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How to describe nondynamic electron correlation is still a major challenge to density functional
theory (DFT). Recent models designed particularly for this problem, such as Becke’05 (B05) and
Perdew-Staroverov-Tao-Scuseria (PSTS) functionals employ the exact-exchange density, the effi-
cient calculation of which is technically quite challenging. We have recently implemented self-
consistently the B05 functional based on an efficient resolution-identity (RI) technique. In this study,
we report a self-consistent RI implementation of the PSTS functional. In contrast to its original imple-
mentation, our version brings no limitation on the choice of the basis set. We have also implemented
the Mori-Sanchez-Cohen-Yang-2 (MCY2) functional, another recent DFT method that includes full
exact exchange. The performance of PSTS, B05, and MCY2 is validated on thermochemistry, reac-
tion barriers, and dissociation energy curves, with an emphasis on nondynamic correlation effects in
the discussion. All three methods perform rather well in general, B05 and MCY2 being on average
somewhat better than PSTS. We include also results with other functionals that represent various as-
pects of the development in this field in recent years, including B3LYP, M06-HF, M06-2X, ωB97X,
and TPSSh. The performance of the heavy-parameterized functionals M06-2X and ωB97X is on av-
erage better than that of B05, MCY2, and PSTS for standard thermodynamic properties and reactions,
while the latter functionals do better in hydrogen abstraction reactions and dissociation processes. In
particular, B05 is found to be the only functional that yields qualitatively correct dissociation curves
for two-center symmetric radicals like He+

2 . Finally, we compare the performance of all these func-
tionals on a strongly correlated exemplary case system, the NO dimer. Only PSTS, B05, and MCY2
describe the system qualitatively correctly. Overall, this new type of functionals show good promise
of overcoming some of the difficulties DFT encounters for systems with strong nondynamic correla-
tion. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4752396]

I. INTRODUCTION

In recent decades, Kohn-Sham density functional theory
(DFT)1, 2 has become the most efficient theoretical method in
a wide range of applications in quantum chemistry. In the
Kohn-Sham (KS) scheme, the energy of a system is parti-
tioned into several components, among which only the KS
exchange-correlation (XC) functional needs to be approxi-
mated. In the past three decades, successive levels of XC func-
tionals have been developed with an increasing complexity.
Local spin-density approximation (LSDA) uses spin-resolved
electron density as the only functional variable. Generalized
gradient approximation (GGA) uses the gradient of the elec-
tron density as an additional variable, and meta-GGA func-
tionals use in addition the Laplacian of the electron den-
sity and the kinetic energy density. These functionals, when
mixed in a hybrid scheme with exact exchange and their pa-
rameters optimized, achieve high accuracy for many chem-
ical phenomena, especially concerning properties of stable
species at equilibrium.3 However, they have some inherent
drawbacks, chief among them is the lack of nondynamic (ND)
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correlation.4–8 Directly related to this is the failure of describ-
ing bond dissociation, mainly due to the lack of left-right
correlation in these models. The latter is the dominant part
of the nondynamic correlation in polyatomic systems. It
is hard to describe theoretically and in general requires a
multi-reference (MR) wave function approach. In addition
to bond-breaking processes, nondynamic correlation is of
crucial importance in charge-transfer states,9 and in radi-
cal and di-radical systems where these effects are partic-
ularly strong10 (strongly correlated systems). Efforts have
been made in recent years to tackle this issue within DFT.
Becke has advanced the real-space correlation DFT approach
as an alternative to the multi-reference wave function ap-
proach. In his B05 functional5, 6 the nondynamic correlation
is modeled ad hoc via certain real-space correction terms to
the exact-exchange hole that compensate the artificial extra-
delocalization of the latter. B05 contains only four linear fit-
ting parameters optimized on heats of formation. It showed
high accuracy for thermochemistry and reaction barriers.5, 6, 11

Perdew et al. have addressed the same problem in a some-
what different manner, based on sophisticated real-space anal-
ysis of the exact-exchange hole combined with model DFT
exchange-correlation hole.12, 13 By extending the Tao-Perdew-
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Staroverov-Scuseria (TPSS) XC scheme to a new generalized
form, they thoroughly explored in their PSTS model, the ab-
normal regions in real space, where nondynamic correlation
effects are locally dominant.12 Based on this analysis, they
proposed a real space correction to the energy functional that
takes into account nondynamic correlation effects. The PSTS
functional satisfies all known exact scaling constraints that a
given functional should obey. It contains five fitting param-
eters and shows improved results over the TPSS exchange-
correlation functional.

Both B05 and PSTS involve the full exact exchange. Also
the exact-exchange energy density is incorporated as an extra
variable, which is a signature of the hyper-GGA level of the
theory.12 The presence of this variable considerably increases
the complexity and the cost of these methods. The calcula-
tion of the exact-exchange energy density is prohibitively ex-
pensive given that thousands of grid points are used for each
atom. However, there are some important benefits of having
the full exact exchange in the energy balance instead of a hy-
brid exchange mixture (or just a pure DFT exchange). It cor-
rects some major drawbacks of previous XC functionals, such
as the one electron self-interaction (SI) error, and improves
the long-range asymptotic of the Kohn-Sham potential. Mori-
Sanchez, Cohen, and Yang14 have proposed an original ap-
proach to the one-electron self-interaction error based on the
adiabatic connection formalism involving the full exact ex-
change from the outset. The MCY functionals, and especially
the MCY2 version, show markable improvements with only
three extra fitting parameters. MCY2 avoids the use of exact-
exchange energy density and is of the same computational ef-
ficiency as that of a hyrbid meta-GGA method.

Recently Becke’s B05 method was implemented self-
consistently (the RI-B05 scheme15) in the Q-Chem
program.19 The model was modified to make the self-
consistency feasible. Resolution-of-identity technique was
used to dramatically reduce the cost of the exact-exchange
energy density. The four linear B05 parameters were re-
optimized within the self-consistent implementation. In this
study, we present a self-consistent implementation of the
PSTS functional in Q-Chem, applying the same RI technique
as for RI-B05. Next, we compare the performance of RI-B05,
RI-PSTS, and MCY2 on a diverse set of tests including
atomization energies, ionization potentials, electron affinities,
reaction barriers, and dissociation curves. The results are also
compared with other functionals that represent the current
status of functional development at GGA and meta-GGA lev-
els. Among them, B3LYP as the most widely used, M06-2X,
a heavily parameterized functional with high accuracy, M06-
HF, another heavily parameterized functional with full exact
exchange, and ωB97X, a range-separated functional that in-
cludes full exact exchange at long range. We also include the
Tao-Perdew-Staroverov-Scuseria hybrid functional (TPSSh)
in the tests, which is a non-empirical hybrid version of TPSS.

Finally, we compare the performance of the functionals
on the strongly correlated case system, the nitric oxide (NO)
dimer. It is extremely difficult to describe the electronic struc-
ture of this system even qualitatively.16, 17 Massive failures at
various theoretical levels have been repeatedly reported over
the past 25 years or so.16–18

II. THEORY AND IMPLEMENTATION DETAILS

In this section we present a brief overview of three DFT
methods employing full exact exchange, PSTS, B05, and
MCY2, as implemented recently in a development version of
the Q-Chem program.19

A. PSTS

The PSTS functional is constructed so as to satisfy nearly
all known exact constraints for a hyper-GGA functional.12 It
has the following general form:

εxc = εex
x (r) + [1 − a(r)]

[
εsl
x (r) − εex

x (r)
] + εsl

c (r) , (1)

where εsl
x (r) and εsl

c (r) are semilocal DFT exchange and
correlation energy densities, respectively, and εex

x (r) is the
exact-exchange energy density. The TPSS exchange and cor-
relation energy densities are used as semilocal components
of Eq. (1).20 They offer the advantage of satisfying certain
exact constraints without having empirical parameters. The
factor a(r) in Eq. (1) measures the degree of functional
nonlocality associated with nondynamic correlation effects,
or near degeneracy effects. Its value is used to divide the
electron density (in real space) into “normal region” (small
a(r)) and “abnormal region” (large a(r)), and has the form

a(r) = 1 − (1 − a1(r))(1 − a2(r)) . (2)

