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Passive transfer of neutralizing antibodies against HIV-1 can
prevent infection in macaques and seems to delay HIV-1 rebound
in humans. Anti-HIV antibodies are therefore of great interest for
vaccine design. However, the basis for their in vivo activity has
been difficult to evaluate systematically because of a paucity of
small animal models for HIV infection. Here we report a genetically
humanized mouse model that incorporates a luciferase reporter
for rapid quantitation of HIV entry. An antibody’s ability to block
viral entry in this in vivo model is a function of its bioavailability,
direct neutralizing activity, and effector functions.

HIV-1 (HIV), the causative agent of AIDS, represents a for-
midable global challenge, with the development of an ef-

fective vaccine being of paramount importance (1–4). Rapid
progress in this area has been hindered in part by lack of a widely
available small animal model for HIV entry. Currently available
animal models include nonhuman primates and immunodefi-
cient humanized mice, neither of which is readily available or
amenable to genetic modifications (5, 6).
Some viral pathogens exhibit a narrow host range, one of those

being HIV. HIV’s entry into target cells is mediated by binding
of its trimeric envelope spike (gp160) to human CD4 (hCD4) (7)
and subsequently to a coreceptor such as human CXCR4 (8) or
human CCR5 (hCCR5) (9–11). hCCR5 is of particular interest
because it seems to be the primary coreceptor used for trans-
mission (12, 13), as evidenced by the finding that homozygous
deletion in the CCR5 allele confers resistance against HIV-1
acquisition (14, 15) and can also lead to long-term control of
HIV after stem cell transplantation (16). Finally, HeLa cells and
other HIV-resistant cells, including mouse cells, support viral
entry when they are engineered to express hCD4/hCCR5/
hCXCR4 (17–19).
Here, we describe a hCCR5- and hCD4-expressing luciferase

reporter mouse that can be used to measure HIV pseudovirus
entry and antibody-mediated protection against initial infection
in vivo.

Results
hCCR5-2A-hCD4 Construct. To overcome HIV’s host-restriction at
the level of viral entry, we coexpressed hCCR5 and hCD4 on
a single poly-protein transcript separated by a ribosomal skip 2A
peptide sequence (hCCR5-2A-hCD4) (Fig. 1A) (20). Coex-
pression of hCCR5 and hCD4 was verified in transfected
HEK293T cells (293ThCCR5-2A-hCD4) by flow cytometry (Fig. 1B).
The ability of these proteins to support viral entry was confirmed
by infection of 293ThCCR5-2A-hCD4 with an HIVYU-2 pseudotyped
lentivirus encoding GFP (Fig. 1C). We conclude that the
hCCR5-2A-hCD4 mRNA supports cell surface expression of the
two proteins that restrict HIV entry into mammalian cells.

Adenoviral Delivery of hCCR5-2A-hCD4. Recombinant adenoviruses
provide an established tool for efficient gene delivery and ex-
pression (21, 22). To express high levels of the factors that re-
strict HIV entry in vivo, we used a recombinant human
adenovirus (AdV) serotype 5 encoding hCCR5-2A-hCD4 under

control of the CMV promoter (AdV-hCCR5-2A-hCD4) (21, 22)
(Fig. 2A). AdV serotype 5 targets the liver after i.v. injection (23–
26). We confirmed that i.v. administration of this vector resulted
in hepatic expression of both hCD4 and hCCR5, as measured by
fluorescence microscopy (Fig. 2B). On the basis of immune
fluorescence, we estimate that 30–40% of the cells in the liver
express hCD4 and hCCR5.

