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Abstract
Computational analyses of systematic measurements on the states and activities of signaling
proteins (as captured by phosphoproteomic data, for example) have the potential to uncover
uncharacterized protein-protein interactions and to identify the subset that are important for
cellular response to specific biological stimuli. However, inferring mechanistically plausible
protein signaling networks (PSNs) from phosphoproteomics data is a difficult task, owing in part
to the lack of sufficiently comprehensive experimental measurements, the inherent limitations of
network inference algorithms, and a lack of standards for assessing the accuracy of inferred PSNs.
A case study in which 12 research groups inferred PSNs from a phosphoproteomics data set
demonstrates an assessment of inferred PSNs on the basis of the accuracy of their predictions. The
concurrent prediction of the same previously unreported signaling interactions by different
participating teams suggests relevant validation experiments and establishes a framework for
combining PSNs inferred by multiple research groups into a composite PSN. We conclude that
crowdsourcing the construction of PSNs—that is, outsourcing the task to the interested community
—may be an effective strategy for network inference.

Obstacles and Opportunities in Signaling Network Inference
The availability of antibodies that recognize phosphorylated residues on specific signaling
proteins are the basis of an expanding number of quantitative phosphoproteomics assays (1–
4). To use these quantitative protein phosphorylation data sets, approaches that infer the
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structure of signaling networks from protein state data have been developed (5–9). However,
a number of technical difficulties conspire to derail network inference. Experimental studies
that support current network inference procedures typically involve stimuli and
perturbations to the system that are large in number from a practical perspective but that are
barely sufficient from the perspective of network inference. Furthermore, many proteins (or
phosphorylation or activity states) important for signaling networks remain unmeasured
either because appropriate reagents (typically antibodies) are not available for their detection
or because the proteins and modifications are not yet annotated. Existing inference
algorithms also face the problem that they do not necessarily yield directly testable and
mechanistically plausible inferences—for example, by confusing correlation with causation.
Last, even if a protein signaling network (PSN) can be successfully reconstructed, it is not
obvious how to quantify its accuracy. In most cases, the “most likely” network given the
observed data is selected, but there is a degree of ambiguity in the definition of most likely.
For example, we may say most likely with respect to the currently accepted network models,
most likely given the data at hand, or most likely on the basis of an arbitrary cost function.

We describe some of the difficulties and successes encountered in assessing the accuracy of
signaling-network inference and the specific strategies used in the DREAM4 Predictive
Signaling Network Challenge. This challenge, which took place in the summer of 2009, was
organized under the umbrella of the DREAM (Dialogue on Reverse Engineering
Assessment and Methods) project (http://www.the-dream-project.org). Twelve groups
participated in the task of predicting the response of human liver carcinoma cells (the
HepG2 cell line) to different extracellular ligands (“stimuli”) in the presence or absence of
several smallmolecule kinase inhibitors (“perturbations”). The data consisted of measuring
the abundance of seven phosphoproteins by using sandwich immunoassays with the xMAP
platform (Luminex, Austin, Texas).

Network Assessment by Accuracy of Predicted Interactions
One possible metric for assessing the accuracy of an inferred PSN is the “recall,” defined as
the fraction of previously known biological interactions (or edges in network jargon)
recovered by an algorithm. It is not uncommon to see claims that hundreds of predicted
interactions are justified based on showing a few previously reported inter actions. This
metric of inference accuracy is misleading because a completely connected network (one in
which every node—or protein—is linked to every other protein) has perfect recall, but it is
clearly inaccurate. A metric complementary to recall is “precision,” defined as the fraction
of inferred edges that are correct (with respect to the current knowledge base). Assuming a
complete and error-free prior knowledge base, a combination of precision and recall may be
a good measure to quantify the accuracy of inferred networks (10). Unfortunately, the
current knowledge base for signaling interactions is vastly incomplete (missing many nodes
and edges) and contains an unknown number of incorrect edges. Moreover, current
knowledge often lacks biological specificity, because the data from many different cellular
contexts and organisms are frequently combined into single-network diagrams that are
intended to represent the current state of information. Thus, the safest recourse for deciding
whether an inferred edge that is absent from the knowledge base is a true positive or a false
positive is to experimentally test each prediction. The number of validation experiments
required to achieve this laudable goal is overwhelming, both in effort and in cost. Moreover,
in many cases, network inference lacks the mechanistic detail required for unambiguous
experimental validation. To take maximum advantage of the benefits of network inference
from high-throughput data, we require metrics other than recall and precision to score an
inferred PSN. Those networks with the highest scores should provide the basis for the most
promising follow-up experiments for the discovery of new interactions or for the validation
of known interactions.
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Network Assessment by Accuracy of Quantitative Predictions
The metric adopted in the DREAM4 Predictive Signaling Network Challenge for assessing
the accuracy of inferred PSNs was based on a comparison between the predicted and actual
phosphoproteomics measurements.