In normal regions the semilocal DFT exchange is a good
approximation to the exact exchange, and a1(r) and a2(r) are
close zero. In abnormal regions there are two scenarios: The
first scenario of “abnormality” is when the electron density
is one-electron-like, rapidly varying over space, or too high.
In that case a(r) ≈ a1(r). The second situation is when the
electron density is strongly fluctuating in electron number on
the scale of the local Fermi wavelength. Then a(r) ≈ a2(r).
The local coefficient a1(r) in Eq. (2) has the following form:

a1 = 1

1 + A ln(1 + Bu(r))
, (3)

where A, B are positive empirical parameters. Their values
as given in Ref. 13 are: A = 3.74, B = 167. Next, the factor
u(r) in Eq. (3) is a theoretically motivated density- and
position-dependent function,

u(r) = εGL2TPSS
c

εLSD
x

, (4)

where εLSD
x is the LSDA exchange energy density, and

εGL2TPSS
c is Görling-Levy second-order or high-density limit

of the TPSS correlation energy density at position r.
The local coefficient a2(r) in Eq. (2) is given by

a2(r) = D z

1 + E z(r)
f

(
εex
x (r)

εTPSS
x (r)

)
, (5)

with z(r) ≡ ζ 2

r2
s

, where ζ is the spin-polarization parameter

ζ = 1

ρ
(ρα − ρβ) , (6)

rs is the uniform-gas density parameter defined by ρ

= 3/4πr3
s and D, E are yet another empirical parameters with
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values of D = 7.10, E = 9.61. The factor f in Eq. (5) is density-
and position-dependent function of the form

f (v) =

⎧⎪⎪⎨
⎪⎪⎩

1 v ≤ C

1
1+exp[1/(1−v)F −1/(v−C)F ] C < V < 1,

0 v ≥ 1

(7)

where F depends on the empirical parameter C,

F = − 3

2 ln((1 − C)/2)
. (8)

The optimal value of C is C = 0.909. Overall, there are five
empirical parameters in the PSTS functional that are opti-
mized against experimental data.

Compared to the conventional GGA and meta-GGA
functionals, the major computational bottleneck in the PSTS
method is the spin-summed exact-exchange energy density
eex
x (r) used as a special functional variable that quantifies the

degree of functional nonlocality,

eex
x (r) = −1

2

∑
μ,λ,ν,η

(
P α

μλP
α
νη + P

β

μλP
β
νη

)

×
∫

φμ(r)φν(r)φλ(r ′)φη(r ′)
|r − r ′| dr ′, (9)

where φμ are atomic-orbital (AO) basis functions and Pσ is
the spin-resolved density matrix in AO basis. Here and further
on we reserve the index notations i,j,k,l for labeling molecular
orbitals, while μ,ν,λ,η label atomic orbitals.

Please note that we use here the formalism of PSTS
with conventional gauge.13 As one can see, the evaluation
of eex

x (r) by Eq. (9) requires a four-index summation, simi-
lar to the computation of the Hartree-Fock (HF) energy for
the molecule. While the former involves the integration over
the coordinates of one electron only and thus incurs a frac-
tion of the computational cost of the latter, it must be done
on thousands of grid points per atom, resulting in the total
computing time hundreds of times more than that of a single
HF energy calculation. Finding better, cost-effective ways to
calculate the exact-exchange energy density is crucial for this
type of functionals. In the original PSTS implementation, the
integral

∫ φν (r)φλ(r ′)φη(r ′)
|r−r ′ | dr ′ is approximated with resolution of

identity using the orbital basis functions as RI auxiliary basis
as well,21

∫
φν(r)φλ(r ′)φη(r ′)

|r − r ′| dr ′

≈
∑
p,q

S−1
p,qφp(r)

∫
φq(r ′′)φν(r ′′)dr ′′

∫
φλ(r ′)φη(r ′)

|r ′′ − r ′| dr ′.

(10)

In the above equation, Sμη is the AO overlap matrix. Combin-
ing Eqs. (10) and (9) one obtains the following formula for
the exact-exchange energy density after symmetrization:

eex
x (r) ≈ −1

2

∑
pqμλ

(
φp(r)S−1

pq

(
Kα

qλP
α
λμ + K

β

qλP
β

λμ

)
φμ(r)

+φμ(r)(P α
μλK

α
λq + P

β

μλK
β

λq)S−1
qp φp(r)

)
, (11)

with Kσ
qλ being the spin-resolved exact-exchange matrix. The

computational convenience of Eq. (11) is that the regular Fock
matrix can be used in place of the direct calculation of the
exchange-energy density on the grid. However, large uncon-
tracted orbital basis sets must be employed with this approach
in order to solve Eq. (10) with sufficient accuracy.13 In our
implementation of PSTS we use a set of auxiliary Gaussian
functions to expand the orbital basis function pairs,15, 22, 23

φμ(r)φν(r) =
∑
pq

(χp|χq)−1(χq |φμφν)χp(r)

≡
∑

p

Cp
μνχp(r) . (12)

In the above equation, we use the short-handed notation
(χp|χq) for the corresponding Coulomb integral, where χ ’s
are atom-centered Gaussian auxiliary basis functions (index
notations p,q,t are reserved for labeling auxiliary functions).
This RI technique is widely used for accelerating DFT and
second-order Moller-Plesset (MP2) perturbation methods and
it has a verified accuracy in calculations of relative ener-
gies. Using Eq. (12), the exact-exchange energy density eex

X (r)
(Eq. (9)) becomes,

eex
x (r) ≈ −1

2

∑
pqμλνη

(
P α

μλP
α
νη + P

β

μλP
β
νη

)
Cp

μνC
q

ληχp(r)

×
∫

χq(r ′)
|r − r ′|dr ′. (13)

This equation involves looping over six indices for each grid
point. To simplify it for computational efficiency we construct
the following intermediate:

C
p,α

ij =
∑

μ

C
μ,α

i

∑
ν

C
ν,α
j Cp

μν. (14)

In the above equation, C
μ,α

i is the coefficient of the occupied
α molecular orbital i. Equation (13) then can be rewritten as

eex
x (r) ≈ −1

2

∑
pq

χp(r)
∫

χq(r ′)
|r − r ′|dr ′

×
∑
ij

(
C

p,α

ij C
q,α

ij + C
p,β

ij C
q,β

ij

)
. (15)

For the self-consistent-field (SCF) calculation, one needs the
PSTS contribution to the Fock matrix. This in turn requires
the evaluation of the derivative of eHF

X with respect to the P
density matrix (we follow here the generalized KS approach
to the SCF potential13),

∂eex
x (r)

∂Pμν

= −1

2

∑
pq

χp(r)
∫

χq(r ′)
|r − r ′|dr ′

×
∑

i

(
C

p,α

iμ C
q,α

iν + C
p,β

iμ C
q,β

iν

)
, (16)

with

C
p,α

iμ =
∑

λ

C
λ,α
i C

p

μλ. (17)

Please note the difference between Eqs. (14) and (17). Finally,
Eqs. (15) and (16) need to be symmetrized with respect to the



114104-4 Liu et al. J. Chem. Phys. 137, 114104 (2012)

p and q indices. Because the Coulomb potential of (χp|χq) is
a long-range interaction, the computational cost of Eq. (15) at
each grid point is O(N) with N being the number of auxiliary
basis functions. This makes the total computational cost on
the grid scale quadratically with respect to the molecular size.
The rest of the cost is essentially the same as for the RI HF
calculation.15

We have recently applied this method for the calculation
of the spin-resolved HF exchange energy density in a SCF
implementation of the B05 method (the RI-B05 scheme15, 22).
We have found that it yields accurate relative energies with
a speed-up of hundreds of times compared to the exact im-
plementation of Eq. (9). The advantage of this approach is
that it is applicable to any type of orbital basis and is suffi-
ciently accurate when the auxiliary basis set is properly con-
structed (see Ref. 15 for details). To verify the accuracy of
the RI approach, we have calculated the total HF exchange
energies of the first- and second-row atoms by summing the
RI-approximated exact-exchange energy density over the
atomic grids. We found that the average absolute error com-
pared to the exact analytical HF exchange energy is about
3.4 × 10−6 hartree.24 We denote our implementation of PSTS
described above as “RI-PSTS.”

B. MCY and B05 functionals

MCY is another DFT method that involves full exact ex-
change. It is based on an original idea of how to simulate well
the exact adiabatic connection (AC) formula,14

EXC[ρ] =
∫ 1

0
Wλ[ρ]dλ , (18)

where Wλ is the λ dependent exchange-correlation energy, λ

is the AC interaction-strength parameter. In the MCY scheme
Wλ[ρ] is modeled with a Padé form,

Wλ = a + λb

1 + λc
(19)

with the factors a, b, and c being certain auxiliary function-
als that need to be constructed. The corresponding exchange-
correlation functional is given as

Exc[ρ] = a + b

c

(
1 − ln(1 + c)

c

)
. (20)

The density dependent factors a, b, and c are determined using
the quantities W0, W ′

0, and Wλp
, where W0 is the initial point

for AC, W ′
0 is its initial slope of the AC integral curve and Wλp

is a selected point on the AC integral curve. The following
known exact constraints of the adiabatic connection are then
employed:

� As λ → 0, Wλ → Ex ,
� As λ → 0, ∂Wλ

∂λ
→ 2EGL

c .