In Vivo Infection with HIVYU-2-Pseudotyped Lentivirus. To determine
whether hCCR5- and hCD4-expressing mice can be used to
measure HIV entry in vivo, we transduced mice that carry
an inducible loxP-STOP-loxP luciferase reporter [Gt(ROSA)
26Sortm1(Luc)Kaelin] (27, 28) with AdV-hCCR5-2A-hCD4 (HIV-
LUCAdV mice). One day later, HIV-LUCAdV mice were chal-
lenged i.v. with gp160YU-2-pseudotyped lentivirus (HIVYU-2)
encoding Cre recombinase (Fig. 3A). Productive viral uptake by
hCCR5-2A-hCD4 expressing cells would result in the expression
of Cre recombinase capable of excising the transcriptional stop
element and consequently inducing luciferase expression. Bio-
luminescence activity, imaged in an optical luminometer (IVIS;
Caliper Life Sciences), increased longitudinally and peaked be-
tween day 4 and 5 after i.v. pseudovirus injection into HIV-
LUCAdV mice (Fig. 3 B and C). Despite a limited dynamic range
and variation by as much as one order of magnitude between
mice, there was a highly significant difference between experi-
mental and control groups (P < 0.0001; Fig. 3D). Taken to-
gether, the data indicate that HIV pseudovirus entry can be
measured quantitatively in living mice.

Neutralizing Human Anti-HIV Monoclonal Antibodies Mediate
Protection in HIV-LUCAdV Mice. Antibodies are key components of
most protective vaccines (29, 30) and thus are thought to be
essential for protection against HIV infection. In support of this
idea, passive administration of potent broadly neutralizing
monoclonal antibodies can provide sterilizing immunity against
simian/HIV (SHIV) infection in macaques (31–35), and they
seem to delay HIV rebound in humans (36, 37). In addition,
plasma concentration of anti-HIV IgG antibodies specific for the
V1V2 loop region was inversely correlated with infection risk in
the recent RV144 vaccine trial (38, 39). However, the mecha-
nisms that mediate the protective effects in RV144 are poorly
understood, as exemplified by the finding that the vaccine
assessed in the RV144 trial did not elicit broadly neutralizing
antibodies (38–40).
We selected six potent, broadly neutralizing anti-HIV anti-

bodies to examine their effects on HIV entry in vivo. NIH45-
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46G54W (41), 3BNC117 (42), 3BNC60 (42), VRC01 (43), and b12
(44) all target the CD4 binding site, whereas PG16 (45) targets
the V1/V2 loop region. These antibodies have varying levels of
neutralizing activity (IC50) in the TZM-bl cell assay against
HIVYU-2 in vitro, ranging from 0.01 to 2.30 μg/mL (Fig. 4A).
Antibodies were administered individually at doses ranging from
1 μg to 200 μg s.c. 1 d before challenge with HIVYU-2, and lu-
ciferase expression was measured 4 d later. Serum antibody
levels determined at the time of pseudovirus injection varied
among the selected monoclonal antibodies. For example, high
levels were achieved after 3BNC117 injection, whereas antibody
concentrations for NIH45-46G54W were fourfold lower (Fig. 4B).
The different serum antibody levels are in keeping with the half-
life of these antibodies, with 3BNC117 having t1/2 = 48.6 h and
NIH45-46G54W having t1/2 = 24.1 h after i.v. injection (Fig. S1).

In contrast to the HIV neutralizing antibodies that blocked entry
with varying degrees of efficacy, an isotype control antibody
(mGO53) (46) had no significant effect on entry compared with
the PBS control (Fig. 4 C and D). Fifty percent inhibition of
entry was achieved after injection of 100–200 μg of VRC01 or
PG16 or b12, whereas the same level of inhibition was obtained
with as little as 4–6 μg of 3BNC117 or 3BNC60 or NIH45-
46G54W. For 3BNC117 and 3BNC60 this equals a serum con-
centration of ∼1 μg/mL, which is 100 times greater than the
in vitro IC50 (Fig. 4B). We conclude that the ability of antibodies
to inhibit HIV entry in vivo can be measured directly in HIV-
LUCAdV mice.

Antibody Fc Involvement in Entry Inhibition.Neutralizing antibodies
can protect against HIV infection in vitro in the absence of in-
nate effector cells or complement (47–49). However, the mech-
anisms by which they mediate protection against HIV in vivo are
poorly understood. Complement seems to be essential in anti-
body-mediated postexposure protection in hu-SCID mice (50),
whereas Fc receptors but not complement are important in an-
tibody-mediated preexposure protection in macaques (51), but
neither study resolves the question of whether antibodies protect
from entry by direct viral clearance or by mediating clearance of
infected cells or a combination of both.
To examine the role of antibody effector functions in pro-

