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Abstract

Falling in the home is one of the major challenges to independent living among older adults. The 

associated costs, coupled with a rapidly growing elderly population, are placing a burden on 

healthcare systems worldwide that will swiftly become unbearable. To facilitate expeditious 

emergency care, we have developed an artificially intelligent camera-based system that 

automatically detects if a person within the field-of-view has fallen. The system addresses 

concerns raised in earlier work and the requirements of a widely deployable in-home solution. The 

presented prototype utilizes a consumer-grade camera modified with a wide-angle lens. Machine 

learning techniques applied to carefully engineered features allow the system to classify falls at 

high accuracy while maintaining invariance to lighting, environment and the presence of multiple 

moving objects. This paper describes the system, outlines the algorithms used and presents 

empirical validation of its effectiveness.

I. INTRODUCTION

With the aging population in Canada (and around the world), Canadians are beginning to 

experience the effects of an over-extended health care system. One approach to alleviate the 

healthcare pressures resulting from this demographic change, is to promote and support 

aging in place. Aging in place, is the concept of enabling and empowering older adults to 

remain independent and live in their own homes for as long as they wish. This not only 

lessens the strain on the healthcare system, but also improves the quality of life of the 

elderly.

Unfortunately, without proper considerations, aging in place may pose health and safety 

risks, such as those arising from falls within the home and subsequent complications. In fact, 

falls and fall-related injuries are a major cost factor to the healthcare system in Canada [1]. 

An older adult who has suffered a fall may lay on the ground for an extended period of time, 

even days, before receiving proper healthcare. This is a major risk factor, particularly for 

older adults living alone. Such delays often result in major, even life-threating, health 

complications and could incur significant cost. This paper focuses on the development of an 

intelligent vision-based in-home fall monitoring system for the purpose of providing prompt 

response to older adults in case of an emergency.
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Personal Emergency Response Systems (PERS) provide victims of falls or other dangerous 

events with an outbound call for help. The standard PERS device is a wearable panic button 

which is carried by the person and must be manually triggered once an emergency situation 

arises. This device relies on the following criteria: the person is wearing the button, is 

conscious, and is capable of pushing the button after the event. However, these criteria are 

not always met for fall victims. Our solution automatically monitors the events and actively 

detects falls without the need for victims to initiate a call for help, or to even remember to 

wear the device. Computer vision and video analysis techniques are used for automated fall 

detection. A complete working prototype has been designed, implemented, and tested.

II. PREVIOUS WORK

Several vision-based fall detection methods have been proposed in the past [2]–[6]. These 

techniques typically use a small (< 10) set of features (visual cues), usually operate in 

controlled environments (e.g. with controlled lighting), and are unable to function in the 

presence of multiple subjects within the scene. These techniques do not yet fully address the 

challenges of real life situations in which rooms have complex lighting (e.g. with external 

windows, multiple moving subjects and dynamic environments).

Our previous work demonstrated a single-camera ceiling-mounted PERS that detected falls 

in real home environments [7]. The system maintained an adaptive background model to 

extract a silhouette of the active region. This background model was derived from an single 

Gaussian and was able to detect foreground regions and their cast shadows. The silhouette 

and shadow region were then processed through a neural network to distinguish fall versus 

no-fall events based on shape and velocity features.

Two in-home trials were conducted in real living rooms, in which able-bodied residents were 

asked to occasionally simulate falls, in order to evaluate the system. Upon improving the 

system following the first trial, the system was able to detect 100% of the simulated falls in 

the field of view (FOV) of 48° by 61°. However, numerous false alarms did occur even with 

the addition of post processing (5.43 per day).

The real-world tests indicated that complex lighting situations (such as light from windows) 

and multiple occupants generated the majority of the false positives when operating at five 

frames per second (fps).

III. CONTRIBUTIONS

This paper presents an improved version of the system and classifier of our earlier work [7] 

which accommodates some of the limitations observed during the in-home trials. These 

improvements include: the use of a wide-angle lens to increase the area of coverage; dealing 

with the resulting image distortion and lighting issues by using global features; enhancing 

robustness to abrupt lighting changes and lighting effects such as sunlight through a 

window; handling more than one subject by tracking multiple active silhouette blob regions; 

enhancing background modeling to reduce false active silhouette regions associated with 

lighting changes by merging with image optical flow; collecting a large data set of simulated 
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falls and normal events for training and testing purposes; and reducing the operating frame 

rate from five to two fps for lower data-rates, processing, and power requirements.

IV. SYSTEM DESIGN

Fig. 1 presents the block diagram of the algorithmic flow of the system. The algorithms are 

implemented in C++ and OpenCV on an Intel I7 processor.

An inexpensive Logitech QuickCam Pro 9000 captured video for training and testing at two 

fps at QVGA (320×240) pixel resolution. The camera was modified by removing the auto-

focus lens and mount, and replacing them with a M12x0.5 lens mount and a board mount 

lens with focal length of 2.2mm. The wide angle lens increased the FOV to 92° × 109°.

