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The energy landscape approach has played a fundamental role in
advancing our understanding of protein folding. Here, we quantify
protein folding energy landscapes by exploring the underlying
density of states. We identify three quantities essential for charac-
terizing landscape topography: the stabilizing energy gap between
the native and nonnative ensembles δE, the energetic roughness
ΔE, and the scale of landscape measured by the entropy S. We
show that the dimensionless ratio between the gap, roughness,
and entropy of the system Λ ¼ δE∕ðΔE ffiffiffiffiffiffi

2S
p Þ accurately predicts the

thermodynamics, as well as the kinetics of folding. Large Λ implies
that the energy gap (or landscape slope towards the native state) is
dominant, leading to more funneled landscapes. We investigate
the role of topological and energetic roughness for proteins of dif-
ferent sizes and for proteins of the same size, but with different
structural topologies. The landscape topography ratio Λ is shown
to be monotonically correlated with the thermodynamic stability
against trapping, as characterized by the ratio of folding tempera-
ture versus trapping temperature. Furthermore, Λ also monotoni-
cally correlates with the folding kinetic rates. These results provide
the quantitative bridge between the landscape topography and
experimental folding measurements.

energy landscape theory ∣ biomolecular dynamics

Understanding how the amino acid sequence (i.e., primary
structure) of each protein enables the native three-dimen-

sional structure to be reached is one of the major challenges
in molecular biophysics. In 1969, the arguments of Levinthal
led to the suggestion of an apparent kinetic paradox (1). That
is, if proteins were to randomly explore all possible states, cosmo-
logical timescales would be required for each protein to find the
folded configuration. However, naturally occurring proteins fold
in milliseconds to seconds. Protein folding theory has resolved
this paradox by demonstrating that the underlying energy land-
scape is “funneled” towards the native state (2–9), however, local
traps may be encountered during folding. To ensure that the fold-
ing occurs on biologically relevant timescales, the steepness of the
protein folding funnel should be large, compared with the rough-
ness due to local traps. Although this theory has provided the
conceptual framework for interpreting folding experiments, both
qualitatively and quantitatively (2, 5–18), it has yet to be explicitly
demonstrated how the shape of the underlying landscape governs
the thermodynamic stability and speed of folding, as measured
experimentally (19). Here, we meet this challenge by quantifying
the landscape topography and establishing the connection be-
tween the thermodynamics and kinetics of protein folding.

Naturally selected proteins differ from random sequences in
that they fold into unique three-dimensional functional config-
urations. This indicates that the information necessary to fold
is embedded in the amino acid sequence. This intrinsic informa-
tion manifests in the form of energetic interactions and entropic
contributions, which together define the temperature-dependent

free-energy landscape. For describing folding, we are interested
in the solvent-averaged effective energy, rather than the direct
interactions between atoms (20, 21). Whereas detailed solvent–
solute interactions contribute to the overall energetics, hydropho-
bic and hydrophilic interactions are described as solvent-averaged
effects that drive folding. Similarly, the entropy of interest is
the solvent-averaged configurational entropy of the polymer.
Accordingly, the energy funnel describes the funnel-like charac-
ter of the effective energy and configurational entropy.

We quantify the landscape by calculating the density of states
in configuration and energy space. The density of states gives the
probability of each energy/configuration and it does not depend
explicitly on temperature. Accordingly, it describes the intrinsic
energy landscape. The density of states is obtained from the mi-
crocanonical ensemble, whereas simulations of protein folding
are usually performed for the canonical ensemble, which yields
information on the free energy. In order to obtain the density of
states, we transform the simulated canonical ensemble to the
microcanonical ensemble.

To identify a robust metric that measures the “degree of fun-
neledness” and overall topography of the landscape, we have
used structure-based models with and without explicit energetic
roughness (details in Materials and Methods). For both, funneled
and rough landscapes, we explicitly demonstrate that three quan-
tities are essential for characterizing the effective folding land-
scape topography: the energy gap (bias or slope of the funnel)
(22, 23) between the native state and the average nonnative states
δE ¼ jEn − Ēnon−nativej , the roughness in the energies ΔE, and
the size of the funnel measured by the configurational entropy
of the system S ¼ kB lnΩ (where Ω is the number of states).
We show that the dimensionless ratio between the gap, roughness
and configurational entropy of the system Λ ¼ δE∕ðΔE ffiffiffiffiffiffi