Each team created a “model network” using a training data set (phosphoproteomics
measurements observed under a specific set of conditions). Each team’s model networks
related stimuli and measurement values using different mathematical formalisms, such as
differential equations (7, 8) or Boolean logical functions (11). From the model network,
each team predicted changes in the phosphoproteome that would occur in response to a
different combination of stimuli and perturbations (the test data set). Last, the effectiveness
of each model network was assessed by comparing the accuracy of the predicted
measurements with those of the actual test data set.

This framework in which data from some experimental conditions are set aside for testing
how well a fitted model generalizes to new data are common in the machine-learning
community. The framework rewards predictive accuracy without regard to plausible
biological mechanisms or interpretability of the predictive models as an interaction network.
If mechanistic understanding is the ultimate goal, it is up to the researcher to work with a
type of model that is interpretable in the form of an interaction network. For example, a
weight matrix of interaction strengths between variables representing protein
phosphorylation values can easily be interpreted as a network, whereas models that process
data with kernel methods—which makes predictions after mapping the data into a higher,
maybe infinite, dimensional feature space— or principal components analysis—which
projects the data into a reduced dimensional feature space—may not necessarily be
interpretable as a network.

We explored several metrics for assessing the accuracy of predicted measurements,
including the sum of square errors both in linear and logarithmic scales, mismatches in
temporal trends, and correlation measures. The actual assessment was made by using the
residual sum of squares (RSS) normalized by the sum of the technical and biological
variance (NRSS) as defined in Eq. 1:

(1)

The NRSS is calculated over the set of all the predicted phosphoproteomics values for each
phosphoprotein. We estimated technical variance from the lower detection limit of the
measurement apparatus, which is 300 arbitrary fluorescence units. We estimated the
biological variance from the coefficient of variation, which was 0.08 in independent assays
using the same xMAP measurement platform.

The NRSS makes no assumption about the validity of the computational model or the
distribution of the differences between measured and predicted protein abundances. To
estimate the significance of the NRSS achieved by the predictions for a given
phosphoprotein, we simulated the empirical distribution of the NRSS under the null
hypothesis that the predicted values are randomly sampled from the values in the training
data set for that phosphoprotein. From the resulting empirical null distribution, a P value can
be readily obtained for any realization of the NRSS.
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Specifics of the DREAM4 Predictive Signaling Network Challenge
The training set was composed of measurements of activating phosphorylation events on
seven measured phosphorylated proteins or groups of protein isoforms [the kinase Akt, the
mitogen-activated protein kinase (MAPK) family members ERK1 and -2, which are
detected with the same antibody and denoted as ERK1/2; JNK1, -2, and -3, which are
detected with the same antibody and denoted as JNK; p38; the MAPK kinase MEK1;
inhibitor of nuclear factor κB (NF-κB) (denoted as IKB); and heat shock protein HSP27]
observed at three time points (0, 30, and 180 min) after stimulation by one of four ligands
[transforming growth factor–α (denoted as TGFa), insulin-like growth factor 1 (IGF1),
tumor necrosis factor–α (denoted as TNFa), or interleukin-1α (denoted as IL1a) in human
hepatocellular liver carcinoma HepG2 cells (Fig. 1A). Measurements were obtained with
and without pretreatment of cells with potent and relatively specific small-molecule
inhibitors of cytosolic kinases (p38i, MEKi, PI3Ki, and IKKi, where “i” denotes inhibitor)
that inhibited p38, MEK1, phosphatidylinositol 3-kinase (PI3K), or inhibitor of nuclear
factor κB (IκB) kinase (IKK) as described (6). Participants attempted to predict
phosphorylation measurements of the same seven proteins at 30 min after stimulation by
various individual and pair-wise combinations of the ligands, in the presence of pair-wise
combinations of the inhibitors (12). The experimental conditions comprising the training set
were mutually exclusive with the experimental conditions comprising the test set. The
complete challenge description and the data can be obtained from the DREAM project Web
site (http://www.the-dream-project.org).