tection against HIV entry we introduced mutations (G236R/
L328R) into the antibody Fc domain that eliminated binding to
mFcγRs and complement (Fig. S2) but did not alter antibody
binding to the HIV envelope protein or neutralizing activity
in vitro (Fig. S3 A–C and Tables S1 and S2) (52). Dose–response
experiments were performed to compare the in vivo activity of
3BNC60GR/LR, 3BNC117GR/LR, and VRC01GR/LR to WT con-
trols. GR/LR mutant and WT forms of the individual antibodies
were present at similar serum concentrations at the time of
pseudovirus injection (Fig. S3D). Mutant 3BNC60GR/LR and
3BNC117GR/LR showed decreased activity at doses of 20 μg of
injected antibody compared with the WT form (P = 0.0027 and
P = 0.0044, respectively; Fig. 4E). Although statistically signifi-
cant, these differences were small and not found at higher or
lower doses of 3BNC60 or 3BNC117 or at any tested dose of
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Fig. 1. Construction of hCCR5-2A-hCD4. (A) Schematic diagram of the hCCR5-2A-hCD4 construct showing the sequence of the ribosomal skip 2A peptide
sequence. (B) Representative histogram plots showing the surface expression of hCCR5 and hCD4 on 293T cells transfected with hCCR5-2A-hCD4 [allophy-
cocyanin (APC); fluorescein isothiocyanate (FITC)]. (C) Functional expression of hCCR5 and hCD4. 293T cells transfected with hCCR5-2A-hCD4-IRES-RFP were
infected with YU2-GFP. Graph shows the percentage of RFP-positive cells that are also GFP positive. Mock-transfected 293T cells served as negative control
and infection with VSV-G-GFP as positive control.
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Fig. 2. Adenoviral delivery of AdV-hCCR5-2A-hCD4. (A) Schematic diagram
of the AdV construct used to deliver hCCR5-2A-hCD4. hCCR5-2A-hCD4 is
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images of two experiments are shown. (Scale bar, 30 μm.)
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VRC01. Thus, although Fc effector function seems to make
a contribution to the inhibition of HIV entry, additional studies
will be necessary to fully evaluate this component.

Nonneutralizing Antibodies in Entry Inhibition. Although plasma
concentration of anti-HIV IgG specific for the V1V2 loop region
was inversely correlated with infection risk in the recent RV144
vaccine trial, broadly neutralizing antibodies were not found (38,
39). Whether nonneutralizing monoclonal antibodies can medi-
ate protection in vivo remains controversial (53). For example,
b6, a phage-derived monoclonal anti-HIV antibody with limited
in vitro activity showed little or no protection against vaginal
SHIV challenge in macaques (54). However, the macaque
experiments were performed on a relatively small number of
subjects compared with the RV144 trial and may not have been
sufficiently powered to detect effects of the magnitude found in
the trial (38, 54). To investigate whether nonneutralizing
monoclonal antibodies can reduce viral entry, we selected two
antibodies that bind to the HIVYU-2 trimer expressed as soluble
protein (55) but that do not reach an IC50 against HIVYU-2 at
concentrations of up to 50 μg/mL in vitro: 1-79 targets the V3
loop (55), and 1-74 recognizes an epitope in proximity to the
CD4 binding site (55). Both of these antibodies were tested for
their ability to block entry in vivo by injecting mice with 200 μg as
described above. Neither reduced entry significantly compared
with the isotype control (P = 0.1848 and P = 0.0830, re-
spectively; Fig. 4F). When testing 1-79 and 1-74 for binding to
the HIVYU-2 trimer expressed on the surface of 293T cells, we
found that their binding is relatively weak compared with the
neutralizing antibodies examined above (Fig. 4G). Thus, anti-
bodies that bind weakly to the HIV trimer and do not neutralize
the virus in the TZM-bl assay seem to have little or no effect
reducing HIV entry in vivo. Additional studies with antibodies
such as those derived from the RV144 trial will be necessary to
fully evaluate the contribution of nonneutralizing antibodies in
entry inhibition.