A. Active Region Modeling

Active region silhouettes that were analyzed to determine the presence of falls were 

calculated with background subtraction and optical flow information. As described in our 

previous work, a background model was built by using a single Gaussian distribution 

centered at the estimated intensity of each pixel [7]. The model was then used to perform 

background subtraction to form silhouette images (active region blobs) and shadows (fig. 

2(g),(d),(c)). The shadow regions were identified based on the isolation principles outlined 

in [8]. In contrast to our other work, in which only the largest active region blob was 

considered as the object of interest, the current system considers all active blob regions and 

their shadows. This multi-blob approach creates a difficulty with respect to the selection of 

the adaptation rates for updating the background model.

Many outlier blobs tend to occur from local lighting changes and objects being moved and 

should be adapted into the model. Previously, the largest foreground blob was always 

considered to be related to the object of interest and was thus adapted very slowly into the 

background model while the remaining blobs were adapted rapidly to account for lighting 

changes.

1) Optical Flow Decay—In order to adapt the background model for multiple active 

region blobs, optical flow computations [9] were incorporated into the background 

adaptation approach. A similar method for enhancing background modeling with optical 

flow has previouly been investigated [10]. Specifically, in this work we used optical flow 

magnitude to control background adaptation rates. This optical flow method rewards objects 

that are moving periodically with slow adaptation rates and objects that are non-moving or 

slowly moving with fast adaptation rates. (See fig. 2 for example input and model images 

processed to form blob regions and shadows.) The magnitude of dense optical flow vectors 

were used to quantify the motion at each blob within the scene. Fig. 2(e),(h) shows the 

optical flow magnitude of a foreground blob region. Fig. 3 depicts an example video frame 

for which the optical flow magnitude highlights a moving person as well as some sparse 

random noise across the image.

The underlying assumption here is the motion cues can rid the system of the stationary 

object blobs and also blobs arising from lighting changes. Moved furniture generates large 
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foreground regions which remain stationary for extended periods. Similarly, lighting 

changes typically do not result in significant optical flow magnitude. Very slow moving 

blobs are therefore adapted more quickly into the background. Large blob regions with 

significant motion, on the other hand, are more likely to correspond to humans and are 

adapted at much slower rates.

B. Features

There are three types of features chosen for the fall detector: Silhouette Features, Lighting 

Features, and Flow Features.

1) Silhouette Features—Silhouette blob features similar to those in our previous work 

were chosen for the fall detector [7]. These features include the Hu moments [11] as well as 

various blob status features that describe shape and dynamics. These features are encoded 

not only for the scene’s foreground blobs, but also for their corresponding shadow blob 

regions. In total there are 32 silhouette features.

2) Lighting Features—The lighting features consist of various global difference image 

pixel statistics which are sensitive to lighting changes. They are applied on the full image as 

well as an inverse blob masked difference image. (See fig. 2(f) for an example input image 

with a blob mask applied over the fallen person.) The statistics are calculated on a difference 

image resulting from previous frame subtraction and also background model subtraction – 

with and without the blob mask applied to the images. To enhance the amount of 

information obtained by the features, they are calculated in both the RGB color space and 

also in a lighting intensity invariant color space c1c2c3 [12]. Empirical analysis has shown 

that these features are a strong indicator of lighting changes. In total there are 24 lighting 

features.

3) Flow Features—Optical flow [9] features were generated using optical flow magnitude 

image statistics in the same manner as lighting features. The statistics are calculated for both 

the entire optical flow magnitude image and also the blob region’s optical flow image. (See 

fig. 2(h) for an example of blob optical flow.) In total there are six optical flow features.

V. FALL DETECTION

To classify each frame as a fall or no-fall, based on the silhouette and lighting features, 

machine learning techniques were used. A training set that is per-frame annotated with fall 
or no-fall information was created. In frames with fallen persons, their shapes were 

annotated in 20% resolution. (See fig. 2(i) for a low resolution annotation example.) The 

annotated training data was later processed by the machine learning algorithm to learn from 

the annotated examples. Once the training was complete the resulting model was tested with 

the new test input frames to evaluate the system.

A. Data Collection and Annotation

Training and testing data were collected from three office room settings. Two rooms were 

only used for training data while the other room was used for testing data. This training and 
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testing room separation was performed so that the empirical evaluation was less room-

dependent. All three rooms have one large window occupying about 50 percent of a wall. 

These windows allowed for dynamic lighting changes due to sunlight and cloud movement 

over the course of a day. During the data collection period, videos were recorded in each 

room at two fps. Over the course of three weeks, able-bodied participants were asked to 

perform several simulated fall postures on the floor in all three rooms.

For analysis, the data set was reduced to 195 fall event sequences to increase the speed of the 

training processes: 162 sequences, from two rooms, were used for training; the remaining 33 

sequences, from the third room, were used for testing. Each sequence was generated by 

selecting approximately 7 minutes of frames around the simulated falls.