2S
p Þ

measures the landscape topography, and quantifies the degree
of the funnel. Consistent with previous work (24), Λ is strongly
correlated with the thermodynamic stability against traps (char-
acterized by the ratio of the folding temperature versus the trap-
ping temperature) and the folding kinetic rates. These results
provide the quantitative bridge between the landscape topogra-
phy and experimental folding measurements.
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Results and Discussions
Density of States and the Energy Landscape of Protein Folding. We
explored the effective energy landscape and quantified the under-
lying topography to establish the link between the thermody-
namics and kinetics of protein folding. We first performed
molecular dynamics simulations, using a structure-based model,
with and without energetic frustration included. The canonical en-
semble can be efficiently sampled with replica (temperature) ex-
change methods (25–32). This provides a temperature-dependent
distribution of the energies, which we then transform into the mi-
crocanonical ensemble through use of the weighted histogram
analysis method (WHAM) algorithm (33). Because size effects
can have a large influence on dynamics, it is crucial that we parti-
tion size-scaling and structural (or topological) effects. To do so,
we studied two sets of proteins: The first group is formed by 13
proteins that vary in size, and the second is composed of nine pro-
teins with similar size and different structural motifs (see SI
Appendix for full analysis of each protein).

To visualize the energy landscape of folding, we projected the
density of states onto specific order parameters, or reaction
coordinates. The simplest representation of the landscape is the
energy spectrum (Fig. 1) (34–36). From this, one may extract the
stability gap δE and roughness ΔE (indicated by vertical arrows
for each protein). The energy gap between the native and non-
native ensembles measures the bias, or slope, towards the native
state. In contrast, the dispersion in energies describes the ener-
getic roughness of the landscape. As shown in Fig. 1, there is a
distinct gap between the native energy and the average energy of
the nonnative states. With these models, all of the fast folding
proteins that we studied have significant gaps, or biases, towards
the native state. However, for each protein, the degree of rough-
ness and scale of the gap are unique. As we will show, these
differences allow one to classify proteins according to their ther-
modynamic and kinetic properties, and thereby provide a quan-
titative bridge between the funnel diagram and the physical–
chemical properties of protein folding.

Size, Steepness, and Roughness of Folding Funnels. For an energeti-
cally unfrustrated model, the number of states (i.e., the configura-
tional entropy S ¼ ln½nðEÞ�) decreases monotonically with
decreasing energy. In other words, the states are more sparsely
distributed as the energy is lowered. This is different from the
canonical ensemble distribution nðE; TÞ, where T is the tempera-
ture and low energies have higher populations [nðE; TÞ∼
nðEÞ exp½E∕kBT�]. The distribution of energy states, or density
of states nðEÞ, is intrinsic to the system (i.e., not temperature
dependent), and thus reflects the underlying landscape of the
protein folding funnel. The configurational entropy SðEÞ mea-
sures how many states are accessible and, therefore, describes
the size of the state space. Initially, the size of the funnel is large
for the unfolded states. As expected, the size of the funnel

decreases as the native ensemble is approached. Additionally, the
rate of decrease, or the slope, of the configurational entropy
towards the native state in energy is different for different
proteins (Fig. 2).

To estimate the glassy-like trapping temperature Tg, which
describes the temperature at which the configurational entropy
associated with nonnative states vanishes, the density of states
was partitioned into native and nonnative ensembles. This was
achieved by classifying the simulated configurations by their
structural proximity to the native state (SI Appendix, Fig. S5).
Using the microcanonical ensemble, Tg was determined accord-
ing to the thermodynamic Maxwell relationship ∂S∕∂E ¼ 1∕T,
and ∂S∕∂E was calculated for the unfolded ensemble. Tg corre-
sponds to the temperature below which the system becomes
trapped or “frozen.” Consistent with these measures of Tg, in
our simulations, as T approaches Tg, the kinetics significantly
slows down, has increased dispersion in the folding time, and be-
comes nonself-averaging (SI Appendix, Figs. S14 and S20). From
Tg, the roughness of the underlying energy landscape of folding
ΔE is determined from the relation Tg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2∕2S

p
, where S is

the configurational entropy of nonnative states (22). In contrast
to Tg, the folding temperature Tf is obtained directly from the
heat capacity curve, which is experimentally accessible.

