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ABSTRACT

Motivation: Tumors are thought to develop and evolve through a
sequence of genetic and epigenetic somatic alterations to progenitor
cells. Early stages of human tumorigenesis are hidden from view.
Here, we develop a method for inferring some aspects of the
order of mutational events during tumorigenesis based on genome
sequencing data for a set of tumors. This method does not assume
that the sequence of driver alterations is the same for each tumor,
but enables the degree of similarity or difference in the sequence to
be evaluated.
Results: To evaluate the new method, we applied it to colon
cancer tumor sequencing data and the results are consistent with
the multi-step tumorigenesis model previously developed based on
comparing stages of cancer. We then applied the new method to
DNA sequencing data for a set of lung cancers. The model may be
a useful tool for better understanding the process of tumorigenesis.
Availability: The software is available at:
http://linus.nci.nih.gov/Data/YounA/OrderMutation.zip
Contact: rsimon@mail.nih.gov
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Human tumors are thought to arise and evolve through a sequence of
somatic alterations to DNA but the early stages of oncogenesis occur
years before tumor detection and are rarely directly observable.
Better understanding the temporal order of mutations is important
since the early mutations may represent important therapeutic targets
and late mutations may play important roles in metastasis.

Vogelstein et al. (1988) inferred some information about the
sequence of genetic alterations associated with the stages of
colorectal tumors. By examining the genomes of small colonic
adenomas, intermediate-sized adenomas, large adenomas and
carcinomas, they discovered that most of the early stage adenomas
showed loss of heterozygosity (LOH) in the APC gene. Almost half
of intermediate-sized adenomas carried an additional mutation in
KRAS. The long arm of Chromosome 18 showed frequent LOH in
advanced adenomas and carcinomas.Also frequent LOH on the short
arm of Chromosome 17, which later turned out to target TP53, was
observed mainly in carcinomas. Although, the loss of APC gene
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function almost always occurs as an initiating event in colorectal
tumors, the precise order of subsequent alterations seemed to vary
among tumor samples (Vogelstein et al., 1988; Weinberg, 2006).

Developing evidence for an ordered sequence of mutations
driving tumor progression was possible for colorectal tumors due to
the accessibility of the colonic epithelium to colonoscopy. For other
tumor types, however, such evidence is not well developed. For this
reason, there has been interest in indirect computational methods
to provide information about the order of mutations (Attolini et al.,
2010; Desper et al., 1999; Durinck et al., 2011).

Desper et al. (1999) attempted to estimate the order between
gains and losses on chromosomal regions by fitting an oncogenic
tree model to CGH data. Attolini et al. (2010) used a population
genetics mathematical model describing the evolutionary paths of
cells from the unmutated state to the fully mutated state. In their
model, the parameters such as rates of mutations, amplification or
deletion, and the number of cells per patient at risk of tumorigenesis
are assumed constant for all tumor samples. The methods of Desper
et al. (1999) and Attolini et al. (2010) are very complex and the
number of trees to be searched or the number of parameters to be
fit increases exponentially with the number of investigated genes.
Consequently, these models are restricted to investigation of a very
small number of driver genes. These models address mutational
events which co-occur and cannot explain the negative correlation
between some pairs of mutations, such as those for genes in the same
pathway.

Durinck et al. (2011) estimated the order of mutations in areas of
copy-neutral LOH (CN-LOH) as well as the order of occurrence
of CN-LOH regions within an individual cancer. They used the
idea that if a mutation precedes a regional duplication, its copy
number is doubled, whereas mutations following a duplication event
appear with haploid copy number. Although this method can provide
accurate estimates, it is restricted to CN-LOH regions.