The video sequences were manually annotated with one of five states assigned to each 

frame: before-fall, before-fall-transition, fall, after-fall-transition, and after-fall. The 

transition states are areas of ambiguous labeling when a person is in the process of falling 

and is not yet on the floor. Further annotation (a low resolution mask at 20% of the native 

image resolution) of the fall silhouettes was performed for all fall state frames (fig 2(i)). 

During the training process, in cases where multiple active blobs were tracked, the silhouette 

mask was used to identify the blob that corresponded to the fall1.

B. Classifier Training

Fall detection was formulated as a per-frame binary classification task. That is, a binary 

classifier was trained to discriminate frames which were labeled as containing a fall from 

those which were a no-fall. Only the frames from the beginning of a fall sequence up to the 

before-fall-transition, and the first 12 fall frames were considered. If more fall frames were 

considered, slower adaptation rates would be necessary to prevent the silhouette from 

disappearing. However, a slow adaptation rate would result in the system not adapting 

quickly to moved furniture or lighting changes. Also, the transition frames were not included 

as they could not be reasonably labeled as fall or no-fall for training.

Three training approaches were taken to investigate which approach would better model the 

data. The data set was separated into two catagories, training and testing, based on rooms. 

This separation of rooms enabled us to better detect if the classifier works for new rooms. 

Classification performance was compared using three different machine learning classifiers, 

which vary in regularisation and the complexity of the decision boundary on the features: 

logistic regression, neural networks, and support vector machines [13].

VI. RESULTS

After training the classifier to detect the presence of a fall (per-frame), the classifier was 

used to classify the training and test data to determine system performance. The results in 

fig. 4(a) (train data) and 4(b) (test data) show the ROC curve for the classifier with various 

combinations of features used for training: L- indicates lighting features; S- indicates 

silhouette features; BG indicates image subtraction with the background model; Pre 

1The data set is planned to be freely available for research purposes.
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indicates image subtraction with the previous frame; Hu indicates the Hu moment features; 

and Status indicates the shape and dynamics features.

From these figures, it can be observed that the different features classify the training and 

testing data with various levels of success. The L-BG-Model, L-Pre-Model (Lighting 

Features applied to both the previous frame difference and background model difference) 

appear to provide consistent, relatively high performance on both data sets. In contrast, the 

Flow (optical flow magnitude), with only six individual features, appears to have only minor 

success in classifying the fall data. The overall performance on the test data from the single 

room was slightly better than the results on the training data from the other two rooms. The 

improved performance was attributed to the patterns in the occupent traffic (more walking 

through, less sitting) and to having fewer frames with partially visible falls.

Further tests were conducted with additional machine learning techniques to evaluate 

performance on the data set with all features considered. The techniques chosen were 

logistic regression, neural networks, and support vector machines. The results of the three 

techniques are depicted in fig. 4(c). A Multilayer Perceptron Neural Network achieved the 

best overall fall detection performance. Using validation data to select an operating point on 

the Neural Network ROC curve resulted in a true positive rate of 92% and false positive rate 

of 5% on the test set.

The test data set results from the neural network (33 fall sequences) had 115 false positive 

fall event frames. Visual inspection of these false positive frames indicated that all false 

positives occurred with persons in the field of view. Further fall classification was performed 

on 559 additional non-fall sequences in which no falls frames occurred. These additional 

sequences contained both empty and occupied rooms. The sequences were classified and the 

results showed that very few empty room false positive falls occurred. Thus, the improved 

classifier operating with a wide angle lens demonstrated substantial robustness to lighting 

change events.

VII. CONCLUSIONS AND FUTURE WORK

We have designed and implemented a vision-based personal emergency response system, 

which is able to handle multiple active regions, has a wide field of view that can capture a 

single large room, and is able to operate effectively under moderate lighting changes. A 

simulated fall data set was collected from three rooms with large external windows and this 

data set was partitioned into training and testing data for machine learning. Results indicate 

that the system was able to handle multiple active regions in the scene while maintaining 

robustness to lighting changes.

For future work, we will: perform post-processing on the per-frame classifications; expand 

on the global lighting features; further decrease the fps; extend the data set; and perform in-

home tests in large scale deployment.
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Fig. 1. 
Algorithmic Block Diagram of the System
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Fig. 2. 
Sample Fall Image and Its Processing: a) Input Image; b) Background Model; c) Foreground 

Blobs (light) and Shadow Blobs (dark); d) Foreground Blobs; e) Foreground Blob with 

Recent Activity; f) Foreground Masked Out; g) Background Subtraction Result; h) A 

Foreground Blob Region’s Optical Flow Magnitude; i) Low Resolution Annotated Fall Blob 

Area

Belshaw et al. Page 9

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2012 October 05.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Fig. 3. 
a) A Sample Video Frame; b) Optical Flow Magnitude

Belshaw et al. Page 10

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2012 October 05.

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript

C
IH

R
 A

uthor M
anuscript



Fig. 4. 
Machine Learning ROC Curves
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