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We introduce a procedure for deciding when a mass-action model
is incompatible with observed steady-state data that does not re-
quire any parameter estimation. Thus, we avoid the difficulties of
nonlinear optimization typically associatedwith methods based on
parameter fitting. Instead, we borrow ideas from algebraic geome-
try to construct a transformation of the model variables such that
any set of steady states of themodel under that transformation lies
on a common plane, irrespective of the values of the model para-
meters. Model rejection can then be performed by assessing the
degree to which the transformed data deviate from coplanarity.
We demonstrate our method by applying it to models of multisite
phosphorylation and cell death signaling. Our framework offers a
parameter-free perspective on the statistical model selection pro-
blem, which can complement conventional statistical methods in
certain classes of problems where inference has to be based on
steady-state data and the model structures allow for suitable alge-
braic relationships among the steady-state solutions.

In many branches of science and engineering, one is often inter-
ested in the problem of model selection: Given observed data

and a set of candidate models for the process generating that
data, which is the most appropriate model for that process? Such
a situation commonly arises when the inner workings of a process
are not completely understood, so that multiple models are
consistent with the current state of knowledge. For mechanistic
models, e.g., ordinary differential equation (ODE) or stochastic
dynamical models, most selection techniques involve parameter
estimation, which typically requires some form of optimization,
exploration of the parameter space, or formal inference proce-
dure (1, 2). For sufficiently complicated models, however, this
task can become infeasible, owing to the nonlinearity and multi-
modality of the objective function (which penalizes any differ-
ences between the data and the model predictions), as well as
the high dimensionality of the parameter space (3).

Here, we present a framework for the discrimination of mass-
action ODE models (and suitable generalizations thereof) that
does not require or rely upon such estimated parameters. Our
method (Fig. 1) operates on steady-state data and combines tech-
niques from algebraic geometry, linear algebra, and statistics to
determine when a given model is incompatible with the data under
all choices of the model parameters. The core idea is to use the
model equations to construct a transformation of the original vari-
ables such that any set of steady states of the model under that
transformation possesses a simple geometric structure, irrespective
of parameter values. In this case, we insist that the transformed
steady states lie on a plane, which we detect numerically; if the
observed data are not coplanar under the transformation induced
by a given model, then we can confidently reject that model.

The idea of transformation to coplanarity has been employed
before, but previous efforts were limited, in part, by its systematic
detection and quantification. For example, in ref. 4, it was neces-
sary to first manually reduce the dimension of the transformed
space to three so that coplanarity could be assessed visually.
Other related research using similar methods include refs. 5–7.
The current work extends existing methodologies by devising a
numerical scheme for quantifying the deviation from coplanarity

that generalizes to higher dimensions and allows for statistical
interpretation. Thus, we provide a richer and more powerful
framework for the application of this basic technique. Chemical
reaction network theory (CRNT) (8, 9) and stoichiometric net-
work analysis (10) likewise embrace a parameter-free philosophy
and can also be exploited for model selection (11–13).

It is worth noting that our method provides a necessary but
(generally) not sufficient condition for model compatibility: A
model that is compatible with the data must provide a transfor-
mation to coplanarity, but a model that achieves coplanarity is
not necessarily compatible, due to additional degrees of freedom
introduced in the transformation process. This work is in contrast
to traditional approaches based on parameter fitting, which pro-
vide a sufficient but not necessary condition because local extre-
ma in the cost function surface may prevent a suitable fit. These
two approaches are therefore complementary and can be used
together for improved model selection.

The remainder of this paper is organized as follows. First, we
introduce the concept of steady-state invariants (4, 5), poly-
nomials that vanish at steady state and which depend only on
experimentally accessible variables. Then we illustrate how to use
steady-state invariants to deduce coplanarity requirements for
model compatibility and how to detect such coplanarity numeri-
cally; we also discuss invariants in the context of standard para-
meter fitting techniques. Next, we apply our method to models of
multisite phosphorylation and cell death signaling. Finally, we
end with some generalizations and concluding remarks.