Recent advances in sequencing technologies have made it possible
to perform large scale resequencing of tumor genomes. These studies
have often identified a large number (dozens) of driver genes (genes
causing clonal expansions when mutated). These studies generally
define driver genes as those which are more frequently mutated
than expected based on the background mutation rate estimated
from synonymous mutations. Since the lists of detected driver genes
do not generally provide satisfactory insight into the process of
oncogenesis, methods which can help to elucidate the order of the
mutational events in driver genes and can handle a large number of
driver genes would be useful. In this article, we propose a method
which can estimate the order of mutations in driver genes from
genome sequences of a set of tumors. The method is not restricted
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Fig. 1. Distribution of mutations in driver genes and estimates of their order
(a) Distribution of mutations in four driver genes for ten patients of the same
tumor type. For each patient, the colored letter ‘M’ represents a mutation for
the corresponding gene. (b) Estimates for Pk,i, the probability that the k-th
mutational event involving the four driver genes occurs in gene i. The length
of the sub-bar corresponding to gene i at the k-th mutational event is the
estimates for Pk,i

to a very small number of driver genes and does not utilize a complex
cell level model. By comparing mutation profiles of driver genes in a
large number of tumors of a type, the probability distribution for the
order of mutations is estimated. This enables the degree of similarity
or difference in the order for that set of tumors to be evaluated.

Consider a population of patients at various stages of the same
histologic type of cancer in which four tumor driver genes have
been identified. For each patient, the colored letter ‘M’ in Figure 1a
represents a mutation for the corresponding gene. As tumorigenesis
progresses, tumor cells accumulate more mutations in tumor driver
genes. Our statistical model estimates Pk,i, the probability that the k-
th mutational event involving the four driver genes occurs in gene i.
This becomes feasible if we assume that all samples are governed by
the same set of Pk,i probabilities. Mutations in gene A, B or C occur
in samples having one or two mutations, therefore the probability
for the early mutation occurring in gene A, B or C will be high. In
contrast, mutations in gene D always occur with mutations in other
genes A, B or C. Since other samples support that probability for the
early mutation occurring in gene A, B or C will be high, it is likely
that gene D occurs as the late event. Figure 1b shows the estimates
of Pk,i in which the length of the sub-bar corresponding to gene i at
the k-th mutational event is Pk,i.

We describe the statistical model in Section 2 and present the
result obtained by applying this model to lung adenocarcinomas and
colorectal tumor sequencing data and simulated data in Section 3.

2 METHODS
An initial step in applying the method we describe is to identify the driver
genes based on a study in which a set of tumors have been sequenced. The
initial data can consist of either whole exome sequencing or sequencing with
regard to a set of candidate genes. For our applications we have identified

the driver genes using the method of Youn and Simon (2011). This method
finds driver genes based on the frequency of mutations in the genes, and
their estimated impact on protein function, and background mutation rate.
The background mutation rate is based on the frequency of synonymous
mutations and accounts for variation in background mutation rate among
tumor samples.

Let Gj
k denote the unknown identity of the driver gene mutated as the

k-th event in sample j. These variables take value on the set S of the labels
of the driver genes and are defined for k =1,...,mj where mj is the number

of non-silent mutations in sample j. We assume the probability that Gj
k = i

given k ≤mj is the same for all samples and that Gj
k is independent of Gj

l for
l �=k and of mj . We denote this probability by Pk,i.

Let Yj
i equal the number of times gene i is mutated in sample j. Yj

i is
generally zero or one but in some cases there are more than one mutation
in a gene. For each sample we observe all of the Yj

i -values but do not know

the Gj
k-values. For any sample j, there are multiple orders of occurrence of

Gj
1,G

j
2,··· ,Gj

mj that could result in the observed Yj
i -values. The probability

of observing the set of Yj
i -values for all non-silent mutations for a tumor j

can be expressed as

P({Yj
i ,∀i∈S})=

∑
P(mj,G

j
1 = i1,G

j
2 = i2,··· ,Gj

mj
= imj ) (1)

where the summation is over all sequences of mutations (i1,i2,··· ,imj ) which
are consistent with the observed set of non-silent mutations in sample j.
The number of non-silent mutations mj is represented in this probability to
indicate that it is part of the observed data for each sample.