In the above relations, Ex is the exact-exchange energy, EGL
c

is the second order correlation energy term of the Görling-
Levy density functional perturbation expansion.25 Because
the computation of EGL

c is very expensive, the initial slope
is alternatively estimated using a pure DFT correlation func-
tional form: when W0 = Ex , the initial slope W ′

0 for a given

functional Ec is,

W ′
0 = 2 lim

λ→0
Ec[ρ1/λ] . (21)

In MCY the non-empirical TPSS correlation functional is em-
ployed as an approximation to Ec in the above expression,

W ′
0 = 2 lim

λ→0
ETPSS[ρ1/λ] . (22)

The final piece of information, the form of Wλp
, is determined

using certain exact coordinate scaling relations that exchange-
correlation functionals should obey

Wλp
[ρ] = ∂

∂λ
{λ2Exc[ρ1/λ]}

= Ex[ρ] + 2λEc[ρ1/λ] + λ2 ∂Ec[ρ1/λ]

∂λ
. (23)

Finally, the density dependent variables a, b, and c are
determined as

a = Ex , (24)

b = W ′
0 , (25)

c = Wλp
− λpb − a

λp(a − Wλp
)

. (26)

There are three empirical parameters in the MCY method that
are optimized against experiment. First, W ′

0 is scaled by a nu-
merical factor. Second, a particular λ value is empirically cho-
sen for Eq. (23). Finally, the Wλp

[ρ] value is scaled by another
factor. In this paper, we use version 2 of those parameters,
named as MCY2. Their values are 4.0, 0.69, and 0.9955, re-
spectively. The BLYP exchange-correlation functional is used
to evaluate Wλp

by Eq. (23).
Having presented a gist of the MCY functional, we turn

now to a brief description of the B05 method. It is a DFT
model that incorporates full exact exchange together with
nondynamic correlation effects modeled by certain real-space
corrections to the exact-exchange hole. In multi-center sys-
tems, the exact-exchange hole alone is artificially too delocal-
ized. In ab-initio multi-reference methods, this extra delocal-
ization is compensated by the corresponding (wave function
based) correlation hole.4, 6, 12 The resulting ab initio XC hole
remains localized within a region of roughly atomic size in
finite systems.6 When the exact exchange is combined with
a model DFT correlation, such a complete cancellation does
not occur. In B05, the XC hole is modeled as a sum of exact-
exchange hole, ND correlation correction to it in real space
and a dynamic correlation remainder. The exact-exchange
hole alone is readily given by the occupied KS orbitals and
the electron density.5, 6 Then, the spherically averaged exact-
exchange hole of, say, spin α (h̄Xα) is deepened in a physi-
cally motivated fashion by a fraction of the spherically aver-
aged exchange hole of opposite spin β, and by a second order
same-spin term.6 This results in a real-space ND correlation
correction to the XC hole in the following (spherically aver-
aged) form:

h̄nd
XCα(r, s) = h̄exact

Xα (r, s) + [
fc(r) h̄exact

Xβ (r, s) + h̄nd
Cαα(r, s)

]
,

(27)

r = r1 s = |r2 − r1| .
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The function fc in Eq. (27) is opposite-spin correlation factor
that reflects the strength of the opposite-spin ND correlation
at each point of space,6

fc(r) = min(fα(r), fβ(r), 1) , 0 ≤ fc(r) ≤ 1 , (28)

fα(r) = 1 − N eff
Xα(r)

N eff
Xβ(r)

. (29)

The function N eff
Xσ is an effective normalization of the ex-

change hole within a region of roughly atomic size around
the reference point. The closer N eff

Xσ to one (from below), the
larger the degree of localization of the exact-exchange hole
and vice versa. The form of N eff

Xσ (r) is quite complicated in
the B05 model, but it is possible to represent it in a closed
analytic form.15, 22 The last term of Eq. (27) is a second-order
same-spin correction to the XC hole introduced to improve
the performance for open-shell systems. The corresponding
ND correlation energy is obtained by integrating the respec-
tive Coulomb potential of the XC hole, Eq. (27). For exam-
ple, the opposite-spin component of the ND correlation en-
ergy reads,

End−opp
c = 1

2

∫
fc(r)

[
ρα(r)U exact

Xβ (r) + ρβ(r)U exact
Xα (r)

]
dr ,

(30)

where U exact
Xσ is the spin-resolved Slater potential of exact

exchange

U exact
Xσ (r) = 4π

∫
s ds h̄exact

Xσ (r, s) . (31)

The second order same-spin ND contribution has a more com-
plicated form. For further details on the SCF implementation
of B05 see Ref. 15.

The final form of the B05 energy functional reads

EB05
XC = EHF

X + and−opp
c End−opp

c + and−par
c End−par

c

+ aD−opp
c ED−opp

c + aD−par
c ED−par

c , (32)

where E
D−opp
c and E

D−par
c are DFT functionals of dynamic

correlation. In B05 Becke uses a spin-spin decomposition of
his BR94 correlation functional26 for the latter two terms.
There are four linear empirical parameters in the B05 func-
tional, ai

c. In our SCF implementation (the RI-B05 version15),
we have re-optimized the four linear parameters with respect
to converged SCF solutions, the corresponding values are

and−opp
c = 0.5260 and−par

c = 0.6467,

(33)
aD−opp

c = 1.0754 aD−par
c = 1.130.

Using the same specifically adapted RI technique described
above for the RI-PSTS functional, Eqs. (12)–(17), is essential
for rendering the SCF implementation feasible. In this work
we use a converged HF solution as an initial guess to a
single-point RI-B05 calculation, which greatly facilitates its
convergence.

III. COMPUTATIONAL DETAILS

A comparison of the relative performance of RI-PSTS,
RI-B05, and MCY2 functionals is provided in this work

for thermochemistry, chemical reactions, and molecular dis-
sociation. For thermochemistry, we consider enthalpies of
formation, ionization potentials, and proton affinities of the
molecules from the G2 data set. Barrier heights are calculated
for heavy-atom transfer, nucleophilic substitution, unimolec-
ular, association, and hydrogen transfer reactions. The struc-
tural data of the transition states, reactants, and products are
taken from Minnesota Thermochemistry and Thermochemi-
cal Kinetics Databases.27 To assess the methods for nondy-
namic correlation, we have calculated the dissociation curves
of selected diatomic molecules H+

2 , He+
2 , H2, F2, and N2, and

the energy properties of the NO dimer, a system with strong
nondynamic correlation.

The above methods are compared here with other popular
functionals, including TPSSh,20, 28 B3LYP,29, 30 M06-2X,31

M06-HF,32 and ωB97X.33 TPSSh is a non-empirical hybrid
version of TPSS. B3LYP is the most-widely used DFT
method yielding reliable predictions for many properties.
M06-2X is a heavily parameterized hybrid mega-GGA
functional that yields accurate predictions in many bench-
mark studies. M06-HF belongs to the same suite of heavily
parameterized functionals as M06-2X but employs the full
exact exchange. ωB97X is a multi-parameter long-range
corrected functional in which the model DFT potential is
replaced at long-range by the exact-exchange potential.

There are two flavors of the B05 method that are included
here. The first is the original B05 functional,5, 6 which acts in
a perturbative (post-LDA) way using converged LDA density.
The RI approximated exact-exchange energy density is used
with this option as well, and the resulting method is denoted
as “PERT-RI-B05.” The second way of employing the B05
functional is in a fully SCF manner, as described in Subsec-
tion II B and named as “SCF-RI-B05.”15

All calculations in this work were performed with
a development version of the Q-Chem package,19 using
G3LARGE basis set34 and a un-pruned ultra-fine grid of 128
radical and 302 angular points per shell within Becke’s rela-
tive weights integration scheme.35 The RI calculations require
an accurate auxiliary Gaussian basis set. We have found that
the RI basis used for typical RI Coulomb or RI-MP2 are not
sufficiently accurate for calculation of the exact-exchange en-
ergy density. We have designed a new set of RI basis using
the even-tempered approach. The highest angular momentum
is chosen two orders higher than that of the AO basis for each
particular element. The largest exponent for each angular type
is the double of the largest exponent in the G3LARGE AO ba-
sis of the same angular type. The auxiliary basis set for all el-
ements involved in the present calculations is provided in the
supplementary material to this work.24 In addition to the DIIS
algorithm,36 geometric direct minimization,37 and maximum
overlap38 methods were employed for attaining SCF conver-
gence in some difficult cases.