Steady-State Invariants
Consider a chemical reaction network model

∑
N

j¼1

sijXj→
ki

∑
N

j¼1

s 0
ijXj; i ¼ 1;…; R [1]

in the species X1;…; XN , where sij and s 0
ij are the stoichiometric

coefficients ofXj in the reactant and product sets, respectively, of
reaction i, with rate constant ki. Under mass-action kinetics, the
model has dynamics

_xi ¼ ∑
R

j¼1

kjðs 0
ji − sjiÞ

YN
k¼1

x
sjk
k ; i ¼ 1;…; N; [2]

where xi is the concentration of speciesXi (throughout, we follow
the convention that lowercase letters denote the concentrations
of the corresponding species indicated in uppercase). These
equations provide a quantitative description of the model and
can, in principle, be used to test its validity by assessing the degree
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to which they are satisfied by observed data. Unfortunately, in
practice, the required variables are rarely all available. In parti-
cular, the velocities _x ¼ ð_x1;…; _xNÞ can be difficult to measure,
so we can often consider only the steady state _x ¼ 0, as we will
do here. Furthermore, certain species may be experimentally in-
accessible due to technological limitations; we eliminate these
variables from the equations if possible.

For simple models, this elimination can be done by hand, but
a more systematic approach is required in general. One such
approach is to use Gröbner bases (14), a central tool in com-
putational algebraic geometry that provides a generalization of
Gaussian elimination for multivariate polynomial systems. Here,
we follow the general procedure of Manrai and Gunawardena (4).
LetQ½a� be the polynomial ring consisting of all polynomials in the
parameters a ¼ ðk1;…; kRÞ with coefficients from the rational
numbersQ, and let K be its fraction field, comprising all elements
of the form f∕g, where f ; g ∈ Q½a�. Clearly, each _xi ∈ K½x�, the ring
of all polynomials in x ¼ ðx1;…; xNÞ with coefficients in K. Note
that the parameters a have been absorbed into the coefficient field
K; thus, by performing all operations over K, we can treat a sym-
bolically, i.e., without specifying any particular parameter values.

To characterize the steady state _x ¼ 0, we construct the ideal
J ¼ h_xi generated by _x, consisting of all polynomials ∑N

i¼1 f i _xi,
where each f i ∈ K½x�. Clearly, J contains all elements of K½x� that
vanish at steady state. To obtain only those elements of J that do
not depend on the variables x1;…; xi, we consider the ith elim-

ination ideal Ji ¼ J ∩ K½xobs�, where xobs ¼ ðxiþ1;…; xNÞ denotes
the “observable” variables. Here, it is useful to introduce Gröb-
ner bases, which are special sets of generators with the so-called
elimination property that if g ¼ ðg1;…; gMÞ is a Gröbner basis for
J under the lexicographic ordering x1 > ⋯ > xN , then Ji ¼ hgobsi,
where gobs ¼ g ∩ K½xobs� are precisely those elements of g contain-
ing only the variables xobs. The polynomials gobs generate all ele-
ments ofK½xobs� that vanish at steady state and so characterize the
projection of the steady state onto the variables xobs.

Procedurally, we compute a reduced Gröbner basis g of J with
respect to a suitable lexicograhic ordering using standard algo-
rithms, then obtain gobs by subselection. For numerical conveni-
ence we further rescale each polynomial in gobs so that all
coefficients belong toQ½a� (i.e., we multiply through by their com-
mon denominator). Then the elements of gobs ¼ ðI1;…; IN inv

Þ
have the form

Iiðxobs; aÞ ¼ ∑
ni

j¼1

f ijðaÞ
YNobs

k¼1

x
tijk
k ; i ¼ 1;…; N inv; [3]

where we have applied the relabeling xobs ¼ ðx1;…; xNobs
Þ.

Clearly, each Ii is a polynomial in xobs that vanishes at steady
state; we call such polynomials steady-state invariants (or some-
times just invariants for short).

Note in general that steady-state invariants may fail to exist
because Ji may be empty. Moreover, invariants and their proper-
ties (e.g., degrees) can depend delicately on the choice of mono-
mial ordering. Some manual intervention is therefore often
required to obtain useful invariants. We will not treat this impor-
tant (but subtle) issue here, instead focusing on the analysis of
given invariants, however they are obtained. This approach also
has the advantage of separating the computation of invariants
from their interpretation, in principle allowing the use of invar-
iants from various theories. Steady-state invariants, if they exist,
describe relationships between observable variables that hold at
steady state for any given realization of parameter values, regard-
less of other factors such as initial conditions.

For full details on the computational procedure employed, see
the accompanying Sage worksheet, which contains code for all
computations performed (Materials and Methods). For further
background on algebraic geometry and Gröbner bases (including
the potential problems of obtaining them), see ref. 14; for other
methods of variable elimination, see, e.g., ref. 15. Similar alge-
braic ideas have also appeared in the context of phylogenetics
(16, 17).