For each order which is consistent with the observed mutations, the
probability can be expressed in terms of the random variables Gj

k defined
above:

P(mj,G
j
1 = i1,G

j
2 = i2,··· ,Gj

mj
= imj )

=P(Gj
1 = i1,G

j
2 = i2,··· ,Gj

mj
= imj |mj)P(mj) (2)

Pk,i was defined as the probability that Gj
k = i given mj and Gj

k was

assumed independent of Gj
l for l �=k and of mj . Consequently, the probability

in (2) can be written as:

P(mj)

mj∏

k=1

Pk,ik (3)

Since the marginal distribution of mj does not depend on the parameters
Pk,i, it can be ignored in the likelihood function. The likelihood function is
the product over terms of the form of (1) and can thus be written

∏

j

∑ mj∏

k=1

Pk,ik (4)

where the summation for the j-th sample is over the same set of mutational
sequences as in (1).

We estimate Pk,i by maximizing the log likelihood. Since there is no closed
form solution for the maximum-likelihood estimate (MLE) P̂k,i, we use a
constrained optimization R package ‘alabama’(Varadhan, 2011) to maximize
the log likelihood under the constraint that 0�Pk,i �1 and

∑
i∈S Pk,i =1.

3 RESULTS

3.1 Simulation
First, we checked the validity of our method by applying it
to simulated data based on lung tumor sequencing data. Ding
et al. (2008) sequenced the coding exons and splice sites of 623
candidate cancer genes in 188 samples from patients with lung
adenocarcinomas. We identified 28 tumor driver genes for analysis
using the method of Youn and Simon (2011). Table 1 shows the
distribution of the number of non-silent mutations in the selected
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Table 1. Distribution of number of non-silent mutations in the selected driver
genes in samples for non-small-cell lung tumors

Number of mutations 0 1 2 3 4 5 6 7 8
Number of samples 44 42 43 29 9 10 6 0 1

driver genes for each sample. Only samples having any mutations
are used in the estimation.

We obtained the MLEs of the P̂k,i as described in Section 2.
Since there are few samples which have more than five non-silent
mutations, we estimated an averaged distribution for mutations
occurring at the n-th step for n>5 by assuming Pn,i =P5,i for n>5.
If we estimate the distribution separately for each n, the estimate
would be less accurate. These estimates are shown in Table SB in
the Supplementary Materials and will be described below in the
section on the lung tumor data but here we regarded those estimates
as the true Pk,i for generating simulated data.

1. Sample size effect
To see the effect of the number of samples, we performed the

simulation for a quarter, half, equal and double the size of the
original number of samples having any mutations in lung tumor
data. We generated mutations in samples so that the distribution
of the number of mutations in samples was the same as that in
lung tumor samples as shown in Table 1. For samples having n
mutations, we generated the first mutation according to P1,., the
second mutation according to P2,., and the n-th mutation according
to Pn,.. We performed ten simulations for each size and calculated
the MLE P̂k

i,j for each simulation (k).
Table SA in the Supplementary Materials presents the mean of the

MLE P̂i,j =1/10
∑10

k=1 P̂k
i,j for sample size N =144,288. It shows

that the estimates are very close to the true values. We calculated the
distance between the MLE and the true value dk

i =1/J
∑J

j=1 |P̂k
i,j −

Pi,j| for each step i and simulation k and present the mean distance

1/10
∑10

k=1dk
i in Table 2. The errors for the original data size are

quite small. The distance decreases as the sample size increases.
The distance gets smaller for early events, which is because there
are more samples that can be used for estimating Pi,., for small i. For
example, the samples having any mutations are used for estimating
P1,., whereas only samples having at least five mutations can be
used for estimating P5,..

The result shows that the estimates obtained from the simulated
data with a quarter of the size of the lung data (36 samples) is
reasonably close to the true values, especially for early events.
However, the accuracy of the estimate depends not only on the size
of the data but also on the structure of the data. For example, if
the data consist of samples, all of which have five mutations, our
method may not give accurate estimates of Pk,i because there are no
samples which provide information for early events. In such cases,
there may not be a unique MLE and the confidence intervals (CIs)
for the estimates will be very wide.