In addition to the training set, participants received a prior knowledge network (PKN; a
directed graph with edges specified as activating or inhibitory) compiled from the scientific
literature as based on the Ingenuity Systems (Redwood, California) database encompassing
the pathways known to be responsive to the ligands used for the challenge (Fig. 1B). In
addition to the prediction task, the challenge entailed adding and removing edges to the PKN
to capture those interactions that were essential to explain the training data. This task
encouraged participants to go beyond “black box” prediction algorithms to enable some
mechanistic interpretation of the quantitative models used to predict the test data set.
Although some participants applied models that were interpretable as a network, others
focused on the prediction task only and did not attempt to interpret their model in terms of a
network. Anecdotally, the team with the highest prediction score used a model that was not
readily interpretable as a network, suggesting that maximizing mechanistic interpretability
of a model might compromise predictive accuracy.

The NRSS was evaluated separately for each of the seven proteins because measurements of
phosphorylation status (Table 1) between proteins are not directly comparable because of
different affinities of the antibodies for their targets and variation in protein abundances. The
seven P values for each of the measured phosphoproteins represent the probability that the
prediction accuracy on the test set is better than a naïve prediction assembled by randomly
sampling from the phosphorylation status in the training set. The “Prediction Score” for a
team summarizes the team’s overall predictive performance and was defined as the negative
of the log10 of the geometric mean of the P values obtained by that team across all the
predicted proteins (Eq. 2):

(2)

A high prediction score corresponds to high statistical significance for the accuracy of the
prediction (a low average P value).
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In prediction problems, a model with a number of fitted parameters that is smaller than the
number of constraints in the problem (for example, the number of experiments) is generally
preferred to a model with more parameters than constraints because the former is more
parsimonious, less prone to overfitting, and typically more interpretable (7, 12). Also,
empirical evidence suggests that biological networks are sparse (13), that is, the number of
edges are of the order N (the number of nodes) rather than of order N2. We imposed a
sparseness criterion on the selection of the best-performer using a cost function that rewards
prediction accuracy and penalizes densely connected model networks to calculate the
“Overall Score” for each team (Eq. 3):

(3)

Cost per edge was calibrated to the actual prediction scores and networks of the teams by
taking the minimum (Prediction Score/Number of Edges) over all teams. The most accurate
team was third by this criterion, whereas the second most accurate participant was first. [For
the methodology used by the best performing team, Team 1, see (14).] This Overall Score
cost function is ad hoc, and other formulations could rank the teams differently. One take-
home message is that predictive accuracy, as measured by the Prediction Score and without
regard to model complexity, model interpretability, or mechanistic plausibility, may be
valuable in some tasks but not necessarily in the task of network inference. Indeed, the
correlation between edge count and prediction score was low (0.03), indicating that
increasing the number of edges does not automatically improve the predictability of the
model. For a Boolean model, we previously showed that removing edges with no empirical
support improved predictive accuracy (12). Networks with sparse connectivity, therefore,
might be expected to score better than highly connected networks. However, it remains an
open problem to design a cost function that rewards desirable attributes and penalizes
undesirable attributes in a model network.