Discussion
Basic understanding of the humoral immune response to HIV
has advanced significantly over the last several years. Antibody
cloning experiments have revealed that humans can develop
potent and broadly active serologic activity to the HIV trimer by

producing combinations of antibodies to many different epitopes
(55, 56), or by producing unique monoclonal antibodies to spe-
cific target sites, such as the CD4 binding site (42, 57). Moreover,
broadly neutralizing human monoclonal antibodies can prevent
chimeric SHIV infection in nonhuman primate models (31–35),
and antibodies seem to be the only correlate of protection in the
recent RV144 vaccine trial (38, 39).
However, progress toward an effective antibody-based vaccine

has been elusive. One of the significant challenges in this area of
research has been the development of adequate animal models
to test vaccines or to study the mechanisms of action of broadly
neutralizing antibodies. In vitro assays for antibody neutraliza-
tion such as the TZM-bl assay, which is a reproducible and re-
liable assay for neutralizing antibody activity, do not take into
account Fc-mediated antibody effector function or bioavailability
(18). Moreover, antibody-dependent cell-mediated cytotoxicity
(ADCC) and antibody-dependent cell-mediated viral inhibition
(ADCVI) assays, which are commonly used to try to measure
effector function in vitro, are far more difficult to reproduce and
standardize than the TZM-bl assay and are limited in that they
include only a fraction of the effector cells that participate in
antibody-mediated effector activity in vivo (49).
Although they cannot be infected with HIV, rhesus macaques

are the current gold standard for testing vaccines because they
can be challenged with simian immunodeficiency virus (SIV)
(58), or with chimeric SHIV (59). However, there are a number
of important issues with these models, including the fact that SIV
and SHIV do not produce the same disease in rhesus macaques
as HIV in humans, nor are they identical to HIV in terms of the
requirements for effective vaccination (60). In addition, there is
the problem of limited availability of macaques, enormous ex-
pense, inability to control for genetic heterogeneity, and finally
ethical considerations.
Humanized mice (hu-mice) containing human cell- and, in

some cases, tissue-transplants represent an alternative to mac-
aques (reviewed in ref. 61). This model may be particularly
useful for pharmacologic studies of anti-HIV drugs (62) and
passive immunization (63), but it is limited in some important
ways. Adaptive immune responses, and in particular antibody-
mediated immune responses to HIV, are not optimal in these
mice, and therefore they are not amenable to studies that require
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Fig. 3. HIV pseudovirus entry and protection in vivo. (A) Diagram summarizes method for producing HIVYU-2 pseudovirus. (B–D) ROSAfloxSTOP-Luc mice were
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vaccination (64–67). Equally important, genetic experiments are
not possible in chimeric mice containing mouse and human cells.
In contrast to hu-mice, the HIV-LUCAdV mouse model is fully

immunocompetent, providing a platform for combined immu-
nization and challenge studies using the i.v. route of infection.
This route of exposure, which occurs primarily among i.v. drug
users, represents a growing global health challenge (68). Addi-
tional advantages of the HIV-LUCAdV mice include the use of
replication-deficient pseudovirus (18) as opposed to infectious
virus and the possibility of genetic modifications. However, HIV-

LUCAdV mice express hCCR5/hCD4 in hepatocytes, a non-
physiological target of HIV, owing to preferential hepatic ex-
pression of the Coxsackie and adenovirus receptor (CAR) in
mice (69, 70). Although infection of other cell types might be
achieved, it would require transgenic expression of human CAR
(hCAR); for example, under control of the ubiquitin promoter
using the available hCAR transgenic mouse (71) or targeting
hCAR expression to specific cell types using tissue-specific pro-
moters (72). Alternatively, if expression is high enough, trans-
genic mice expressing hCCR5/hCD4 under a T cell-specific
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promoter (19) could be used after breeding to Gt(ROSA)
26Sortm1(Luc)Kaelin reporter mice. Still another alternative that
could be used in combination with humanized mice would be
infectious molecular clones that stably express luciferase (Env-
IMC-LucR) (73).
Previous experiments in hu-mice and macaques showed that