The CI is the best measure for the accuracy and stability of the
estimate. In the following section for analysis of the real data, we
calculated 90% CI for each estimate of Pk,i. This CI includes the
true value of Pk,i 90% of the times that the experiment is repeated
when the model is correct. If one applies the method to data with

Table 2. Distance between the estimate and the true value for each i-th event

No. of samples i=1 i=2 i=3 i=4 i=5

36 0.019 0.020 0.043 0.043 0.043
72 0.014 0.015 0.033 0.036 0.040

144 0.009 0.011 0.022 0.025 0.030
288 0.005 0.006 0.015 0.013 0.016

small size or with the structure in which estimation is difficult, the
CI will be very wide. Therefore, one can use the CI as the indicator
of the reliability of the estimates.

2. Correlation in mutations between genes
Our model assumes independence between k-th event and l-th

event when k �= l. Therefore, in a sample having n mutations, the
probability that mutations occur in gene i1,i2 ···in in turn is P(G1 =
i1,G2 = i2,··· ,Gn = in|n)=∏n

k=1P(Gk = ik |n).
Although we assumed independence between different events, our

model can still explain the positive or negative correlations between
mutations. For example, if P(Gk =A|n) and P(Gk =B|n) are positive
only for k =m, then since both gene A and B mutate only as the m-th
event, they cannot mutate together in a sample, showing mutually
exclusive mutation patterns. On the other hand, if P(Gk =A|n) is
positive only for k =m and P(Gk =B|n) is positive only for k = l
and l �=m then since gene A and B mutate only at different steps,
they will frequently mutate together in a sample, showing concurrent
mutation patterns.

To test whether our model can actually capture the significant
interactions existing in the real data, we calculated p-values for
positive and negative correlation in mutations between all pairs of
genes in real data and those in simulated data generated by our model
with Pk,i equal to the MLE estimated from the real data.

For each pair of genes, we calculated the number of samples
with concurrent mutations, X0 and compared this with the null
distribution f (x) and used the frequencies of f (x)�X0 as p-values for
positive correlation and the frequencies of f (x)�X0 as p-values for
negative correlation. We obtained the null distribution by randomly
permuting the observed mutations across samples and genes while
keeping the number of mutations in a gene and sample fixed. We
repeated permutations for 2000 times and recorded the number of
samples with concurrent mutations for each permutation.

For lung data, there is one pair of genes with negative correlation
at FDR 0.05: (EGFR, KRAS) and no pair with positive correlation.
We simulated data 100 times and calculated the mean p-values
between all pairs of 28 driver genes. The mean p-value for negative
correlation between EGFR and KRAS is 0.004. No other pairs have
p-values for positive or negative correlations <0.05. For colon data,
there is no pair with negative correlation and there are five pairs
with positive correlations at FDR 0.05: (APC, KRAS), (KRAS,
PIK3CA), (KRAS,TP53), (APC,TP53) and (GUCY1A2,RET). For
100 simulated data, the mean p-values for positive correlation for
three pairs of genes, (APC, TP53), (APC, KRAS) and (KRAS, TP53)
are 0.00009, 0.012 and 0.016, respectively. No other pairs have
p-values for positive or negative correlations <0.05. This shows
that although our model assumes independence between different
mutational events, it can still capture some of the interactions
between mutations in genes.
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3.2 Lung tumor sequencing data
As described above, we analyzed the data of Ding et al. (2008)
on the sequence of exons and splice sites of 623 candidate cancer
genes in 188 samples from patients with lung adenocarcinomas. We
identified 28 tumor driver genes for analysis using the method of
Youn and Simon (2011) and used the profiles of driver mutations
to estimate the MLEs of P1,i,P2,i,P3,i,P4,i,P5,i. These estimates
are shown in Table SB of the Supplementary Materials. Table SB
also shows the 90% CIs for the probabilities (CI) computed using
the bias-corrected and accelerated bootstrap method (Efron and
Tibshirani, 1993).

The result is not affected very much by the stringency criteria used
when selecting driver genes. If we loosen the cutoff to FDR level
0.2, 40 driver genes are selected. Table SD in the Supplementary
Materials compares the estimates obtained from using 40 driver
genes and the estimates obtained from 28 driver genes.