Because experiments do not report on the configurational en-
tropy and enthalpy of each configuration directly, it is important
that we understand the connection between energetic and struc-
tural metrics of protein folding. Fig. 3 A and B show the density of
states as a function of the order parameter Q, which is defined
here as the fraction of native contacts formed (37). The config-
urational entropy, or density of states, decreases monotonically
withQ. In other words, as folding proceeds, the size of the funnel
[measured by SðQÞ] decreases, where the the slope is distinct for
each protein. The average energy also monotonically decreases as
the system becomes more folded (Fig. 3 C and D). This depicts
the funneled nature of the simulated landscapes. For an analyti-
cal mean field theory of protein folding (22), the energy gap is
closely linked to the slope of EðQÞ. Here, there is also a strong
correlation between the average slope of the energy landscape
EðQÞ and the energy gap (SI Appendix, Figs. S12 and S18),
explicitly confirming that the models describe the landscape as
being funneled.

There are many qualitative folding funnel illustrations avail-
able, though none have been quantitatively derived from experi-
mental or theoretical measurements. In Fig. 4, we show three
quantified folding funnels of villin headpiece, CI2 and P13, ob-
tained directly from simulations. These funnels encapsulate the
data described in Figs. 1–3. The horizontal axis is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 −QÞSr

p
,

where the area in the ellipsoid is equal to the configurational en-
tropy SðEÞ, which provides the size of the funnel. The picture
illustrates that as folding proceeds towards the native state,
SðEÞ and the effective energy EðQÞ (vertical axis) decrease.
The steepness of the funnel is determined by the slope of the
energy (with respect to Q), as well as the slope of the configura-
tional entropy. The depicted roughness in the funnel is due to the

Fig. 1. Folding energy landscapes in zero dimensions. The distribution of
the energy levels (spectrum) for (A) three (of 13 studied. See SI Appendix.)
proteins with different sizes and (B) three (of nine) proteins with the same
size. The lowest (native) energy En is set to 0 for visualization purposes. The
stability gap δE between the native state and the average nonnative states is
indicated by vertical arrows. Each energy level of the distribution represents
the sum of a cluster of states, except for the native band. The inset is a mag-
nification of the energy levels of CI2, with the scale of the energetic rough-
ness ΔE indicated by a vertical arrow.

A B

Fig. 2. Folding energy landscapes in one dimension. Logarithm of the
density of states as a function of energy for (A) three (of 13) proteins with
different sizes and (B) three (of nine) proteins of the same size. The lowest
(native) energy En is set to 0 for visualization purposes.
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imperfect correlation between Q and E (details in SI Appendix).
As the protein folds, the radius of the funnel [related to ð1 −QÞ],
the steepness of landscape, and the size of the funnel all decrease.
The overall shape of the funnel is then determined by the steep-
ness over the roughness and the size (entropy) of the unfolded
ensemble.

Free-Energy Profile of Protein Folding. In contrast to the density of
states, the free-energy landscape is dependent on temperature,
which can give the impression that a particular landscape is not
funneled, even when the underlying density of states is. Fig. 5 A
and B show the free energy as a function of the folding coordinate
FðQÞ, at the folding temperatureTf . The profiles were calculated
from a Cα structure-based model for downhill folders (villin
headpiece), two-state folders (CI2 and P13) with different sizes,
and proteins with the same size but different structural topolo-
gies. The shape of the free-energy landscape results from a bal-
ance between energy and configurational entropy, leading to its
explicit dependence on temperature. For two-state folders, at Tf
the free energies of the folded and unfolded ensembles are equal.
Below Tf , the free energy is dominated by the effective enthalpy
and the system is biased towards the native ensemble. Above Tf ,
the free energy is dominated by the configurational entropy and is
heavily weighted towards the nonnative ensemble. For compar-

ison to other common measures of folding, we also calculated
the free energy at Tχ (38), which is the temperature at which
the native ensemble accounts for 80% of the population (SI
Appendix, Fig. S28 A–C). At T0, the folding kinetics is the fastest
(SI Appendix, Fig. S28 D–F). Because Tχ is lower than Tf , the
free-energy profiles are biased towards the native state. As tem-
perature approaches T0, the folding of each protein becomes
downhill-like. Two-dimensional free-energy profiles at Tf , Tχ,
T0 are shown in Fig. 5C and SI Appendix, Fig. S28 G and H.
The relative free energy of the native ensemble and nonnative
ensemble provides a measure of thermodynamics (or equilibrium
constants), linking to thermodynamic folding experiments.

