. Studies examining the
combined effects of joint laxity, tibial geometry (lateral
tibial slope, medial:lateral tibial slope ratio, coronal slope,
medial condylar depth) and ACL cross-sectional area and
volume, as well as interactions among these variables, on
tibiofemoral joint biomechanics and ACL strain and failure
are encouraged.

5. Investigations of knee-joint geometry are largely based on
measures of subchondral bone. Recent research50 suggests
it may be important to also account for the overlying
cartilage geometry.

6. Some evidence suggests that an elevated body mass index
(BMI) is predictive of future ACL injury in females20 and
that artificially increasing BMI encourages dangerous
biomechanical strategies.51,52 Additionally, recent research
suggests that body composition may influence knee-joint
laxity,53,183 potentially explaining why the combination of
greater knee laxity and BMI substantially heightens the
risk for ACL injury.20 Continued research on the influence
of body composition is warranted.

7. Although anatomical and structural factors are often
considered nonmodifiable once a person is fully mature,
we have limited knowledge of how these structural factors
change during maturation or whether physical activity (or
other chronic external loads) can influence this develop-
ment over time, particularly during the critical growth
periods. Prospective, longitudinal studies are needed to
understand the underlying factors that cause one to develop
at-risk anatomical and structural profiles during maturation
while also taking into account relevant modifiable factors,
such as body composition, neuromuscular properties, and
physical activity.

Genetic Risk Factors

An ACL rupture is a multifactorial condition caused by a
poorly understood interaction of both genetic and environ-
mental (nongenetic) factors. The injury is most likely
caused, at least in part, by environmental exposures and

other stimuli interacting with a genetic (multiple-genes)
background.54 Mutations within the COL1A1 and COL5A1
genes cause rare Mendelian connective tissue disorders,
suggesting that there is limited or no redundancy within the
biology of the collagen fibril. Common polymorphisms
within genes, such as the collagen genes that encode for
structural components or regulators of the collagen fibril,
which is the basic building block of the ACL, are ideal
candidates for examining genetic predisposition to ACL
ruptures.54 Since the last ACL Research Retreat, consider-
able research has examined genetic associations with ACL
injury.

Important Knowns and Recent Advances

1. A familial predisposition to ACL ruptures has been
reported.55

2. A functional polymorphism within the first intron of the
COL1A1 gene is associated with risk for ACL ruptures in 2
independent white populations.56–58 The COL1A1 gene
encodes for the a1(I) of type I collagen, which is the major
building block of the collagen fibril of the ACL.

3. Although the sample sizes are small, polymorphisms
within the COL5A1 and COL12A1 genes have been shown
to associate with risk for ACL ruptures in white females.
The COL5A1 and COL12A1 genes encode for the a1(V)
chain of type V collagen and the a1(XII) chain of type XII
collagen, respectively.59,60 Both type V and XII collagens
are important structural components of the collagen fibril.

4. The COL5A1 polymorphism associated with ACL ruptures
in females is located within a functional region of the 30-
untranslated region of the COL5A1 gene. It has been
proposed that the 30-untranslated region regulates, at least
in part, the amount of type V collagen incorporated within
the collagen fibril, which in turn alters the mechanical
properties of the fibril.61,62

5. Inferred haplotypes constructed from functional variants
within 4 matrix metalloproteinase (MMP) genes (MMP10,
MMP1, MMP3, and MMP12), clustered together on human
chromosome 11q22, have been shown to associate with the
risk of ACL rupture. After adjusting for weight, age, and
sex, the MMP12 variant was independently associated with
an increasing risk of noncontact ACL rupture.63

6. The traditional intrinsic risk factors associated with ACL
ruptures are also to a lesser or greater extent determined by
both genetic and nongenetic factors. For example, some
early evidence indicates that the same genetic variants in
COL5A1 associated with ACL injury are also associated
with joint laxity64,184 and joint range of motion.65,66

Unknowns and Directions for Future Research

1. Most of the case-control genetic association studies
published to date have used relatively small sample sizes,
especially with respect to the sex-specific effects of
COL5A1 and COL12A1. These studies need to be
replicated in other, larger populations, which may require
the establishment of international consortia.