Figure 2 shows a graphical display of the estimates of Pk,i.
The length of the sub-bar corresponding to each gene i at the k-th
mutational event is the value of Pk,i. It shows that the first mutational
event occurs mainly in KRAS, EGFR and STK11. The estimated
probability that the first mutation occurs in KRAS is 0.411 with a
90% CI, (0.351,0.476). The probability in EGFR is 0.204 with a
90% CI, (0.157,0.269) and that in STK11 is 0.124 with a 90% CI,
(0.05,0.174). For KRAS and EGFR, the estimates of Pk,i for k >1
are almost zero, implying that mutations in EGFR and KRAS occur
mainly as the first event. This is consistent with the observation that
mutations in EGFR and KRAS occur mutually exclusively. Since
mutations in both of these genes occur mostly as the first event, both
genes cannot have mutations in the same samples simultaneously.
This agrees with the fact that mutations in either gene serves to
de-regulate the MAP-kinase pathway.

EGFR encodes a receptor that binds to epidermal growth
factor whose binding leads to cell proliferation. It is known that
abnormalities in EGFR is an early event in lung cancer (Kang
et al., 2008). KRAS encodes a GTPase which plays an essential
role in normal tissue signaling. Its mutation is an essential step in
tumorigenesis and there is substantial evidence that KRAS mutation
is an early event in lung cancer (Westra et al., 1993).

The second mutational event occurs mainly in TP53 and ATM.
Mutations in those genes occur mainly as second events, also
explaining the mutually exclusive mutation patterns of these two
genes. TP53 encodes a transcription factor with numerous key
target genes. There is substantial evidence that TP53 mutates early
in lung cancer (Matakidou et al., 2003). ATM protein binds and
phosphorylates p53, resulting in its stabilization and activation as a
transcription factor. Abnormalities in either ATM or TP53 may have
similar consequences in tumorigenesis and therefore, our estimates
that mutations in both genes occur at the same step in tumorigenesis
is reasonable (Khanna et al., 1998).

The third mutational event occurs most frequently in STK11
although the value of P3,i is only 0.17. There are many other genes
with small values of P3,i. The fourth mutational event occurs mostly
in EPHA3, KDR and LRP1B and the fifth mutational event occurs
mainly in CDKN2A, LTK, NF1 and RB1. As k increases (later
events), there are more genes with Pk,i >0.1, but no genes have
very large values of Pk,i like KRAS or TP53. This may imply
that late mutating genes such as EPHA3, KDR, LRP1B, CDKN2A,
LTK, NF1 and RB1 are not as essential as initiating events such as
EGFR, KRAS, STK11, TP53 and ATM. It is not well known whether

Fig. 2. Most frequently mutated genes at each mutational step for non-small-
cell lung tumors (Ding et al., 2008). The length of the sub-bar corresponding
to gene i at the k-th mutational step is the MLE of Pk,i

Fig. 3. Distribution of mutational step for frequently mutated genes in non-
small-cell lung tumors (Ding et al., 2008) The height of the bar at the k-th
mutational step for gene i is the MLE of Pk,i

mutations in these genes are late events in lung tumorigenesis. For
LRP1B, RB1 and CDKN2A, however, there is evidence indicating
that they are late mutating genes in other cancer types (Langbein
et al., 2002; Macleod, 2010; Sugimoto et al., 1998).

Figure 3 shows another graphical display of the estimates of Pk,i
for 12 genes whose Pk,i are >0.1 for at least one event. For each
gene, the height of the bar at the k-th mutation is same as the value
of Pk,i for that gene i. It shows how the mutation probability of each
gene changes over time (mutational events). ATM, EGFR, KRAS,
STK11 and TP53 mutate early whereas other genes mutate late. For
the genes that were not shown in the figure, the values of Pk,i are
small for all k due to their low frequency of mutations and it is hard
to tell from these values whether they mutate early or late. A better
measure for analyzing such genes is the conditional probability that
the gene mutates early (a gene mutates at the k-th event for k ≤3) or
late (a gene mutates at the k-th event for k >3) given that the gene is
mutated in the sample. Table 3 shows these conditional probabilities
and their 90% CIs. The conditional probabilities clarify whether a
gene mutates early or late especially for the less frequently mutating
genes such as EPHA3, ERBB4, RB1 and NRAS. Their probabilities
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Table 3. Probabilities that observed mutations occur earlya or latea for
non-small-cell lung tumors (Ding et al., 2008)