IV. PERFORMANCE FOR THERMOCHEMISTRY

In this section we present comparison results for standard
enthalpies of formation, ionization potential, electron affinity,
and proton affinity based on the G2 set.34, 39 All geometries
are optimized at B3LYP/6-31G(d) level of the theory. The
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TABLE I. Comparison of results for standard enthalpies of formation based on the G2 set. All values are in
kcal/mol.

Methods ME MAE Max(+) Max(−)

RI-PSTS 1.28 4.75 21.59(SiF4) − 19.33(Si2H6)
SCF-RI-B05 − 0.29 2.62 7.71(O3) − 14.58(C2F4)
PERT-RI-B05 0.19 2.45 11.55(O3) − 10.21(C2F4)
MCY2 − 1.65 2.77 9.22(SiF4) − 10.44(pyridine)
TPSSh − 1.30 4.47 18.75(SiF4) − 19.45(Si2H6)
B3LYP 1.54 3.25 19.71(SiCl4) − 7.99(BeH)
M06-2X − 0.20 2.13 17.18(O3) − 10.33(C2F4)
M06-HF 1.90 4.18 38.93(O3) − 8.89(tri-methylamine)
ωB97X − 0.22 2.02 9.27(Si2) − 9.93(C2F4)
HF 149.38 149.39 344.21(pyridine) − 0.49(BeH)

zero-point energies (ZPE) are calculated also at B3LYP/6-
31G(d) level as well, and the ZPE values are scaled by the
recommended factor of 0.96.40, 41 The standard enthalpies of
formation are computed following the procedure described
in Ref. 40. The experimental standard enthalpies of forma-
tion and the enthalpies at 0 K for the gaseous atoms in-
volved in the present calculations are taken from Ref. 40 as
well. The ionization potentials, electron affinities and proton
affinities are calculated at 0 K taking into account the zero-
point energy difference between a given ionized and neutral
molecule. All deviations (mean error (ME), mean absolute er-
rors (MAE), maximum signed errors MAX(+) and MAX(−))
designated in the tables were computed as “theory minus
experiment.”

Table I summarizes the performance statistics for the
standard enthalpies of formation. Among the three DFT
schemes employing full exact exchange, PERT-RI-B05 shows
the best performance on this test set (MAE of 2.45 kcal/mol),
followed closely by SCF-RI-B05 (MAE of 2.62 kcal/mol)
and MCY2 (MAE of 2.77 kcal/mol). The performance of
RI-PSTS on this test set is somewhat worse (MAE of
4.75 kcal/mol). All three functionals with full exact exchange
perform much better than HF, indicating that these models are
capable of recovering the majority of the post-HF correlation
effects. MCY2, while containing some aspects of the nonem-
pirical TPSS theory, performs better than the hybrid version
of TPSS, i.e., TPSSh. To note also that both RI-B05 versions
and MCY2 perform much better than M06-HF, an empirically
parameterized functional with full HF exchange. This shows

TABLE II. Comparison of results for ionization potential based on the G2
set. All values are in kcal/mol.

Methods ME MAE Max(+) Max(−)

RI-PSTS − 1.06 3.89 27.08 (CN+) − 15.37 (B2F+
4 )

SCF-RI-B05 3.28 4.64 33.58 (CN+) − 7.27 (B2F+
4 )

PERT-RI-B05 3.24 4.70 33.61 (CN+) − 5.09 (CH2SH+)
MCY2 1.32 3.49 32.88 (CN+) − 9.59 (Si2H+

5 )
TPSSh − 1.53 4.04 32.90 (CN+) − 15.31 (B2F+

4 )
B3LYP 1.32 3.61 36.65 (CN+) − 10.90 (B2F+

4 )
M06-2X 1.25 3.26 40.51 (CN+) − 8.57 (Si2H+

4 )
M06-HF 3.11 6.19 56.20 (CN+) − 11.51 (Si2H+

4 )
ωB97X 0.29 3.15 39.42 (CN+) − 10.49 (Be+)
HF − 20.58 22.21 60.59 (CN+) − 41.88 (Ne+)

the limitations of the approach of multi-parameter empirical
interpolation, as far as functionals with full exact exchange is
concerned. Still, all the methods discussed so far are outper-
formed on this test set by the multi-parameter hybrid func-
tionals ωB97X and M06-2X, which rely to a large extent on
cancellation of errors.

Table II contains the calculated ionization potentials from
the G2 set. The three methods with full exact exchange per-
form much better than the HF method. The performance
of MCY2 and RI-PSTS is better than that of both RI-B05
options. In this case, the SCF version of the latter has
slightly smaller MAE than the post-LDA version PERT-RI-
B05. Among all the XC functionals tested, M06-HF is the
least accurate here. The relatively large positive ME and MAE
with both PERT-RI-B05 and SCF-RI-B05 shows that RI-B05
tends to somewhat systematically overestimate ionization po-
tentials. Please note that ionization potentials were not in-
cluded in the training set when the RI-B05 parameters were
optimized.

Turning to the electron affinity (see Table III), the perfor-
mance of the different functionals is relatively more uniform,
except for M06-HF. B3LYP and PERT-RI-B05 have here the
smallest and the second smallest MAE, respectively. The RI-
PSTS functional shows on average a tendency of underesti-
mating the electron affinity while having a relatively small
maximum deviation Max(+).

Finally, with respect to proton affinity, all the functionals
tested, except RI-PSTS, perform reasonably well (Table IV).
B3LYP and MCY2 have here the smallest and the second

TABLE III. Comparison of results for electron affinity based on G2 set. All
values are in kcal/mol.

Methods ME MAE Max(+) Max(−)

RI-PSTS − 2.66 3.47 8.66 (C−
2 ) − 10.33 (CH−

2 )
SCF-RI-B05 2.73 3.36 44.18 (C−

2 ) − 4.84 (CH−
2 )

PERT-RI-B05 1.72 2.82 22.80 (C−
2 ) − 3.76 (CH−

2 )
MCY2 − 1.28 3.13 19.89 (C−

2 ) − 6.98 (S2O−)
TPSSh − 2.00 3.91 21.69 (C−

2 ) − 9.24 (HOO−)
B3LYP 1.08 2.79 25.32 (C−

2 ) − 5.00 (CH3CO−)
M06-2X − 0.93 3.46 24.28 (C−

2 ) − 7.79 (CH−
2 )

M06-HF 1.51 4.66 41.87 (C−
2 ) − 7.45 (CH−

2 )
ωB97X − 1.00 3.83 42.42 (C−

2 ) − 17.67 (LiH−)
HF − 25.15 26.26 17.25 (C−

2 ) − 50.80 (F−)
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TABLE IV. Comparison of results for proton affinity based on G2 set. All
values are in kcal/mol.

Methods ME MAE Max(+) Max(−)

RI-PSTS − 0.33 2.78 4.62 (C2H+
3 ) − 4.31 (H2Cl+)

SCF-RI-B05 − 1.74 1.74 . . . − 3.45 (H+
3 )

PERT-RI-B05 − 1.89 1.89 . . . − 3.25 (H+
3 )

MCY2 0.26 1.10 2.86 (C2H+
3 ) − 1.59 (H+

3 )
TPSSh 2.38 2.38 5.32 (C2H+

3 ) . . .
B3LYP − 0.19 0.90 2.02 (C2H+

3 ) − 1.77 (H4
3)

M06-2X − 0.56 1.60 3.08 (H+
3 ) − 2.35 (H2Cl+)

M06-HF − 0.05 2.16 5.10 (SiH+
5 ) − 3.64 (H2Cl+)

ωB97X 1.12 1.44 4.71 (C2H+
3 ) − 1.12 (SiH+

5 )
HF 2.44 3.50 7.79 (PH+

4 ) − 2.05 (H+
3 )

smallest MAE, respectively. The majority of MAE values are
below 2.0 kcal/mol, except with RI-PSTS, TPSSh, and M06-
HF. Both PERT-RI-B05 and SCF-RI-B05 tend to somewhat
underestimate proton affinities, which may be related to their
trend of overestimating ionization potentials.

V. REACTION BARRIERS

It is well known that traditional semilocal functionals
tend to underestimate reaction barriers due to some intrin-
sic errors, such as self-interaction error, delocalization error,
poor account of left-right correlation, and other errors.8 These
errors become particularly large in systems with stretched
bonds, such as in the transition states of many reactions. In
this section we analyze the functional performance on reac-
tion barriers. We use the HTBH38/04 set of forward and re-
verse reaction barriers,27 as well as 18 reactions of hydrogen
transfer that are known to be among the most difficult to de-
scribe theoretically.