2. All the genetic studies to date have been done on European
white populations, and the reported associations cannot be
extrapolated to other populations. These studies therefore
need to be repeated in other population groups.
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3. Mutations within many of the collagen and noncollagen
encoding genes cause rare Mendelian connective tissue
disorders. Common variants within these genes, which
cause less severe changes in the amount of proteins
produced or the structures of the protein may be ideal
candidates for determining the biological variation within
the structure of the ACL and susceptibility to injury and
should therefore be studied. Unlike other multifactorial
disorders caused by the interaction of both environmental
and genetic factors (eg, type 2 diabetes), the individual
genetic effects that influence the predisposition to ACL
rupture appear to be quite large.

4. Because most of the intrinsic risk factors are complex
phenotypes, we need to better understand how genetic
variants that partly determine these intrinsic risk factors
alter susceptibility to ACL injury.

5. Molecular genetics should be viewed as one of many
techniques that can elucidate the biological mechanisms of
ACL ruptures. Genetic association studies may highlight
biological processes and pathways for ACL injury, which
require additional investigation using other methods.
Multidisciplinary approaches should therefore be encour-
aged (eg, connecting genetics to cell biology to tissue
function to whole-body function).

6. The effects of various stimuli, such as hormonal,
mechanical loading, and other environmental stimuli, on
the expression of genes associated with risk for ACL
rupture need to be investigated. These studies will assist us
in understanding how the associated genetic variants
interact with stimuli to influence ACL homeostasis and
remodeling.

7. The interaction of hormones with genetic regulatory
elements should be studied to explain female-specific
anatomical differences (eg, small ACL) and increased risk
for ACL ruptures.

Hormonal Risk Factors

Substantial differences in sex-steroid hormone concen-
trations likely underlie many of the sex-specific character-
istics that emerge during puberty. In particular, the large
magnitudes and monthly variations in estrogen and
progesterone concentrations that females experience con-
tinue to be an active area of ACL injury risk factor research.

Important Knowns and Recent Advances

1. The risk of suffering an ACL injury appears to be greater
during the preovulatory phase of the menstrual cycle than
during the postovulatory phase.67–71 However, there is no
evidence that stabilizing hormone concentrations through
the use of oral contraceptives protects against ACL
injury.72,73

2. The risk of ACL injury may be higher in elite female
athletes who have elevated serum relaxin concentrations.74

3. Sex hormone receptors on the human ACL (eg, estrogen,
testosterone, and relaxin)75–79 and skeletal muscle (estro-
gen, testosterone)80–82 suggest that sex hormones have the
potential to directly influence these structures.

4. Normal physiologic variations in sex hormone concentra-
tions across the menstrual cycle have been associated with
substantial changes in markers of collagen metabolism and
production,83 knee joint laxity,40,84–88 and muscle stiff-

ness.85 However, large individual variations in hormone
profiles across the menstrual cycle88 are associated with
substantial interparticipant variations in the magnitude of
these phenotypic changes.40,83,87,89

5. Cyclic variations in knee laxity are of sufficient magnitude
in some women to substantially alter their knee-joint
biomechanics, particularly in the planes of motion in which
the greatest magnitudes of knee-laxity change are ob-
served.49,90,91

6. The mechanical and molecular properties of the ACL are
likely influenced not only by estrogen but by the
interaction of several sex hormones, secondary messen-
gers, remodeling proteins, and mechanical stress-
es.76,79,83,88,92–94 For example, interactions among
mechanical stress, hormones, and altered ACL structure
and metabolism have been observed in some animal
models.95–97

7. A time-dependent effect for sex hormones and other
remodeling agents influences a change in ACL tissue
characteristics.79,88

Unknowns and Directions for Future Research

1. Although epidemiologic studies have consistently pointed to
the preovulatory phase as the time when ACL injury is more
likely to occur,67–71 we know little of the underlying
mechanism for this increased likelihood. Future researchers
should examine the underlying sex-specific molecular and
genetic mechanisms of sex hormones on ACL structure,
metabolism, and mechanical properties and how mechanical
stress on the ACL alters these relationships.