Gene Early (90% CI) Late (90% CI)

APC 0.43 (0.08–1) 0.64 (0–0.97)
ATM 1 (0.57–1) 0 (0-0.51)
CDKN2A 0.08 (0.01–1) 0.97 (0.3–1)
EGFR 1 (0.84–1) 0 (0–0.19)
EPHA3 0.07 (0–0.17) 0.96 (0.87–1)
EPHA5 0.46 (0.07–1) 0.58 (0–0.95)
EPHA7 0.14 (0–1) 0.89 (0–1)
ERBB4 0.12 (0–0.32) 0.9 (0.68–1)
FGFR4 0.11 (0–1) 0.92 (0–1)
INHBA 1 (0–1) 0 (0–1)
KDR 0.04 (0–1) 0.97 (0–1)
KRAS 1 (1–1) 0 (0–0)
LRP1B 0.22 (0.04–1) 0.84 (0–0.97)
LTK 0.06 (0–1) 0.97 (0–1)
MYO3B 0.22 (0–1) 0.8 (0–1)
NF1 0.23 (0.06–1) 0.86 (0.54–0.98)
NRAS 1 (1–1) 0 (0–0.93)
NTRK1 1 (0.14–1) 0 (0–0.9)
NTRK2 0.11 (0–1) 0.93 (0–1)
NTRK3 1 (0–1) 0 (0–1)
PAK3 1 (0–1) 0 (0–1)
PTEN 1 (0.02–1) 0 (0–0.99)
PTPRD 0.44 (0.11–1) 0.6 (0–0.93)
RB1 0.08 (0–0.41) 0.96 (0.52–1)
STK11 1 (0.4–1) 0 (0–0.78)
TFDP1 1 (0.05–1) 0 (0–1)
TP53 0.97 (0.82–1) 0.07 (0–0.4)
ZMYND10 1 (1–1) 0 (0–1)

aEarly means 1st, 2nd or 3rd event and late means later events.

of early or late mutations show substantial differences and their 90%
CI for probabilities of early mutations and for probabilities of late
mutations do not overlap.

3.3 Colorectal tumor sequencing data
We also applied our method to colorectal tumor sequencing data
since the multi-step process of tumor development has been carefully
studied for colorectal tumors. Wood et al. (2007) sequenced 40
selected genes of interest in 133 colorectal tumor samples. Of these
40 genes, we identified 21 tumor driver genes by using the CaMP
score of Wood et al. (2007). Table 4 shows the distribution of
the number of non-silent mutations in the driver genes for each
sample. Since there are few samples which have more than five non-
silent mutations, we estimated an averaged distribution for mutations
occurring at the n-th step for n>5 by assuming Pn,i =P5,i for n>5.

The MLEs of P1,i,P2,i,P3,i,P4,i,P5,i and their 90% CI are shown
in Table SC of the Supplementary Materials.

Figures 4 and 5 show graphical displays of the estimates of Pk,i.
Based on our analysis, the first mutational event for the genes
evaluated occurs most frequently in APC. APC is also frequently
the third mutational event. This reflects the fact that APC is a tumor
suppressor gene. For the tumorigenesis to occur, both alleles must
lose functionality. Although this dataset only reflects a subset of
the possible events leading to inactivation of gene function (point

Table 4. Distribution of number of non-silent mutations in the selected driver
genes in samples for the data of colorectal tumors (Wood et al., 2007)

Number of mutations 1 2 3 4 5 6 7
Number of samples 14 20 35 37 17 8 2

Fig. 4. Most frequently mutated genes at each mutational step for colorectal
tumors (Wood et al., 2007). The length of the sub-bar corresponding to gene
i at the k-th mutational step is the MLE of Pk,i

Fig. 5. Distribution of mutational step for frequently mutated genes in
colorectal tumors (Wood et al., 2007). The height of the bar at the k-th
mutational step for gene i is the MLE of Pk,i

mutations, small insertions or deletions), the APC gene contains 2
or 3 mutations for many samples, resulting in high values of both
P1,i and P3,i.