Model Discrimination
We start with a set of steady-state measurements x̂obs;i for
i ¼ 1;…; m, and a given model with steady-state invariants
I ¼ fI1;…; INinv

g.

Data Coplanarity. An invariant, I ∈ I, can be written somewhat
simplified as

Iðxobs; aÞ ¼ ∑
n

j¼1

f jðaÞ
YNobs

k¼1

x
tjk
k : [4]

We first describe a procedure for deciding whether it is possible
that the invariant is compatible with the data, i.e.,

Iðx̂obs;i; aÞ ¼ 0; i ¼ 1;…; m; [5]

for some choice of a. We therefore rewrite Eq. 4 as

Iðy; bÞ ¼ ∑
n

j¼1

bjyj; [6]

where yj ¼
QNobs

k¼1 x
tjk
k and bj ¼ f jðaÞ, with y ¼ ðy1;…; ynÞ and

b ¼ ðb1;…; bnÞ. Let φ be the map taking xobs to y. Then compat-

Fig. 1. Parameter-free method for model discrimination.

Harrington et al. PNAS ∣ September 25, 2012 ∣ vol. 109 ∣ no. 39 ∣ 15747

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

A
PP

LI
ED

M
AT

H
EM

AT
IC
S



ibility implies that the transformed variable ŷ ¼ φðx̂obsÞ corre-
sponding to any observation x̂obs, considered as a point in Rn with
coordinates ðŷ1;…; ŷnÞ, lies on the hyperplane defined by the
coefficients b. In other words, compatibility with the data x̂obs;i
implies that the corresponding transformed data ŷi ¼ φðx̂obs;iÞ
are coplanar.

In general, it is possible that the invariant vanishes trivially
(b ¼ 0) under some choice of parameters, for which coplanarity
need no longer hold. To discount this case, we can check, for in-
stance, that the denominator of the corresponding gobs is never
zero. Then I always has at least one nonzero coefficient; here-
after in this section, we assume that the invariant is non-vanishing
in this sense.

Let Y ∈ Rm×n be the matrix whose rows consist of the ŷi. Then
the data are coplanar if and only if Yb ¼ 0 for some nontrivial
column vector b ≠ 0. Such a vector, by definition, resides in
the null space of Y , which can be found using the singular value
decomposition Y ¼ UΣV T, where the diagonal elements of Σ give
the singular values σi ≥ 0 encoding the “stretch” of each basis
vector in V . In particular, the smallest singular value σmin bounds
the norm ‖Yb‖ for any b ≠ 0 via

σmin ¼ min
‖b‖¼1

‖Yb‖; [7]

so if σmin > 0, then the data cannot be coplanar (18). More
generally, σmin gives the least squares deviation of the data from
coplanarity under the scaling constraint ‖b‖ ¼ 1. This quantity
depends only on the data and is therefore parameter-free.

Note that this requirement holds for any choice of b, regardless
of whether it can be realized by the original parameters a. In this
sense, the condition of small σmin provides a necessary but not
sufficient criterion for model compatibility. The additional degrees
of freedom introduced by neglecting the functional forms f j effec-
tively linearizes the compatibility condition expressed by Eq. [5],
allowing for a simple, direct solution.

To account for the presence of noise, suppose that we know
each component x̂k of a measurement x̂obs only up to an error
Δx̂k, with

Δx̂k ¼ ϵx̂kZ; k ¼ 1;…; Nobs; [8]

where Z ∼Nð0; 1Þ is a standard normal random variable. We
imagine that the noise parameter ϵ is given, for example, by in-
strument error. Then from the perturbation equation

yþ Δy ¼ φðxobs þ ΔxobsÞ; [9]

we find, expanding to first order, that the error is propagated to
the transformed variables as Δŷ ¼ ∇φðx̂obsÞΔx̂obs, where∇φ is the
Jacobian of φ, with elements ð∇φÞij ¼ ∂yi∕∂xj. Therefore,

Δŷj ¼ ϵjZ; ϵj ¼ ϵ∑
Nobs

k¼1

ð∇φÞjkx̂k: [10]

We now consider the effect of the Δŷi on σmin under the null
hypothesis that the underlying ŷi are coplanar with coefficients b
(of unit norm). Thus, we study the vector Yb, whose entries are
perturbed from zero to