2. Although good evidence indicates that females who
experience substantial cyclic changes in their laxity across
the menstrual cycle also experience substantial changes in
their knee-joint biomechanics,49,90,91 it is not yet possible to
clinically screen for these potentially high-risk individuals.
We must understand the underlying processes that result in
changes in ligament behavior (and other relevant soft tissue
changes) so that we can better screen for these individuals
and prospectively examine how these factors influence
injury-risk potential. The effects of hormones and other
stimuli on the synthesis of the less stable collagens and
noncollagen proteins (eg, proteoglycans and other ground
substance components) that regulate ligament biology
should be investigated.

3. Oral contraceptives do not appear to be protective against
ACL injury risk,72,73 but they can vary substantially in the
potency and androgenicity of the progestin compound
delivered, which ultimately determines the extent to which
they counteract the estrogenic effects.98 Because many
physically active females use oral contraceptives, we need
to better understand how the different progestins influence
soft tissue structures, knee function, and ACL injury risk.
Relevant comparisons should then be made between oral-
contraceptive users and eumenorrheic, amenorrheic, and
oligomenorrheic females to determine if ACL injury risk or
observed soft tissue changes vary between these groups.

4. Given the time-dependent effect of sex hormones on soft
tissue structures, we ought to determine how the time of
injury occurrence lines up with acute changes in ACL
structure and metabolism or knee laxity changes and how
the rate of increase or the time duration of amplitude peaks
in hormone fluctuation across the menstrual cycle plays a
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role in the magnitude or timing of soft tissue changes. The
actual hormonal targets in the ACL also need to be
identified in order to understand the relatively quick and
time-dependent hormonal effects on the ACL.

5. When examining hormone influences in physically active
females, it is critical that we better match the complexity of
interparticipant differences in timing, magnitude, and
interactive changes in sex hormone concentrations across
the cycle to our study designs. Future researchers should
(1) verify phases of the cycle (or desired hormone
environment) with actual hormone measurements (consid-
ering all relevant hormones, including estrogen, progester-
one, and possibly others) rather than relying on calendar
day of the cycle and (2) obtain multiple hormone samples
over repeated days to better characterize hormone profiles
within a given female.99

6. Because cyclic hormone concentrations affect soft tissues
and knee-joint function, future studies comparing females
with males should be conducted during the early follicular
phase, when hormone levels are at their nadirs in females
(preferably 3–7 days postmenses).

Neuromuscular and Biomechanical Factors
Associated with the ACL Injury Mechanism

Neuromuscular and biomechanical (neuromechanical)
factors, whether ascertained in vivo or in vitro, are generally
derived from instrumented analyses of function that typically
include kinematics, kinetics, and the timing and magnitude
of the muscular activation and force production. Many of
these measures are considered to be modifiable through
training and have received considerable attention.

Important Knowns and Recent Advances

1. The ACL is loaded in vitro by a variety of isolated and
combined compressive, sagittal and nonsagittal mecha-
nisms during dynamic sport postures considered to be high
risk.100–106 This work collectively demonstrates high ACL
strain under compression, tibial valgus, tibial internal
rotation, and combined tibial valgus and internal rota-
tion.104,107–110

2. Quantitative analyses of actual injury events demonstrate
rapid tibial valgus and internal rotation.111,112

3. In vivo strain of the ACL is related to maximal load and
timing of ground reaction forces.113 A more erect (eg,
upright) posture is commonly associated with increased
vertical ground reaction forces.114,115,185,186 Similarly,
anterior tibial translation increases as demands on the
quadriceps increase.116 Thus, this upright posture when
contacting the ground during the early stages of deceler-
ation tasks has been suggested to be associated with the
ACL injury mechanism.117–120