Crowdsourcing as a Strategy for Signaling Network Reconstruction
Networks inferred by different research groups can be combined into a composite network
in different ways. For example, edges can be aggregated by using a majority vote (an edge is
included only if it is predicted by more than a minimum number of groups) or using a
scheme that weighs edges predicted by each team according to the team’s Prediction Score
or Overall Score. Other methods of aggregation have also been proposed (15, 16). Because
only some of the nodes in the provided PKN were measured or manipulated in the HepG2
cell line data, we asked participants to submit HepG1 networks containing only the
observable nodes (ligands, measured phosphoproteins, and molecules targeted by the
inhibitors) and the edges linking them. Thus, the submitted networks were representations of
a “compressed” network (Fig. 1C) comprising only the observed nodes in which an edge is
included if a path (direct or indirect) exists from the source node to the target node in the
original PKN.

Not all teams used the compressed-network edges similarly. Some edges were used by all 12
teams, some were used only by 2 of the 12 teams, and one was invoked by just one team
(Table 2). This analysis suggests that for HepG2 cells and these ligands, much of the “signal
transduction” occurs through a subset of the edges present the original PKN (which is not
specific to hepatocytes). Nine of the 12 teams added an edge between IL1α and MEK1, and
of the three teams that did not add this edge (Teams 5, 10, and 11), two of them (Team 10
and 11) had the lowest Prediction Scores. Four teams added an interaction between IL1α
and ERK1/2, which conveys a similar signal transduction as that conveyed by the added
interaction between IL1α and MEK1. Most of the other added interactions were invoked by
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individual teams. The consensus among the ensemble of predictions that a currently
uncharacterized pathway connects the stimulus IL1α and MEK1 in HepG2 cells should
prove fruitful in designing testable hypothesis for follow-up experiments and is consistent
with an independent study (12). Because literature-derived networks are an amalgam of
signaling interactions observed in many cell types and environments, the actual cell-specific
and condition-specific signaling networks may be quite different from the canonical one
derived from the literature. Additionally, the importance of specific pathways may be
different depending on the cellular context, as suggested by the addition to or subtraction
from the original PKN of specific edges in the final network resulting from the team’s
predictions.

Conclusions
Our network assessment strategy embraces the viewpoint that predictions are meaningful
only when their direct consequences can have an experimental counterpart. In such cases,
the plausibility of the predictions can be measured by cost functions that quantify the
deviation between prediction and observation. The framework of setting aside some
experiments to evaluate how well a computational model generalizes to previously unseen
experimental perturbations is well suited to the data-driven network inference methods
studied in the DREAM4 challenge. However, more research is needed on formulating cost
functions for network inference that balance predictive accuracy with model complexity. For
example, the sparseness criterion used in our Overall Score can be complemented with
additional constraints on the abundance of different network motifs (17, 18). Although all
network inference methods can make errors, we suggest that a way to improve network
predictions is to blend an ensemble of networks, based on the same data, generated by a
diversity of independent mathematical approaches into a composite network (16). The
probability of finding one edge by chance may be high for any single technique, but the
probability of finding that same edge by chance in many independent predictions decreases
as the number of aggregate predictions increases (assuming the methods are independent). In
this sense, the suggestion from the DREAM4 teams that a connection exists between IL1α
and MEK1 is statistically significant.

Community experiments, such as the DREAM challenges, can become a powerful tool for
network prediction: By aggregating the intelligence of the “crowds” (researchers),
comprehensive and accurate inference of PSNs could become a reachable goal. Moreover,
the development of increasingly high-throughput methods for measuring thousands of
proteins and their posttranslational modifications in hundreds of samples promises to make
collecting some of the data necessary for sophisticated network inference increasingly
possible. The technical challenge of combining the intelligence of crowds with the latest
instrumentation as a means to tackle problems of outstanding biomedical importance
remains.