The HTBH38/04 set consists of six heavy-atom trans-
fer reactions, eight nucleophilic substitution reactions, and
five unimolecular and association reactions (see Table V). We
used the fixed geometries provided by the authors of this test

TABLE V. Reactions from the HTBH38/04 database.

Type Index Reaction

Heavy-atom transfer TS1 H + N2O → OH + N2

TS2 H + FH → HF + H
TS3 H + ClH → HCl + H
TS4 H + FCH3 → HF + CH3

TS5 H + F2 → HF + F
TS6 CH3 + FCl → CH3F + Cl

Nucleophilic substitution TS7 F− + CH3F → FCH3 + F−

TS8 F− · · · CH3F → FCH3 · · · F−

TS9 Cl− + CH3Cl → ClCH3 + Cl−

TS10 Cl− · · · CH3Cl → ClCH3 · · · Cl−

TS11 F− + CH3Cl → FCH3 + Cl−

TS12 F− · · · CH3Cl → FCH3 · · · Cl−

TS13 OH− + CH3F → HOCH3 + F−

TS14 OH− · · · CH3F → HOCH3 · · · F−

Unimolecular and TS15 H + N2 → HN2

association TS16 H + CO → HCO
TS17 H + C2H4 → CH3CH2

TS18 CH3 + C2H4 → CH3CH2CH2

TS19 HCN → HNC

TABLE VI. Reaction barriers of heavy-atom transfer reactions.

Methods Type ME MAE Max(+) Max(−)

RI-PSTS Vf − 4.00 4.00 . . . − 5.86 (TS6 )
Vr − 6.37 6.37 . . . − 10.03 (TS1 )

Average − 5.19 5.19 . . . − 10.03 (TS1 )
SCF-RI-B05 Vf − 2.71 2.71 . . . − 5.44 (TS6 )

Vr − 4.17 4.17 . . . − 6.93 (TS1 )
Average − 3.44 3.44 0.00 (. . . ) − 6.93 (TS1 )

PERT-RI-B05 Vf − 1.09 1.86 2.15 (TS5 ) − 4.72 (TS6 )
Vr − 1.69 2.58 2.69 (TS5 ) − 4.32 (TS6 )

Average − 1.39 2.22 2.69 (TS5 ) − 4.72 (TS6 )
MCY2 Vf − 0.84 1.51 2.00 (TS1 ) − 4.99 (TS2 )

Vr − 2.61 2.61 . . . − 4.99 (TS2 )
Average − 1.73 2.06 2.00 (TS1 ) − 4.99 (TS2 )

TPSSh Vf − 10.20 10.20 . . . − 12.88 (TS2 )
Vr − 13.18 13.18 . . . − 16.96 (TS1 )

Average − 11.69 11.69 . . . − 16.96 (TS1 )
B3LYP Vf − 8.23 8.23 . . . − 10.94 (TS2 )

Vr − 9.18 9.18 . . . − 11.00 (TS5 )
Average − 8.70 8.70 . . . − 11.00 (TS5 )

M06-2X Vf − 0.98 1.24 0.58 (TS4 ) − 3.36 (TS2 )
Vr − 1.07 1.69 1.65 (TS5 ) − 3.36 (TS2 )

Average − 1.03 1.46 1.65 (TS5 ) − 3.36 (TS2 )
M06-HF Vf 0.14 2.80 4.08 (TS5 ) − 6.72 (TS2 )

Vr 2.39 6.57 11.84 (TS1 ) − 6.72 (TS2 )
Average 1.26 4.69 11.84 (TS1 ) − 6.72 (TS2 )

ωB97X Vf 0.48 1.96 3.00 (TS3 ) − 3.29 (TS6 )
Vr − 0.78 2.13 3.00 (TS3 ) − 2.88 (TS5 )

Average − 0.15 2.05 3.00 (TS3 ) − 3.29 (TS6 )
HF Vf 8.75 12.79 16.98 (TS4 ) − 12.11 (TS5)

Vr 20.50 20.50 40.60 (TS1 ) . . .
Average 14.62 16.64 40.60 (TS1 ) − 12.11 (TS5)

set27 optimized at the quadratic configuration interaction with
singles and doubles (QCISD) level of theory. All single-point
calculations of the reactants, products, and transition states
are done with the Q-Chem program following the same com-
putational setup as described in Sec. III. Energy differences
are in kcal/mol, and mean errors are computed as theory mi-
nus experiment.

Table VI contains the ME and mean absolute errors
(MAE) for the six heavy-atom transfer reactions from the
HTBH38/04 set. It is seen that many functionals tend to un-
derestimate these reaction barriers. Among the schemes with
full exact exchange, MCY2 performs the best here with MAE
of 2.06 kcal/mol, followed closely by PERT-RI-B05 with
MAE of 2.22 kcal/mol. The SCF-RI-B05 estimates (MAE of
3.44 kcal/mol) are less accurate than those of PERT-RI-B05
here. RI-PSTS yields better results than TPSS and TPSSh,
but still it has a strong tendency to underestimate these reac-
tion barriers (MAE of 5.19 kcal/mol). Among the functionals
tested, M06-2X has the lowest MAE of 1.46 kcal/mol on this
test set. ωB97X and MCY2 have the second best MAE of
2.05 kcal/mol and 2.06 kcal/mol, respectively, PERT-RI-B05
is close behind with MAE of 2.22 kcal/mol. The performance
of the above four functionals is far better than that of B3LYP
(MAE of 8.7 kcal/mol) and M06-HF (MAE of 4.69 kcal/mol).

Turning to the nucleophilic substitution reactions as
listed in Table VII, most functionals tend again to underes-
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TABLE VII. Reaction barriers of nucleophilic substitution reactions.

Methods Type ME MAE Max(+) Max(−)

RI-PSTS Vf − 4.50 4.50 . . . − 6.37 (TS10)
Vr − 4.29 4.29 . . . − 6.37 (TS10)

Average − 4.39 4.39 . . . − 6.37 (TS10)
SCF-RI-B05 Vf − 3.28 3.28 . . . − 4.39 (TS10)

Vr − 3.40 3.40 . . . − 4.39 (TS10)
Average − 3.34 3.34 . . . − 4.39 (TS10)

PERT-RI-B05 Vf − 2.84 2.84 . . . − 3.96 (TS10)
Vr − 2.88 2.88 . . . − 3.96 (TS10)

Average − 2.86 2.86 . . . − 3.96 (TS10)
MCY2 Vf − 1.70 1.70 . . . − 3.20 (TS10)

Vr − 1.63 1.65 0.06 (TS11) − 3.20 (TS10)
Average − 1.67 1.67 0.06 (TS11) − 3.20 (TS10)

TPSSh Vf − 5.67 5.67 . . . − 6.64 (TS11)
Vr − 5.61 5.61 . . . − 6.39 (TS10)

Average − 5.64 5.64 . . . − 6.64 (TS11)
B3LYP Vf − 3.32 3.32 . . . − 4.45 (TS10)

Vr − 3.31 3.31 . . . − 4.45 (TS10)
Average − 3.31 3.31 . . . − 4.45 (TS10)

M06-2X Vf 0.37 1.16 3.56 (TS14) − 2.19 (TS11)
Vr 1.30 1.52 3.94 (TS12) − 0.85 (TS9 )

Average 0.83 1.34 3.94 (TS12) − 2.19 (TS11)
M06-HF Vf − 1.00 1.65 1.90 (TS14) − 2.65 (TS13)

Vr − 0.56 1.64 2.54 (TS12) − 2.99 (TS13)
Average − 0.78 1.64 2.54 (TS12) − 2.99 (TS13)

ωB97X Vf 0.43 1.34 2.25 (TS10) − 1.93 (TS7 )
Vr 0.49 1.02 2.25 (TS10) − 1.93 (TS7 )

Average 0.46 1.18 2.25 (TS10) − 1.93 (TS7 )
HF Vf 9.71 9.71 42.75 (TS14) . . .

Vr 3.73 10.82 13.56 (TS11) − 28.37 (TS14)
Average 6.72 10.27 42.75 (TS14) − 28.37 (TS14)

timate on average these reaction barriers, except for ωB97X
and M06-2X. The latter two have the smallest and second
smallest MAE of 1.18 kcal/mol and 1.34 kcal/mol, respec-
tively. Among the schemes with full exact exchange (includ-
ing M06-HF), M06-HF and MCY2 are the most accurate on
this test set with MAE of 1.64 kcal/mol and 1.65 kcal/mol,
respectively, followed by PERT-RI-B05 with MAE of
2.88 kcal/mol. RI-PSTS has the largest MAE (4.39 kcal/mol)
among the considered methods with full exact exchange, even
though there is slight improvement in the results over TPSS
and TPSSh.