∑
n

j¼1

bjΔŷj ¼
�
∑
n

j¼1

bjϵj

�
Z [11]

for each transformed datum ŷ. Since ‖b‖ ¼ 1 by assumption, if we
rescale each row of Y by its corresponding effective error

ϵeff ¼ max
j¼1;…;n

jϵjj ≥
����∑

n

j¼1

bjϵj

����; [12]

thus obtaining Y 0, then each entry of Y 0b has the form μiZ with
jμij ≤ 1, for i ¼ 1;…; m. We hence define the coplanarity error

Δ ¼ σminðY 0Þ ≤ ‖Y 0b‖; [13]

which, from the discussion above, is bounded by the length of a
normal random vector with variances μ2

i ≤ 1, whose distribution
function clearly dominates that of the length of a normal random
vector with variances μ2

i ¼ 1. But this latter quantity simply fol-
lows the χ distribution withm degrees of freedom. In other words,

PrðΔ ≥ xÞ ≤ PrðX ≥ xÞ; X ∼ χm; [14]

if pα is the upper α-percentile for χm (e.g., α ¼ 0.05), then

PrðΔ ≥ pαÞ ≤ PrðX ≥ pαÞ ¼ α; [15]

which gives an approximate criterion for rejecting coplanarity. As
the amount of data increases, the approximation improves since
σminðY 0Þ → ‖Y 0b‖ as m → ∞ by the symmetry of Eq. 10.

Depending on the exact situation at hand, it may be appropri-
ate to choose a more conservative significance level α or to invoke
additional criteria to decide whether a model is acceptable. In the
examples below, however, we will see that whether a model can
be rejected is often fairly obvious, and in such cases we will simply
use the asymptotic arguments based on the χm distribution.

Invariant Minimization. Steady-state invariants can also be used
in conjunction with standard parameter fitting techniques. The
basic approach is to minimize the Frobenius norm of the matrix
θ ∈ RN inv×m, with entries θij ¼ Iiðx̂obs;j; aÞ, over the parameters,
which readily provides a sufficient condition for model compat-
ibility since any a producing a small norm provides parameters
that fit the data by construction. However, the condition is not
necessary because suitable parameters may fail to be found even
for compatible models due to the intricacies of the objective
function. Clearly, prior knowledge of a can be used to guide the
optimization away from such difficulties.

Assuming that the model and its parameters are correct, each
invariant Iðx̂obs; aÞ ¼ 0 in principle. However, due to noise,
Iðx̂obs; aÞ ¼ ϵðx̂obs; aÞZ, where

ϵðx̂obs; aÞ ¼ ϵ∑
n

j¼1

f jðaÞ∑
Nobs

k¼1

ð∇φÞjkx̂k [16]

by Eq. 11. Therefore, if we use Iðx̂obs; aÞ∕ϵðx̂obs; aÞ as the entry of
θ corresponding to invariant I and datum x̂obs, then the invariant
error

θðaÞ ¼ ‖θðaÞ‖F ∼ χNinvm: [17]

This quantity can be used to compute the likelihood LðaÞ ¼
Pr½θðaÞ� and allows, e.g., various likelihood-based selection
schemes (19, 20), assuming that the optimization can be per-
formed. Here, we use the Akaike information criterion (AIC),

A ¼ 2R − 2 logLmax; [18]

where Lmax ¼ maxa LðaÞ, which penalizes model complexity; the
preferred model is the one with the minimum AIC (21).

Results
We apply our methods to two illustrative biological processes for
which competing models exist: multisite phosphorylation and cell
death signaling.

Multisite Phosphorylation.We focus first on phosphorylation, a key
cellular regulatory mechanism that has been the subject of exten-
sive study, both experimentally (22–24) and theoretically (4, 5,
25–27). Following ref. 4, we consider a two-site system with
reactions,
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K þ Su ⇌
au

bu
KSu→

cuvK þ Sv; [19]

F þ Sv ⇌
αv

βv
FSv→

γvuF þ Su; [20]

where u; v ∈ f0; 1g2 are bit strings of length two, encoding the
occupancies of each site (0 or 1 for the absence or presence,
respectively, of a phosphate), with u having less bits than v; Su
is the phosphoform with phosphorylation state u; K is a kinase,
an enzyme that adds phosphates; and F is a phosphatase, an
enzyme that removes phosphates. Each enzyme can be either
processive (P), where more than one phosphate modification may
be achieved in a single step, or distributive (D), where only one
modification is allowed before the enzyme dissociates from the
substrate (c0011 ¼ 0 forK, γ1100 for F). This mechanistic diversity
generates four competing models: PP, PD, DP, and DD; where
the first letter designates the mechanism of the kinase, and the
second, that of the phosphatase.