4. Given the inherent difficulties of measuring ACL strain in
vivo, recent advances in our understanding of ACL loading
have arisen from cadaveric and computer models of
simulated landings. Such work has demonstrated that
internal rotation results in greater ACL strain than external-
rotation torque,107 that mechanical coupling of internal
tibial torque and knee valgus results in increased ACL
loading,108 and that combined tibial internal and valgus
moments result in ACL strains near reported levels for
tissue rupture.110

5. Maturation influences biomechanical and neuromuscular
factors.121–131,187,188

6. Fatigue alters lower limb biomechanical and neuromuscu-
lar factors that are suggested to increase ACL injury
risk.132–135,189 The effect of fatigue on movement mechan-
ics is most pronounced when combined with unanticipated
landings, causing potentially adverse changes to central
processing and control compromise.136

7. Hip, trunk, core, and upper body mechanics are associated
with lower extremity biomechanical and neuromuscular
factors.51,118,137–141,190 Further, a recent modeling and
optimization study demonstrated that upper body kinemat-
ics influence valgus knee loading during sidestepping and
that multiple kinematic changes occur simultaneously to
reduce knee loading.142

Unknowns and Directions for Future Research

1. We still do not know the loads and neuromuscular profiles
that cause noncontact ACL rupture, an understanding that
is central to improving future injury-prevention strategies.
Because we do not have precise descriptions of the
mechanisms of in vivo ACL rupture, video from actual
injury situations must be accumulated (along with control
videos of these injured athletes before they were injured
for comparison) to allow us to better understand the injury
mechanism. Additionally, cadaveric, mathematical, in
vivo kinematic, and imaging research approaches should
be combined to best understand the loads and neuromus-
cular profiles that cause noncontact ACL rupture.191

2. Although translating laboratory biomechanical measures
obtained during movement testing to the field is
important, the optimal ways to assess movement in the
laboratory environment are still being debated. We need
to develop tasks designed to stress the joint systems that
attempt to mimic injury mechanisms and are realistic to
the mechanistic purpose of the study, as well as better
techniques to measure the 3-dimensional movements and
loading associated with these tasks. To better understand
how movement patterns and other structures in the kinetic
chain affect ACL loads, we must continue to develop,
improve, and validate quality laboratory-based models
(eg, computational, cadaveric) that noninvasively esti-
mate in vivo ACL forces and strain. Care should be taken
to not overgeneralize results from 1 specific task to other
tasks with different mechanical demands.192

3. Although we understand how the lumbo-pelvic-hip (LPH)
complex affects knee biomechanics in general, we do not
know from the limited research models estimating in vivo
ACL strain how these trunk and hip biomechanical
factors affect in vivo ACL strain during highly dynamic
activities known to cause ACL injury. The influence of
the LPH complex on ACL loads must be better
characterized. Additionally, we do not know if LPH
mechanics are a cause of or a compensation for
potentially dangerous knee biomechanics.

4. We do not yet understand the role of neuromechanical
variability on the risk of indirect or noncontact ACL
injury. Are there optimal levels of variability, and do
deviations from these optimal levels increase the risk of
injury? We may need to rethink our experimental design
to take advantage of nontraditional analyses for assessing
variability.
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5. Even though decreased reaction times, processing speed,
and visual-spatial disorientation have been observed in
athletes sustaining an ACL injury,143 whether noncontact
ACL injury is an unpreventable accident stemming from
some form of cognitive dissociation that drives central
factors and the resulting neuromuscular and biomechan-
ical patterns is unknown. We should continue to expand
research models and analyses to include assessments of
central processes (eg, automaticity, reaction time),
cognitive processes (eg, decision making, focus and
attention, prior experience [eg, expert versus novice]),
and metacognitive processes (eg, monitoring psychomo-
tor processes).