Next we present in Table VIII our results for the uni-
molecular and association reactions from the HTBH38/04
set (see Table V). Unlike the heavy-atom transfer reactions
and nucleophilic substitution reactions, here the errors spread
more evenly between the positive and negative signs. The best
prediction for this test sets comes again from M06-2X func-
tional (MAE of 0.90 kcal/mol), followed closely by SCF-RI-
B05 (MAE of 1.12 kcal/mol) and PERT-RI-B05 (MAE of
1.39 kcal/mol). Among the schemes with full exact exchange
PERT-RI-B05 and SCF-RI-B05 outperform on this test set
M06-HF (MAE of 1.48 kcal/mol), as well as RI-PSTS (MAE
of 1.70 kcal/mol) and MCY2 (MAE of 2.05 kcal/mol). The
B05 and PSTS models incorporate ND correlation effects ex-
plicitly in real space, which for this type of reactions seems to
matter more.

TABLE VIII. Reaction barriers of unimolecular and association reactions.

Methods Type ME MAE Max(+) Max(−)

RI-PSTS Vf − 1.51 1.96 1.12 (TS18) − 4.22 (TS15)
Vr 0.58 1.43 3.49 (TS17) − 1.41 (TS18)

Average − 0.46 1.70 3.49 (TS17) − 4.22 (TS15)
SCF-RI-B05 Vf − 0.50 0.65 0.38 (TS18) − 1.44 (TS15)

Vr − 0.87 1.58 1.26 (TS19) − 3.54 (TS18)
Average − 0.69 1.12 1.26 (TS19) − 3.54 (TS18)

PERT-RI-B05 Vf 0.68 0.80 1.80 (TS16) − 0.31 (TS15)
Vr 0.20 1.97 2.53 (TS16) − 3.25 (TS18)

Average 0.44 1.39 2.53 (TS16) − 3.25 (TS18)
MCY2 Vf 1.56 2.36 3.83 (TS17) − 1.56 (TS15)

Vr 1.03 1.74 3.45 (TS16) − 1.77 (TS18)
Average 1.30 2.05 3.83 (TS17) − 1.77 (TS18)

TPSSh Vf − 5.26 5.26 . . . − 10.35 (TS15)
Vr − 0.67 1.25 1.45 (TS16) − 3.09 (TS18)

Average − 2.96 3.25 1.45 (TS16) − 10.35 (TS15)
B3LYP Vf − 2.76 2.76 . . . − 7.00 (TS15)

Vr − 0.16 1.26 1.94 (TS16) − 3.55 (TS18)
Average − 1.46 2.01 1.94 (TS16) − 7.00 (TS15)

M06-2X Vf − 0.39 1.03 1.21 (TS17) − 1.99 (TS19)
Vr 0.78 0.78 1.81 (TS17) . . .

Average 0.20 0.90 1.81 (TS17) − 1.99 (TS19)
M06-HF Vf 0.83 1.87 2.91 (TS15) − 2.03 (TS19)

Vr 0.22 1.09 2.14 (TS15) − 1.19 (TS16)
Average 0.53 1.48 2.91 (TS15) − 2.03 (TS19)

ωB97X Vf 0.02 1.52 2.45 (TS17) − 1.77 (TS18)
Vr 3.20 3.20 5.30 (TS17) . . .

Average 1.61 2.36 5.30 (TS17) − 1.77 (TS18)
HF Vf 4.34 4.45 8.40 (TS15) − 0.29 (TS19)

Vr 1.01 3.12 4.96 (TS19) − 5.21 (TS16)
Average 2.67 3.79 8.40 (TS15) − 5.21 (TS16)

Finally, in Tables IX and X we present results for hydro-
gen abstraction. This type of reactions has been in the focus of
the DFT studies for a long time. Earlier semilocal and hybrid
functionals suffered a massive failure in accurately reproduc-
ing these reaction barriers, especially concerning the “very
simple” hydrogen abstraction (reaction TS5 in Table X).42, 43

The transition state for this reaction is the linear three-center
doublet radical H3. Strong ND correlation and delocalization
effects have been shown to be pertinent for this structure,
which makes it very difficult to achieve an accurate estimate
of this and other similar barrier heights.43 Among the results
listed in Table X, PERT-RI-B05 (MAE of 1.26 kcal/mol) and
M06-2X (MAE of 1.33 kcal/mol) have the smallest and the
second smallest MAE, respectively, followed closely by SCF-
RI-B05 with MAE of 1.73 kcal/mol. The rest of the function-
als have MAE ranging from 2.16 kcal/mol (with wB97X) to
10.15 kcal/mol (with TPSSh). Among the schemes with full
exact exchange, the B05 based options outperform the rest,
with M06-HF giving the largest MAE within this group of
functionals.

VI. THE DISSOCIATION AS A PROBE
OF NONDYNAMIC CORRELATION

The correct description of dissociation energy curves is
still a great challenge for approximate DFT methods.8, 43–52
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TABLE IX. Reactions of hydrogen abstraction.

Index Reaction

TS1 H + HCl → H2 + Cl
TS2 H + HCl → HCl + H
TS3 H + OH → H2 + O
TS4 H2 + F → HF + H
TS5 H2 + H → H2 + H
TS6 OH + H2 → H + H2O
TS7 OH + NH3 → H2O + NH2

TS8 H + H2S → H2 + HS
TS9 O + HCl → Cl + OH
TS10 H + CH3OH → H2 + CH2OH

Particularly large dissociation errors may occur for symmetric
radicals with odd number of electrons. The “simplest” such
cases are H+

2 and He+
2 . Their dissociation curves are shown

in Figs. 1 and 2 calculated here with different functionals. All
curves were scanned with 0.1 Å step size and the plotted bind-
ing energy was calculated as EX2 − 2EX.

The dissociation state of He+
2 , Fig. 2, can be described

with a symmetric two-reference, three-electron wave function
of the form:

�He+
2 (1, 2, 3) ≈ 1

2
[|He+

A, HeB〉 + |He+
B, HeA〉] . (34)

TABLE X. Reaction barriers of hydrogen abstraction reactions.

Methods Type ME MAE Max(+) Max(−)

RI-PSTS Vf − 0.83 1.66 3.06 (TS6) − 5.64 (TS1)
Vr − 0.27 2.69 4.65 (TS3) − 7.55 (TS4)

Average − 0.55 2.18 4.65 (TS3) − 7.55 (TS4)
SCF-RI-B05 Vf − 1.66 1.82 0.80 (TS10) − 4.10 (TS3)

Vr − 1.63 1.63 . . . − 3.40 (TS9)
Average − 1.64 1.73 0.80 (TS10) − 4.10 (TS3)

PERT-RI-B05 Vf 0.75 1.47 6.00 (TS9) − 2.90 (TS3)
Vr 0.93 1.05 3.80 (TS9) − 0.30 (TS2)

Average 0.84 1.26 6.00 (TS9) − 2.90 (TS3)
MCY2 Vf − 1.42 2.28 2.68 (TS10) − 4.56 (TS3)

Vr − 2.47 2.57 0.48 (TS10) − 4.94 (TS4)
Average − 1.95 2.42 2.68 (TS10) − 4.94 (TS4)

TPSSh Vf − 10.16 10.16 . . . − 13.25 (TS9)
Vr − 10.13 10.13 . . . − 15.12 (TS4)

Average − 10.15 10.15 . . . − 15.12 (TS4)
B3LYP Vf − 5.68 5.68 . . . − 8.34 (TS9)

Vr − 5.36 5.36 . . . − 10.19 (TS4)
Average − 5.52 5.52 . . . − 10.19 (TS4)

M06-2X Vf − 0.03 1.22 2.72 (TS10) − 2.49 (TS9)
Vr − 0.43 1.44 2.03 (TS5) − 2.83 (TS9)

Average − 0.23 1.33 2.72 (TS10) − 2.83 (TS9)
M06-HF Vf 2.26 2.70 6.60 (TS5) − 1.58 (TS1)

Vr 2.29 2.64 6.60 (TS5) − 1.72 (TS9)
Average 2.28 2.67 6.60 (TS5) − 1.72 (TS9)

ωB97X Vf − 0.35 2.12 3.00 (TS2) − 5.28 (TS4)
Vr − 1.14 2.21 3.00 (TS2) − 4.72 (TS4)

Average − 0.75 2.16 3.00 (TS2) − 5.28 (TS4)
HF Vf 13.33 13.33 24.81 (TS7) . . .