broadly neutralizing antibodies can interfere with HIV infection
in vivo (50, 51). However, these experiments could not distin-
guish whether protection from infection was due to the effects of
antibodies on infected cells or to blocking HIV entry directly, or
a combination thereof. The availability of HIV-LUCAdV mice
allowed for quantitative assessment of potent broadly neutral-
izing antibodies in vivo and revealed that the antibodies block
viral entry directly because this model does not support HIV
envelope expression on the surface of infected cells. This means
that ADCC would not influence viral control in this system;
however, other effector mechanisms, such as Fc-dependent viral
uptake by Kupffer cells or other phagocytes, could play a role in
viral clearance (74).
A large number of antibodies were compared directly using

pseudotyped virus expressing the envelope of HIVYU-2, a difficult-
to-neutralize tier 2 virus. The HIV-LUCAdV mouse model made it
possible to perform dose–response experiments with a significant
number of mice (220 in total), something that would be very dif-
ficult to achieve in macaques, for which the number of well-char-
acterized SHIV envelopes and experimental animals are very
limited. We find that neutralizing activity is related to both the
in vitro activity in TZM-bl assays and to bioavailability in vivo. For
example, VRC01 did not perform as well as 3BNC60 after s.c.
injection of equivalent doses, likely owing to the lower bio-
availability of VRC01 and the weaker in vitro neutralizing potency.
Conversely, NIH45-46G54W, which had equal potency in vitro but
lower bioavailability than 3BNC117, was similar in its ability to the
latter in blocking infection in HIV-LUCAdV mice. The low bio-
availability of NIH45-46G54W is probably related to its high levels
of polyreactivity, as evidenced by its binding to mock-transfected
HEK293T cells (Fig. 4G). Finally, our results suggest an in-
volvement of Fc effector functions in entry protection, and there-
fore our experiments are in agreement with the macaque SHIV
model (51) but extend those findings by revealing the importance
of antibody dose on the effect of the antibody Fc region on pro-
tection against HIV in vivo. Additional insights might also be
gained by evaluation of antibodies targeting glycan residues (75) or
antibodies targeting the membrane-proximal external region (74).
In conclusion, HIV-LUCAdV mice resemble the TZM-bl assay

system in that they serve as an assay for HIV entry into heter-
ologous cells, with the important additional dimension of doing

so in vivo where the effects of antibody effector functions and
bioavailability can be measured.

Materials and Methods
Animals. Gt(ROSA)26Sortm1(Luc)Kaelin (ROSAfloxSTOP-Luc) mice (27) were pur-
chased from The Jackson Laboratory. ROSAfloxSTOP-Luc mice contain the
firefly luciferase reporter under control of the ROSA26 promoter. Cre-me-
diated excision of the transcriptional stop cassette results in luciferase ex-
pression. Mice were bred and maintained at the Comparative Bioscience
Center at The Rockefeller University according to guidelines established by
its Institutional Animal Committee.

AdV Constructs. hCD4 and hCCR5 were PCR-amplified from pT4B (76) and pc.
CCR-5 (9, 77) respectively.

hCD4 forward: GTCGACGCCACCATGAACCGGGGAGTCCCTTT
hCD4 reverse: GCGGCCGCCATTCATTCATTCAAATGGGGCTACATGTCTT
hCCR5 forward: GTCGACGCCACCATGGATTATCAAGTGTCAAG
hCCR5 reverse: GCGGCCGCCATTCATTCATTCACAAGCCCACAGATATTT

hCCR5 and hCD4 were linked by the ribosomal skip T2A peptide sequence
(GSGEGRGSLLTCGDVEENPGP) (20) and inserted into pMX-IRES-mCherry (78)
using EcoRI and BamHI sites.

The adenoviral construct expressing hCCR5-2A-hCD4 was created using the
AdEasy Adenoviral Vector System (Agilent Technologies) according to the man-
ufacturer’s instructions. All plasmid constructs were verified by DNA sequencing.

A detailed description of flow cytometry, production of recombinant
AdVs, HIV pseudovirus production and in vivo infection, histological detec-
tion of hCCR5 and hCD4, serum antibody ELISA, bioluminescence imaging,
neutralization assays, recombinant protein expression and purification, site-
directed mutagenesis, gp140 ELISA, surface plasmon resonance, C1q binding
and C3 fixation assays, mAb binding to cell surface gp160, immune complex
binding assay, and statistical analysis are provided in SIMaterials andMethods.
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