The first mutation among these genes also occurs frequently in
KRAS. The second mutation occurs most frequently in TP53 and
less frequently in PIK3CA and APC. The fourth event occurs most
frequently in KRAS and the fifth event occurs mainly in PIK3CA
and FBXW7. These results are consistent with information about
the sequence of events characterizing colorectal tumor development
based on analysis of stages of colon cancer: tumorigenesis begins
with the loss of APC function and is followed by mutations
activating the KRAS/BRAF pathway. Subsequent mutations in
genes controlling the TGF-β, PIK3CA, TP53 and other pathways
cause the transition from an adenoma to carcinoma (Jones et al.,
2008; Vogelstein et al., 1988).
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Table 5. Probabilities that observed mutations occur earlya or latea for
colorectal tumors (Wood et al., 2007)

Gene Early (90% CI) Late (90% CI)

ADAMTS18 1 (0.21–1) 0 (0–0.8)
ADAMTSL3 0.46 (0–1) 0.57 (0–1)
APC 0.98 (0.95–1) 0.29 (0–0.6)
C10orf137 0 (0–0) 1 (1–1)
EPHA3 0.17 (0–0.8) 0.87 (0.2–1)
EPHB6 1 (0–1) 0 (0–1)
FBXW7 0.06 (0–0.15) 0.97 (0.9–1)
GNAS 1 (1–1) 0 (0–1)
GUCY1A2 1 (1–1) 0 (0–0.9)
KRAS 0.28 (0.17–1) 0.93 (0–0.98)
MAP2K7 1 (0.3–1) 0 (0–0.73)
MMP2 0.08 (0–0.75) 0.93 (0.25–1)
NAV3 0.39 (0.03–1) 0.63 (0–0.98)
OR51E1 0 (0–0.14) 1 (1–1)
PIK3CA 0.28 (0.04–0.53) 0.87 (0.64–0.99)
PTEN 1 (0–1) 0 (0–1)
RET 0.04 (0–1) 0.97 (0–1)
SEC8L1 0 (0–0.03) 1 (1–1)
TCF7L2 0.12 (0–1) 0.91 (0–1)
TNN 0.45 (0–1) 0.56 (0–1)
TP53 0.98 (0.89–1) 0.04 (0–0.24)

aEarly means 1st, 2nd or 3rd event and late means later events.

We calculated the conditional probability that a gene mutates early
or late in a tumor sample given the gene mutates in that sample in
Table 5. It shows that APC, GUCY1A2 and TP53 are clearly early
mutating genes whereas C10orf137, FBXW7, OR51E1, PIK3CA
and SEC8L1 are late mutating genes based on the great differences
between their probabilities of early and late mutations and short CIs.

There are only five genes identified as driver genes in both
datasets: APC, EPHA3, KRAS, PTEN and TP53. The most
frequently mutated genes were selected as driver genes for each
of the colorectal and lung datasets either by using CaMP score or
the method of Youn and Simon (2011) and there was little overlap
between those selected genes. This may be due partly to the fact that
only 40 genes were investigated in the colorectal study.

APC mutations occur early for colorectal tumors. Loss of function
of APC is considered the earliest mutational event in sporadic colon
tumorigenesis. Most mutations that occur in the colorectal epithelial
cells are soon lost because the cells migrate out of the colonic crypts
and die within days by apoptosis. However, loss of APC function
results in trapping of the cells within the colonic crypts (Weinberg,
2006). For lung tumors, APC mutations occur early and late with
about similar probabilities but there are too few such mutations to
estimate the conditional probabilities with precision.