Vr 10.34 11.75 19.55 (TS3) − 7.04 (TS4)
Average 11.83 12.54 24.81 (TS7) − 7.04 (TS4)

At large He–He distance, all three states, the asymmetric
|He+

A, HeB〉, |He+
B, HeA〉, and the symmetric �He+

2 , become
degenerate.45 In the context of wave function (34), the charge
on each He center is an ensemble average of the two pure
He states with integer charge 0 and 145, 52, 53 and the result-
ing average positive charge in He+

2 is distributed evenly by a
fraction of +0.5 on each center.

Similar is the situation with the H+
2 symmetric radical

as far as the appearance of fractional charge on each H cen-
ter concern. Single-reference methods such as Hartree-Fock
or Kohn-Sham SCF would normally converge (at any He–He
distance) to the symmetric state with a fractional charge of
+0.5 on each center, unless symmetry breaking is enforced
from the outset. Most approximate functionals show a large
SI error in symmetric distribution of the radical charge. This
leads to an artificial lowering of the dissociation energy af-
ter certain critical distance (delocalization error8). In contrast,
the Hartree-Fock energy dependence on the fractional charge
results in a spurious concave curve which leads to the ob-
served shift of the HF dissociation curve of He+

2 above the
zero line at large distances (a localization error). All this is
clearly illustrated with our results shown in Figs. 1 and 2. In
the exact quantum-mechanical description, the symmetric and
asymmetric solutions for such systems become degenerate in
the dissociation limit.45, 52 This is not the case with most ap-
proximate DFT methods. Hartree-Fock reproduces this exact
feature for H+

2 but not for He+
2 , as it can be seen on Figs. 1

and 2. The symmetric dissociation curves of H+
2 and He+

2
obtained with LSD, GGA, meta-GGA, and hybrid function-
als have the typical spurious maximum at certain critical dis-
tance, after which the curves gradually fall downward, instead
of correctly approaching the zero line upward. Our calcu-
lations confirm this delocalization error for TPSSh, B3LYP,
and M06-2X functionals, for both H+

2 and He+
2 . Considering

the functionals with full exact exchange, all of them except
M06-HF yield the exact (HF) dissociation curve for the one-
electron H+

2 system. However, RI-PSTS and MCY2 show a
noticeable delocalization error for He+

2 , albeit smaller than
the B3LYP and TPSSh errors. The long-range corrected func-
tional ωB97X and the full exact-exchange scheme M06-HF
give symmetric dissociation curves without a spurious max-
imum, tending asymptotically to the right direction for both
He+

2 and H+
2 , but still quite below the zero line (Figs. 1 and 2).

The only functional among those tested here that gives a rea-
sonably accurate dissociation curve for He+

2 is SCF-RI-B05.
We have tried to analyze the reason why SCF-RI-B05 is the
only accurate option for the He+

2 dissociation. The HF sym-
metric dissociation curve alone is about 14 kcal/mol above the
zero line in the asymptotic region. The SCF-RI-B05 curve is
only about 1.5 kcal/mol above the zero line (no delocaliza-
tion error, but a slight localization error), which means that
the localization error pertinent to the 100% HF (or exact ex-
change in the case of B05) is largely suppressed in SCF-RI-
B05 by its four other energy components: two nondynamic
and two dynamic correlation terms. We conducted a numer-
ical experiment by calculating the He+

2 dissociation curve in
the asymptotic region with a “truncated” SCF-RI-B05 scheme
in which all ND terms are omitted. This leads to only a slight
shift of the dissociation curve upward by about 0.6 kcal/mol.
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FIG. 1. Dissociation curve for H+
2 cation. The experimental equilibrium bond length is 1.057 Å, and the experimental bond dissociation energy De is

−64.4 kcal/mol57 (noted with a black dot in the figure).

Therefore, the opposite-spin and the same-spin components
of the (re-scaled) dynamic correlation functional BR9426 that
is involved in the B05 scheme6 is responsible for the remain-
ing lowering of the localization error of HF on stand alone.
This shows that He+

2 system contains no ND correlation. The
reason is that in neutral He2, both alpha and beta exchange
holes are completely localized. When a beta electron is re-
moved, it will only cause the other beta electron delocalized,
but not the alpha electrons. Thus, no nondynamic correlation

of opposite spin should occur according to B05 theory. The
reason for the zero ND correlation of parallel spin was ex-
plained in the B05 paper.6 The overall result also indicates
that BR94 gives quite accurate count of the dynamic correla-
tion for this system.

The other two hyper-GGA functionals, RI-PSTS and
MCY2 show large delocalization error by about 29 kcal/mol
and 56 kcal/mol, respectively. A large delocalization error is
mostly caused by a large self-interaction error, as analyzed

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

 40

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

E
ne

rg
y 

di
ffe

re
nc

e(
kc

al
/m

ol
)

Diatomic distance(angstrom)

TPSSh

B3LYP

SCF-RI-B05

MCY2

PSTS

M06HF

M062X

omegaB97X

HF

 

FIG. 2. Dissociation curve for He+
2 cation. The experimental equilibrium bond length is 1.081 Å, and the experimental bond dissociation energy De is

−57.0 kcal/mol58 (noted with a black dot in the figure).



114104-11 Liu et al. J. Chem. Phys. 137, 114104 (2012)

-150

-100

-50

 0

 50

 100

 150

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5  5.5

E
ne

rg
y 

di
ffe

re
nc

e(
kc

al
/m

ol
)

Diatomic distance(angstrom)

 

SCF-RI-B05
MCY2
PSTS

B3LYP
omegaB97X

M06HF
M062X
TPSSh

HF

FIG. 3. Dissociation curve for H2. The experimental equilibrium bond length is 0.741 Å, and the experimental bond dissociation energy De is
−109.4 kcal/mol.59

previously.45, 52 In the case of RI-PSTS and MCY2, the dom-
inant contribution to the self-interaction error comes from
the model pure-DFT exchange terms.8, 45 B05 does not in-
volve such terms, while RI-PSTS and MCY do have GGA
and meta-GGA model exchange components. In MCY2, the
GGA exchange functional Becke’88 is involved in a sophisti-
cated nonlinear fashion, which may explain the larger delocal-
ization error of MCY2 compared to RI-PSTS. Having func-
tionals with diminished delocalization or localization errors is
important in studying various ion-radical organic processes.44

Next, we consider the dissociation of singlet molecules
such as H2, N2 and F2. The dissociation of H2, Fig. 3, is a case
example illustrating the essence of the left-right ND correla-
tion and why most approximate functionals fail to describe
it correctly.4–6, 12 Real-space analysis of the exact-exchange
hole vs. approximate XC holes has revealed the deficiency of
common functionals in this vein and has lead to the devel-
opment of new functionals (B05,6 RI-PSTS12) with explicit
ND correlation corrections. A complementary approach to
this problem is the analysis of the fractional-spin error that
approximate functionals show in describing such dissociation
processes.8, 52 The dissociation state of H2 can be described
by a symmetric two-reference, two-electron wave function of
the form

�H2 (1, 2) ≈ 1

2
[|HA(α, 0), HB (0, β)〉

+ |HA(0, β), HB (α, 0)〉] , (35)

where α, β 	= α show the direction and the magnitude of the
spin that localizes asymptotically on each H atom. At large
H–H distance, all three states |HA(α, 0), HB(0, β)〉, |HA(0, β),
HB(α, 0)〉, and �H2 become degenerate for any fractional val-
ues of α and β.52 In the context of the two-reference state (35),
the observable spin localized on each H center is an ensemble

average of the two integer-spin states8, 53 leading to effective
fractional spin occupancy as in H(0.5,−0.5) on each center.
In a formally exact DFT (spin-restricted) treatment, the en-
ergy of the H2 dissociation state remains the same for any
fractional values of α and β8, 52 as dictated also by the ex-
act multi-reference treatment. Approximate functionals vio-
late this condition. The approximate spin-restricted DFT dis-
sociation energy changes in a concave manner with variation
of the fractional atomic spin, reaching a spurious maximum
at the observable state of H(0.5,−0.5). It has been shown that
inaccurate/incomplete treatment of ND correlation is respon-
sible for this spurious maximum.8 The dissociation energy at
the maximum is equal to the difference between the energy
curve asymptote and the zero line. This energy difference re-
flects the magnitude of the “fractional-spin” error of a given
functional.8 From this perspective, the close-packed (spin-
restricted) dissociation curves with B3LYP, TPSSh, SCF-RI-
B05, and RI-PSTS (Fig. 3) have the lowest fractional-spin er-
ror in the H2 case, RI-PSTS being the front-runner. MCY2
has a slightly larger error compared to the above close-packed
group, while the error is somewhat more significant for M06-
2X. The ωB97X and M06-HF functionals have the largest
fractional-spin error here. Still, the smallest error (with RI-
PSTS) is about 40 kcal/mol above the exact zero line.