As in ref. 4, we consider only the concentrations xobs ¼
ðs00; s01; s10; s11Þ as observable and use the ordering,

ðks00; ks01; ks10; f s01; f s10; f s11; k; f ; s00; s01; s10; s11Þ; [21]

with which we are able to eliminate all other variables except f
from the dynamics of each model. The remaining Gröbner basis
polynomials are of the form pðf ; xobsÞ ¼ f · qðxobsÞ, where f ≠ 0
unless there is no phosphatase in the system, which we assume
not to be the case, so we take only the observable part qðxobsÞ.
It is easy to check that the resulting denominators are always
of one sign.

Each model has three steady-state invariants. Matched appro-
priately, the invariants for model PP share the same transformed
variables y ¼ φðxobsÞ as those for PD; the same is true for DP and
DD. Thus, in terms of the transformed data, only the kinase
mechanism is discriminative. Between PP/PD and DP/DD, two
invariants (I1 and I2) are discriminative in principle, though
only one (I2) succeeds numerically: For simulated data from
the PP/PD models, provided that the noise level is sufficiently
low, coplanarity on I2 is able to correctly reject the DP/DD mod-
els at significance level α ¼ 0.05 (Δ ∼ 105 versus Δ ∼ 1 for PP/PD
at ϵ ¼ 10−9, against a threshold of pα ¼ 11.2). The corresponding
test using DP/DD data is not successful due to the form of I2,
which has transformed variables,

y PP∕PD¼ ðs00s10; s00s11; s01s10; s01s11; s210; s10s11Þ; [22]

yDP∕DD ¼ ðs00s11; s01s10; s01s11; s210; s10s11Þ [23]

for PP/PD and DP/DD, respectively, i.e., yPP∕PD has the addi-
tional variable s00s10 over yDP∕DD. Therefore, PP/PD models
can be made to fit DP/DD data simply by setting the coefficient
corresponding to s00s10 to zero, which is in fact what we observe.
No model is rejected on the basis of data generated from it.

We emphasize that these results are specific to the particular
ordering chosen. Indeed, one can make the phosphatase mechan-
ism discriminative instead by reversing the order of the variables
xobs in Eq. 21. The exhaustive analysis of such orderings is beyond
the scope here; rather, we aim to illustrate the potential uses (and
usefulness) of this type of approach using concrete examples.

Although the condition of coplanarity is technically valid only
at steady state, there should nevertheless be some convergence
over time to coplanarity for any compatible model. We hence
compute Δ for the PP/PD and DP/DD models along time course
trajectories simulated from model PP at various levels of ϵ
(Fig. 2A). For low noise, the results confirm convergence for in-
variants previously identified as compatible (all Ii for PP/PD; I1
and I3 for DP/DD), with stagnation for incompatible invariants

(I2 for DP/DD); these results suggest wider applicability of this
method, provided that the data are approaching steady state rea-
sonably fast. As the noise increases, however, Δ decreases inver-
sely proportionally, until the stagnation point hits the basal error
level of Δ ∼ 1 and we lose all power to reject. Additional simula-
tions estimate the critical noise level at ϵ ∼ 10−4 (Fig. 2B).

To further discriminate between all four models we next turn
to invariant minimization. The required optimization involves
highly nonlinear functions, so success should be expected only
if we have good initial estimates of the model parameters, which
can be rather strong demand. In such a case, however, minimiza-
tion is indeed capable of identifying the correct model from the
data so long as ϵ≲ 10−5 (Fig. 2C). These results reinforce our
belief that the algebraic approach proposed here naturally com-
plements conventional (i.e., parametric) reverse engineering
schemes such as optimization or inference procedures.