KRAS mutations occur as the first event with high probability
for both colorectal and lung tumors. However, for the colorectal
dataset, the value of P4,i is also large whereas for the lung dataset,
only the value of P1,i is large. For TP53, the value of Pk,i is largest
for k =2 for both datasets. For PTEN, the probabilities of early
mutations are 1 and the probabilities of late mutations are 0 in both
datasets (although their CIs are wide), implying PTEN may be a
target of early mutations. For EPHA3, the probabilities of early
mutations are much smaller than those of late mutations in both
datasets, supporting EPHA3 as a late mutating gene.

3.4 Glioblastoma multiforme sequencing data
The result for the analysis of the Glioblastoma multiforme
sequencing data downloaded from TCGA data portal is in the
Supplementary Material.

4 DISCUSSION
In this article, we have proposed a computational method based on
tumor sequencing data for estimating the probability distribution of
the relative order of mutational events among tumor driver genes
during tumorigenesis. The results obtained from using this method
with lung cancer and colorectal tumor sequencing data are consistent
with the previous evidence obtained from analyzing various stages
of cancer. This provides a degree of validation of the new method.
Since the early stages of tumorigenesis are not observable for
human tumors, we believe that this method will be a useful tool
in understanding the process of tumor development.

Application of the new method to the three datasets described here
was somewhat limited by the limited number of genes sequenced in
those studies. This will be much less of a limitation in analysis of
the large tumor sequencing studies currently underway. These larger
datasets may also enable more complex models to be developed.

Our model assumes the number of mutations in driver genes in a
sample is independent of the mutated genes. This may not be true in
some cases since some genes are known to increase mutation rates
when altered (mutator genes). If samples having altered mutator
genes tend to have many mutations in driver genes, the probability
of late events occurring in mutator genes may be overestimated.

We examined the correlation between mutational status of each
driver gene and the number of mutated driver genes in both the
lung and colorectal cancer datasets. For the colorectal data, there
are no driver genes whose mutational status was strongly correlated
with the number of mutations. For lung data, there are several genes
which showed some correlation, but it could have resulted from
the gene mutating late and the correlation was not strong enough
to suggest that they are mutator genes. Even for TP53, the only
well known mutator gene in the set of driver genes, the p-value for
the correlation was 0.01. Our model estimates that TP53 mutations
occur as early events (second event) for both lung and colorectal
data. Consequently, the bias caused by our assumption not being
strictly true seems to be small. Currently no other computational
methods for estimating the order of mutational events account for
the increase of the mutation rate by mutator genes.

Our method used all non-silent mutations occurring in driver
genes in estimating Pk,i. However, some of the non-silent mutations
may be passenger mutations irrelevant to tumorigenesis. Since the
purpose of our method is to estimate the order of mutations relevant
to tumorigenesis, we may obtain better estimates by restricting to
the mutations occurring in well known functional domains within
genes.

In this article, we estimated the order of mutations in driver genes.
However, it can be used to estimate the order of any events in general.
For example, it can be applied to estimate the order of copy number
aberrations in a defined chromosomal regions. It can also estimate
the order of mutations occurring in different functional domains
within a gene if we separate functional domains in a gene when
applying our method. If we divide mutations according to different
types, such as point mutations, insertions or deletions, we can also
capture the order of specific types of mutations occurring within a
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gene if such order matters and if there are enough data to estimate
the order accurately.

As we have indicated previously, the method we have developed
does not assume that the sequence of mutations is the same for each
tumor. The probability distribution estimated provides information
about inter-tumor variability in the order of mutational events. For
a given k, the dispersion of Pk,i-values among the genes i indicates
the variation among tumors of the k-th event. For a given gene index
i, the dispersion of Pk,i-values among the event indices k indicates
the degree to which mutations in gene i show an order preference.

Although the sequence of mutations may vary among tumors
and late mutations can be clinically important, better understanding
the earliest stages of development of individual tumors may be
particularly valuable. The earliest mutations are presumably present
in all the subsequent sub-clones of the tumor and may therefore
represent important therapeutic targets (Simon, 2010). With the
further development of rapid single molecule deep sequencing
technologies it may become possible to phylogenetically reconstruct
the evolution of tumors (Campbell et al., 2008). The current method
is a step in using sequencing data and probabilistic modeling to
obtain information about the early stages of tumorigenesis.
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