Algorithm development by the crowd is labor intensive, as is the process of evaluating and
combining its conclusions. Because effective data generation requires a conceptual basis or
underlying hypothesis (however general), the researchers collecting the data will likely be
involved in an initial round of analysis. We are skeptical of the idea that data generation
should be separated from analysis modeling. However, we think that the true value of the
research will only be realized upon subsequent or concurrent crowdsourcing of data
analysis. We believe the crowd will likely develop more sophisticated and important
conclusions than those of the initial data generators. Critically, the computational and
managerial machinery needed to enable crowdsourcing needs to be supported, and the
likelihood (or past history) of data reuse needs to be part of the justification for data
collecting in the first place. Many of these ideas are familiar to the DNA sequencing
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community, but they are not part of the current ethos for “functional,” perturbation-rich
experimentation on cells and tissues. Moreover, in the case of modeling networks (but not
genome sequencing), data release and computational predictions need to run in a closed
loop, with one round of predictions informing the next round of data generation. Over time,
the data available for training computational models will grow, leading to more refined
predictions. New structures for assigning credit are needed in a scientific environment where
data producers and (competing) data analysts might never collaborate in the traditional sense
of the word, although the work is clearly collaborative in a fundamental sense.
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Fig. 1. The DREAM4 Challenge and resulting network
(A) Experimental approach: HepG2 cells were pretreated with four different inhibitors and
subsequently stimulated with four different ligands. For each combination of inhibitor and
ligand, the phosphorylation activity of seven proteins or groups of protein isoforms was
measured. (B) PKN pathway map (derived from the Ingenuity database) summarizing the
signaling pathway relevant to the DREAM4 phosphoproteomics challenge. Green, ligands
used as stimuli; red, proteins that were inhibited with small-molecule inhibitors but the
phosphorylation status of which was not measured; blue, proteins that were measured in all
experiments but were not targeted by small molecule inhibitors; purple, proteins targeted by
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small molecule inhibitors and also for which phosphorylation status was measured; gray,
proteins known to be part of the network but were neither measured nor targeted by small-
molecule inhibitors in the data sets supplied for the challenge. (C) Summary of the
compressed model networks with edges weighted according to the frequency of their
appearance in the networks submitted by each team. Only ligands, measured
phosphoproteins, and proteins targeted by small-molecule inhibitors are included. Black
arrows correspond to compressed interactions from the figure in (B), in which an edge exists
between two nodes if there is a path from the source to the target nodes in the PKN. The
thicknesses of the black arrows correspond to the number of teams that used an interaction
to account for the training set (the thickest edge was used by 12 teams, whereas the thinnest
was used by just one team). The red arrows are the most frequently predicted interactions
that were not present in the PKN. Both the left and right networks were created with
Cytoscape (http://www.cytoscape.org/). The protein ERK1/2 represents both ERK1 and -2,
and JNK represents JNK1, -2, and -3.
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Table 2

Frequency of use of original and additional direct interactions used by the teams to create the model networks.
The left side of each set represents the interaction and the right side represents the number of teams using that
interaction.

ORIGINAL INTERACTIONS ADDED INTERACTIONS

TGFα→MEK1 12 IL1α→MEK1 9

IKK→IKB 12 IL1α→ERK1 4

IL1α→JNK 12 P38→MEK1 2

IL1α→ p38 12 AKT→ JNK 2

P13K→AKT 11 IKK→ERK1/2 2

p38→HSP27 11 MEK1→AKT 1

MEK1→ERK1/2 10 JNK→AKT 1

TGFα→PI3K 7 JNK→IKB 1

IGF1→MEK1 7 p38→AKT 1

TNFα→p38 7 IKB→HSP27 1

IL1A→IKK 7 JNK→MEK1 1

TGFα→p38 7 ERK1/2→MEK1 1

IGF1→PI3K 7 IKK→PI3K 1

TNFα→IKK 6 IKB→ERK1/2 1

IL1α→HSP27 6 IKK→HSP27 1

AKT→MEK1 6 HSP27→ERK1/2 1

TNFα→JNK 5 MEK1→JNK 1

TNFα→PI3K 4 IKB→AKT 1

AKT→IKK 3

TGFα→JNK 3

PI3K→MEK1 3

IGF1→p38 3

ERK1/2→HSP27 2

TGFα→IKK 2

TNFα→HSP27 1

Sci Signal. Author manuscript; available in PMC 2012 October 05.