Turning to the dissociation of N2, Fig. 4, we have the
same close-packed group of curves with B3LYP, TPSSh,
SCF-RI-B05, and RI-PSTS being the closest to the zero
line. The front-runner (the RI-PSTS curve) is still about 150
kcal/mol above the zero line. Next are the MCY2, M06-2X,
and ωB97X curves, the latter reaching about 310 kcal/mol
above the zero line. The largest fractional-spin error in the
N2 case shows again M06-HF.

Finally, considering the dissociation of F2, Fig. 5, the
same group of four curves are the closest to the zero line, with
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FIG. 4. Dissociation curve for N2. The experimental equilibrium bond length is 1.098 Å,60 and the experimental bond dissociation energy De is
−228.4 kcal/mol.61

RI-PSTS being again the front runner with about 50 kcal/mol
above the zero line. M06-HF shows the largest fractional-spin
error in this case as well.

The above examples show that the multi-parameter func-
tionals such as M06-2X and ωB97X have large errors under
bond stretching even though they perform well at equilibrium.
The RI-PSTS, B05, and MCY methods perform relatively bet-
ter here but still need further improvement with respect to tak-
ing properly into account the fractional-spin problem.

VII. THE STRONGLY CORRELATED NO DIMER TEST

The cis-NO dimer (ONNO) is a good test case system of
ND correlation because the correlation effects are very strong
and difficult to describe.16, 17, 22 Massive failures of LSD, var-
ious GGA, meta-GGA, and hybrid functionals have been re-
peatedly reported over the past 25 years in describing the
subtle energetics and structure of this dimer.16–18, 23, 54, 55 The
usual covalent picture of each monomer sharing a single elec-
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FIG. 5. Dissociation curve for F2. The experimental equilibrium bond length is 1.412 Å,60 and the experimental bond dissociation energy De is
−37.5 kcal/mol.62
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TABLE XI. Singlet-triplet split energy 
TS (kcal/mol), dimerization en-
ergy De (kcal/mol, BSSE corrected) of cis-NO dimer. Both singlet and triplet
states are optimized. The geometries reported in the table (in Å) correspond
to the singlet state.

Methods 
TS De RN−N RN−O ANNO

Experimental54 . . . 2.9–3.3 2.26 1.15 97.17
MRCI18, 56 6.30 3.30 2.28 1.15 96.10
RI-PSTS 11.81 11.20 2.00 1.15 100.60
SCF-RI-B05 6.60 5.30 2.00 1.15 101.30
MCY2 6.72 1.39 1.93 1.14 102.30
TPSSh − 3.96 − 1.44 1.99 1.15 100.49
B3LYP − 2.25 − 3.11 1.97 1.15 101.53
M06-2X 3.90 − 6.74 1.83 1.14 104.24
M06-HF − 18.38 − 18.02 1.64 1.14 109.00
ωB97X 2.09 − 7.05 1.84 1.15 103.74
HF − 49.20 − 49.68 1.61 1.13 110.12

tron to form a covalent N–N bond pair is not qualitatively
correct here. The experiment indicates a very weak binding
energy (De) of about 2.9 kcal/mol–3.3 kcal/mol.54 The latter
value has been confirmed by MR studies18, 55, 56 showing that
the cis-NO dimer bonding has a strong multi-reference char-
acter in its 1A1 singlet ground state. The closest triplet state,
3B1, is about 6.3 kcal/mol higher.56 Single-reference methods
such as MP2 and coupled-cluster with singles, doubles and
perturbative triples (CCSD(T)) fail to predict the correct en-
ergy ordering of these dimer states. The early DFT studies
reported in literature16 yielded a triplet ground state in con-
tradiction to experiment.

Table XI contains our results for the binding energy
and the singlet-triplet split of cis-ONNO obtained with vari-
ous methods. The singlet-triplet split is calculated at the re-
spective optimized geometries of both states. We note first
that B3LYP, TPSSh, and M06-HF fail to predict the correct
ground-state multiplicity, giving a triplet state as the lowest
(negative 
TS split). In regard to the binding energy, we con-
firm the failure of most methods to yield any real binding of
the NO dimer, the M06-HF result being the worst in this re-
spect. Only SCF-RI-B05, MCY2, and RI-PSTS yield a posi-
tive binding here. The RI-PSTS values of +11.2 kcal/mol for
De and +11.8 kcal/mol for 
TS are too large compared to the
MRCI benchmarks. The SCF-RI-B05 and MCY2 functionals
both yield a rather good estimate of 
TS and quite reason-
able De value, given the fact that no other option gives any
positive binding here. The SCF-RI-B05 result for De is about
2.0 kcal/mol larger the multi-reference configuration interac-
tion method (MRCI) benchmark of 3.3 kcal/mol, while the
MCY2 estimate is about 1.9 kcal/mol smaller than the MRCI
result. The good agreement between the energy estimates by
B05 and MCY2 here may be related to the reported similarity
of these two functionals as far as their energy dependence on
the fractional-spin value is concerned.52

Concerning the difficult to reproduce N–N bond length,
SCF-RI-B05 and PSTS yield the best N–N bond of 2.0 Å,
which is still shorter by about 0.26 Å than the experimental
value. The MCY2 optimized N–N distance of 1.93 Å is too
short. The geometries obtained with the rest of the methods

are only informative because these methods do not yield any
positive binding of the NO dimer.

The present results confirm the previous
findings15, 17, 22, 23, 56 that the subtle structure of the NO
dimer cannot be even remotely described properly without in-
cluding explicitly ND correlation corrections in the method.
Methods with full exact exchange and only a few fitting
parameters, such as the functionals MCY2 and SCF-RI-B05
show some very good promise in describing the energetics of
the NO dimer, while its geometry characteristics still remain
elusive.

VIII. CONCLUSION

In this paper we report a SCF implementation of PSTS
functional based on RI approximation for the exchange en-
ergy density. The new implementation allows the use of gen-
eral Gaussian basis functions with the PSTS method. The RI-
PSTS method is then compared with RI-B05, a method that
also estimates the nondynamic correlation in real space using
the exchange-energy density, and with MCY2, a functional
that employs full exact exchange. The comparisons are made
on a variety of properties, including thermochemistry, reac-
tion barriers, dissociation energy curves, and the NO dimer.
Those methods are also compared to a selection of represen-
tative hybrid GGA and meta functionals, and range-corrected
functionals, namely M06-HF, TPSSh, B3LYP, M06-2X, and
ωB97X.

The three hyper-GGA methods, MCY2, RI-B05, and RI-
PSTS perform very well for most tested properties, consid-
ering the small numbers of empirical parameters built-in. In
particular, these methods almost systematically outperform
the M06-HF, a heavily parameterized meta-GGA functional
with full exact exchange. The only exception are the nu-
cleophilic substitution reactions. Among the three methods,
MCY2 performs the best for the thermochemistry embodied
in the G2 database, with RI-B05 being a close second. RI-
B05 on the other hand is shown to be best among the three
functionals for reaction barriers, except for heavy-atom trans-
fer reactions where MCY2 performs slightly better. We find
that as a group, these three methods do not perform as well
as the heavily parameterized meta-GGA and range-corrected
GGA functionals such as M06-2X and ωB97X for most of the
thermodynamic properties and reaction barriers, except for
hydrogen-transfer reactions. The picture is different, however,
under bond-stretching, with neutral and cationic diatomics.
Here M06-2X and ωB97X deteriorate at a faster pace than the
group of three functionals with full exact exchange. RI-B05,
in particular, dissociates He+

2 almost perfectly. The rest of the
functionals show large delocalization error in the dissociation
limit of this system. Still none of these functionals dissociate
correctly in general at large bond separations.

Finally, we subjected all the functionals to the strin-
gent NO dimer test, a well-known system of strong nondy-
namic correlation. In this case, all the hybrid GGA and meta-
GGA functionals fail to predict qualitatively either the correct
ground state or the binding energy or both. In contrast, the
three hyper-GGA functionals with full exact exchange do so,
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showing that these models incorporate new important effects
that are missing from the rest of the functionals.
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