Fig. 2. Discrimination of multisite phosphorylation models. (A) Coplanarity
error Δ of the steady-state invariants of the PP/PD (Left) and DP/DD (Right)
models along time course trajectories simulated from the PP model, cor-
rupted by various levels of noise (lined, ϵ ¼ 10−9; dashed, ϵ ¼ 10−6; dotted,
ϵ ¼ 10−3). At each noise level, the errors for three invariants are shown (blue,
I1; green, I2; red, I3). (B) Coplanarity error Δ of DP/DD invariants on PP data at
steady state as a function of the noise level ϵ; invariants colored as in A. The
shaded region indicates the regime over which the DP/DD models can be re-
jected at significance level α ¼ 0.05. (C) Invariant error AIC A for each model
(blue, PP; green, PD; red, DP; cyan, DD) on data generated from the PP (Upper
Left), PD (Upper Right), DP (Lower Left), and DD (Lower Right) models.
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Cell Death Signaling. We next apply our methods to receptor-
mediated cell death signaling, the so-called extrinsic apoptosis
pathway, which plays a prominent role in cancers and other dis-
eases (28–31). Specifically, we consider the assembly of the death-
inducing signaling complex (DISC), a multiprotein oligomer
formed by the association of FasL, a death ligand, with its cognate
receptor Fas (32, 33).

We investigate two models of DISC formation. The first (34),
which we call the cross-linking model is based on the successive
binding of Fas (R) to FasL (L),

Lþ R⇌
3kf

kr
C1; [24]

C1 þ R⇌
2kf

2kr
C2; [25]

C2 þ R⇌
kf

3kr
C3; [26]

whereCi is the complex FasL∶Fasi. The second (6), which we call
the cluster model, posits three forms of Fas (inactive, X ; active
and unstable, Y ; active and stable, Z) and specifies receptor clus-
ter-stabilization events driven by FasL,

X ⇌
ko

kc
Y ; [27]

Z→
kuY; [28]

jY þ ði − jÞZ→
k ðiÞ
s ðj − kÞY þ ði − jþ kÞZ; [29]

Lþ jY þ ði − jÞZ→
k ðiÞ
l Lþ ðj − kÞY þ ði − jþ kÞZ; [30]

where the last two reactions represent entire families generated
by taking i ¼ 2 or 3, with j ¼ 1;…; i and k ¼ 1;…; j. The cluster
model is capable of bistability, whereas the cross-linking model
exhibits only monostable behavior (6).

The two models are structurally very different, and discrimi-
nating between them requires some care. Hence, following ref.
6, we establish a correspondence between the models by consid-
ering the apoptotic signal ζ transduced by the DISC, defined as
ζ ¼ c1 þ 2c2 þ 3c3 for the cross-linking model and ζ ¼ z for the
cluster model. We assume that ζ is experimentally accessible;
other variables assumed accessible include λ, the total concentra-
tion of FasL (λ ¼ lþ c1 þ c2 þ c3 and λ ¼ l for the cross-linking
and cluster models, respectively), and ρ, the total concentration
of Fas (ρ ¼ r þ c1 þ 2c2 þ 3c3 and ρ ¼ xþ yþ z, respectively).
Eliminating all other variables via the orderings ðc2; c3; λ; ρ; ζÞ
and ðy; λ; ρ; ζÞ for the cross-linking and cluster models, respec-
tively (after appropriate variable substitutions), we obtain one
non-vanishing steady-state invariant for each model. The dimen-
sions of the transformed spaces are 5 and 15 for the cross-linking
and cluster models, respectively.

As for phosphorylation, we compute the coplanarity error for
each invariant on time course data simulated from each model at
various noise levels. Although results are inconclusive for data
from the cross-linking model, the coplanarity criterion can reject
the cross-linking model on the basis of cluster model data at
α ¼ 0.05, provided that ϵ≲ 10−2 (Fig. 3 A and B). The minimi-
zation protocol also correctly identifies the model from the data
over the same range of noise levels (Fig. 3C).

Discussion
In this paper, we have presented a model discrimination scheme
based on steady-state coplanarity that does not require known or
estimated parameter values. Thus we are able to sidestep the

parameter inference problem common to many fields including
systems biology (3, 35). Such algebraic methods are not always
effective, however; steady-state invariants may not exist, and even
when they do, the additional degrees of freedom introduced by
effective linearization can cause the method to fail. A promising
solution to the problem when invariants cannot be calculated
using Gröbner bases may be to employ invariants from CRNT
(36). Our results also suggest a somewhat low tolerance for noise,
which can restrict its applicability. Significantly, our method has
the unique feature that it can be applied with complete ignorance
of parameter values, and is therefore a useful additional tool in
the analysis of inverse problems involving dynamical systems.