6. We do not know if gross failure of the ACLis caused by a
single episode or multiple episodes.

7. Although it is generally accepted that the ACL injury
mechanism is multifactorial, resulting from the interplay
of many different neuromuscular, biomechanical, ana-
tomical, genetic, hormonal, and other factors, studies that
consider only individual factors in isolation (eg, kine-
matic or kinetic or neuromuscular or anatomic) remain
the norm in the literature. To best understand movement
patterns linked to noncontact ACL injury, researchers
should move toward a comprehensive collection of
kinetic, kinematic, and neuromuscular data and as much
data related to anatomy, genetics, hormones, and other
factors as possible. These multifactorial studies will allow
us to determine important interactions and interdepen-
dencies among factors.

8. In identifying potential factors that contribute to the
injury mechanism, we should consider whether observed
kinematics, kinetics, and muscle-activation strategies are
root causes of increased ACL loading or compensations
for deficiencies in other components of the kinetic chain.
Studies specifically designed to evaluate cause and effect
(ie, highly controlled human movement studies with 1
variable manipulated or simulation studies) could help
advance this area.

9. Further insight into the dynamic-restraint systems are
needed to more fully understand ACL loading mecha-
nisms. Further work on muscle properties beyond
absolute strength (eg, stiffness, muscle mass, rate of
force production) is warranted.

10. We do not yet know whether females are at greater risk of
noncontact ACL injury due to female-specific injury
mechanisms or if the same injury mechanisms apply but
the risk factors are merely more prevalent in females. We
must continue to move away from purely descriptive sex-
comparison studies and focus more on the underlying
mechanisms associated with the observed sex differences
and, more directly, ACL injury risk and prevention as
appropriate.

11. Examining the influence of the maturational process on
knee biomechanics and specifically ACL loads may allow
unique insights into the observed difference in injury rates
by sex occurring during the early stages of physical
maturation and into mechanisms of injury across the
continuum of physical attributes and capabilities.

12. The inability of most individual researchers to perform
large-scale studies due to funding, personnel, and
geographic restrictions has hindered our progress in
understanding the ACL injury mechanism. Sharing data-
sets could potentially allow for investigations with the

needed population sizes. Several actions that would
facilitate such data sharing include but are not limited
to the following:
a. Common operational definitions of terms, such as core

stability, dominant limb, exposure, activity level,
experience, etc, need to be established.

b. Voluntary data-collection standards, including activi-
ties, methods, and demographics, are required to
enable pooling of data.

c. Creation of a central repository for neuromechanical
datasets and a clearinghouse mechanism for using such
datasets could greatly facilitate multicenter and
transdisciplinary collaboration.

Risk Factor Screening and Prevention

Although intervention programs have been shown to
reduce the incidence of ACL injuries,69,144–149 overall ACL
injury rates and the associated sex disparity have not yet
diminished. There is still much we need to learn to
maximize the effectiveness of these programs and to
identify highly sensitive screening tools to target those at
greatest risk for injury.

Important Knowns and Recent Advances

1. Clinically oriented screening tools (eg, Landing Error
Scoring System (LESS) and tuck jump) show good
agreement with laboratory-based biomechanics (concur-
rent validity).150–152

2. Clinically oriented screening tools are sensitive in
detecting changes in movement quality over time.153,154

3. The ability of clinically oriented screening tools to
identify individuals at risk for future ACL injury may
be population specific (eg, sex, age, sport).152,155,193

4. Prospective biomechanical risk factors for ACL injury
may include variables that are not directly associated with
ACL loading or injury events.156,194

5. Neuromuscular control and strength of the hip mus-
culature play an important role in knee biomechan-
ics.157–163,195

6. Individuals with a personal history of ACL injury are at
high risk for future ACL injury of the ipsilateral or
contralateral leg.164–166

7. Multicomponent dynamic warm-up–style preventive
training programs are safe and effective for reducing
ACL injury rates.144,147,167

8. Preventive training programs with successful outcomes
(eg, injury-rate reduction, improved neuromuscular control
or performance) are conducted 2–3 times per week and last
for 10–15 minutes at a minimum.69,144,146–148,168–174

9. Improvements in movement quality after 12 weeks of
training do not appear to be retained once preventive
training programs end. Thus, longer-duration or higher-
intensity training programs may be required to better
facilitate retention and transfer.154