Rather than competing directly with current model discrimina-
tion techniques, we expect that coplanarity will form one end of
an entire spectrum of methods, to be used when no parameter
information is available. At the other end lie methods based on
parameter estimation (including invariant minimization), which,
for dynamical systems, can depend delicately on qualitative and
quantitative aspects of the systems under consideration (37, 38).
The intermediate regime comprises techniques that can leverage
partial knowledge, for instance, constraints on certain parameter
values or qualitative features of the dynamics (39). Along this
spectrum, naturally, the discriminative power increases with the
amount of prior information available. In this broader context,

Fig. 3. Discrimination of cell death signaling models. (A) Coplanarity error Δ
of the steady-state invariants of the cross-linking (Left) and cluster (Right)
models along time course trajectories simulated from the cluster model,
corrupted by various levels of noise (blue, ϵ ¼ 10−9; green, ϵ ¼ 10−6; red,
ϵ ¼ 10−3). (B) Coplanarity error Δ of model invariants (blue, cross-linking;
green, cluster) on cluster data at steady state as a function of the noise level
ϵ. The shaded region indicates the regime over which the cross-linking model
can be rejected at significance level α ¼ 0.05. (C) Invariant error AIC A for
each model (blue, cross-linking; green, cluster) on data generated from
the cross-linking (Left) and cluster (Right) models.

15750 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1117073109 Harrington et al.



coplanarity can be used to efficiently reject candidate models
before employing more demanding parameter estimation tools.
Thus, it can serve as a preprocessor to thin out the model space.
The real advantages and limitations of any inferential procedure
become apparent once their performance can be evaluated in real-
world applications, which is perhaps particularly true for this cur-
rent approach. Certainly a range of theoretical and computational
issues surround algebraic methods which will likely impact their
applicability. Here we have found that a pragmatic approach yields
some useful insights for small and intermediate-sized problems.

Finally, we remark that the presented scheme is perhaps the
simplest of a potential class of parameter-free selection methods
based on the detection of geometric structure. In this view, trans-
formation to coplanarity is just one of many low-dimensional de-
scriptions of such structure. The existence of low-dimensional
representations has recently been predicted in neuronal signaling
(40), and can ultimately be attributed to the inherent robustness
of biological systems (41, 42).

Materials and Methods
Gröbner Basis Calculation. All reduced Gröbner bases are computed over the
fieldK of rational functions in the parameters awith rational coefficients, under
a suitable lexicographic orderingwith the observables xobs located at the end of
the variable list, using the computer algebra system SINGULAR (http://www
.singular.uni-kl.de/) as interfaced through Sage (http://www.sagemath.org/).

Data Generation. For each model parameters are drawn independently from
a log-normal distribution with median μ� ¼ eμ ¼ 1 and multiplicative
standard deviation σ� ¼ eσ ¼ 2, where μ and σ are the mean and standard
deviation, respectively, of the underlying normal distribution. Using these
parameters m ¼ 100 time course trajectories are computed for each model
via integration of the model ODEs over the time interval 0 ≤ t ≤ 100; each

trajectory is seeded by random initial conditions sampled from a log-normal
distribution also with μ� ¼ 1 and σ� ¼ 2. Integration is performed using the
solver LSODA as wrapped in SciPy (http://www.scipy.org/). The data are then
corrupted by noise of varying levels from ϵ ¼ 10−9 to 10−1, for each ϵ, multi-
plying the nominal data by random log-normal samples with μ� ¼ 1

and σ� ¼ 1þ ϵ.

Invariant Minimization. Invariant error likelihood maximization is performed
in two phases. First, an approximate optimal parameter set is obtained
by minimizing the Frobenius norm of the matrix η ∈ RNinv×m, where each
entry corresponds to an invariant-datum pair as in θ, but with values
Iðx̂obs; aÞ∕Mðx̂obs; aÞ, where

Mðx̂obs; aÞ ¼ ∑
n

j¼1

����f jðaÞ
YNobs

k¼1

x̂
tjk
k

����: [31]

The result is then taken as an initial parameter estimate to compute Lmax. All
optimizations are performed using L-BFGS-B (43) through SciPy, with lower
and upper bounds of 0.01 and 100, respectively, for each variable. The mini-
mization of ‖η‖F is seeded with initial value 1 for all variables.

Computational Platform. All computations are performed centrally in Sage,
making use of its interfaces to various programs. Plots were produced using
matplotlib (http://matplotlib.sourceforge.net/). The Sage worksheet for this
paper, which contains code for all computations performed, is available at
http://www.sagenb.org/home/pub/3462/.
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