10. Ensuring proper exercise technique and quality is an
important factor for program effectiveness. Feedback
should emphasize successful performance and ignore less
successful attempts; this benefits learning because of its
positive motivational effects.175

11. Real-time feedback can change landing biomechan-
ics.176–178,196
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12. The transition from conscious awareness during technique
training sessions to unexpected and automatic movements
during training or game involves complicated motor-
control elements that might not fit in explicit learning
strategies.179

13. Age-appropriate preventive training programs can be
effective at modifying biomechanics in children.153,180

Unknowns and Directions for Future Research

1. We do not know which elements (eg, specific faulty
movements, combination of faulty movements) of
clinically oriented screening tools predict future ACL
injury risk (predictive validity).

2. We do not know the reliability, validity, sensitivity, and
specificity of current screening tools (LESS, tuck jump)
and thresholds or cutoff points in order to determine
whether a person is at high or low risk.193,197

3. We need to develop other clinically oriented screening
tools that have good sensitivity and specificity for
predicting future ACL injury risk.

4. We must understand how clinically oriented screening
tools (eg, the LESS and tuck jump) predict other lower
extremity injuries in addition to ACL injuries.

5. Various ACL injury-prevention programs that incorporate
elements of balance training, plyometric training, educa-
tion, strengthening, and technique training or feedback
have been shown to reduce ACL injury69,144–149 or alter
biomechanical and neuromuscular variables thought to
contribute to ACL injury.168,170–174,181 However, we do
not know which program elements are responsible for the
reduced injury risk or biomechanical changes. Future
research is necessary to determine which components are
effective and necessary.

6. Technique training or feedback is frequently provided
during preventive training programs to improve move-
ment patterns. However, more study is needed to
determine the most effective training variables (eg,
frequency, timing, focus of attention) for improving
movement patterns and optimizing the transfer of these
learned movement patterns to sport-specific movements
performed on the field.

7. We ought to continue to evaluate how a participant’s sex,
age, skill level, and type of sport should be considered in
the type and variety of exercises prescribed and technique
training or feedback provided.153,180,198

8. We need to identify the most most appropriate age to
begin implementing preventive training programs.

9. We must determine the performance enhancement
benefits associated with regularly performing preventive
training programs.

10. We need to assess the effects of preventive training on
reducing ACL injury rates in those with a history of ACL
injury.

11. We should understand how preventive training programs
influence lower extremity injuries in addition to ACL
injuries.

12. We need to determine the cost effectiveness of current
preventive training programs.

13. Because compliance has a strong influence on the success
of ACL injury-prevention programs, research is essential to
identify the barriers and motivational aspects that influence
compliance (eg, type of feedback provided; coach or

athlete knowledge, attitudes, and beliefs regarding preven-
tion programs; design of prevention program; individual
leading the prevention program). We need to learn if
streamlining prevention programs, thus making them more
palatable to the public, will improve compliance.

14. Although well-controlled ACL injury-intervention pro-
grams reduce the incidence of ACL injuries,69,144,145,147,148

we have yet to effectively implement multifaceted
programs in different settings that are sustainable over
time (widespread implementation with high compliance
rates and retention over the long term). Developing
packaged preventive training programs that can be
implemented broadly across different settings through
appropriately educated and trained coaches or team
leaders may improve compliance and efficacy. To that
end, the following should be considered when developing
large-scale injury-prevention programs in the future: (a)
provide low-cost, brief time, packaged interventions; (b)
adapt the program based on contextual factors for that
setting (eg, sport, age, sex, environment); (c) incorporate
lay people (eg, coaches instead of athletic trainers or
strength and conditioning specialists) to implement the
program for that setting and population; (d) educate and
obtain organizational buy-in from all levels (eg, school,
club, administrators, coaches, players, parents); (e)
attempt to embed programs within an existing system
when possible (part of the warm-up or conditioning
program, team challenge, etc); and (f) develop written
policies and procedures (specifics of program, when to
perform, how often to perform, etc).
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