Some of the studied proteins are strong folders, with one basin
of attraction in the free-energy landscape. The slope of the free-
energy landscape for the one-state folders measures how easy it
is to fold. For other proteins, two basins of attraction emerge,
leading to the two-state behavior of the proteins, as is often
seen in protein folding experiments. The barrier heights of the
two-state folders measure how difficult it is to fold. The often
nonfunnel-like folding free-energy landscape is the result of a
competition and imperfect cancelation between energy and con-
figurational entropy. This is the view from the canonical ensem-
ble. For the microcanonical ensemble, whereas the underlying
energy landscape is also determined by the competition between
energy, roughness, and configurational entropy, there is only one
basin of attraction that shapes the energy landscape.

Energy Landscape Topography Determines the Thermodynamics of
Folding. The landscape topographic measure Λ correlates with
the thermodynamic folding stability against trapping for several
classes of proteins and energetic models (Fig. 6): (a) proteins
of different sizes with different structural topologies that are
modeled without energetic roughness [i.e., completely funneled
landscape (39)]; (b) proteins of different sizes, modeled with en-
ergetic roughnesses; (c) proteins of the same size, but different
topologies, without energetic roughness included; (d) proteins of
the same size with different structural topologies and energetic

Fig. 4. Quantified funneled landscapes for villin headpiece (Left), CI2 (Cen-
ter) and P13 (Right) obtained from simulation. The depth of the funnel is the
energy and the cross-section perpendicular to the energy axis is an ellipsoid
with an area equal to the configurational entropy SðEÞ. The semimajor axis of
the ellipsoid at each stratum is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 −QðEÞÞSr
p

, which is a function of the frac-
tion of native contacts QðEÞ, Sr is a constant for each protein. The other semi-
axis is given by SðEÞ∕ðπ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 −QðEÞÞSr

p Þ. Both energy and configurational
entropy are normalized by the protein size.

A B

C

Fig. 5. The free energy at folding temperature in one dimension as a func-
tion of fraction of native contacts Q and in two dimension as a function of Q
and energy. Free-energy profile, at folding temperature Tf , as a function of Q
for (A) three (of 13) proteins with different sizes and (B) three (of nine) pro-
teins with the same size. (C) Two-dimensional free-energy profile for CI2 as a
function of Q and energy at Tf normalized by the corresponding kBTf .

A B

C D

Fig. 3. Folding energy landscapes in one dimension. Logarithm of the
density of states as a function of the fraction of native contacts Q for (A)
three (of 13) proteins of different sizes and (B) three of the nine proteins
of same size. Average energy as a function of Q for (C) three of the 13 dif-
ferent-sized proteins and (D) three of the nine proteins with same size.
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roughness included. For each group, we find a strong positive
correlation between thermodynamic stability [characterized by
the dimensionless ratio of folding transition temperature to the
trapping temperature Tf∕Tg (40–42)] and Λ, which is consistent
with expectations from mean field theory (2, 7, 22, 43). That is,
the steeper and less rugged (or the smaller the size of) the funnel,
the more thermodynamically stable the protein is against ener-
getic traps. This demonstrates that the thermodynamic stability
of proteins that is measured from experiments will reflect the
the underlying topography of the landscape. Specifically, these
results demonstrate that Tf and Tg (44) measurements will allow
us to infer the characteristics of the underlying landscape.

For each class of proteins, the origin of the correlation between
Λ and Tf∕Tg may be attributed to different features. Because the
slope, roughness, and configurational entropy of the landscape,
as well as the folding and trapping temperatures, all depend
on protein size, the correlation across different-sized proteins
(Fig. 6A) is expected from scaling considerations (SI Appendix,
Figs. S11 and S13). This is inconsistent with mean field approx-
imations because finite sizes and the capillarity of protein folding
are accounted for here (45). When energetic roughness is in-
cluded (Fig. 6B) the trapping temperature and Λ are altered, and
the correlation is due to the energetic roughness dependence of
both. For proteins with different structural topologies (Fig. 6C),
size-scaling arguments cannot account for the correlation, which
implicates the residue–residue connectivity as leading to changes
in the underlying slope, roughness, and size of the landscape.
When introducing energetic roughness to proteins of the same
size (Fig. 6D) the origin of the correlation is again due to con-
comitant changes in landscape topography and thermodynamic
stability. Thus, these results demonstrate that Λ is a measure
of landscape topography that can accurately predict the thermo-
dynamic stability against trapping, whether or not they are size-
scaling or energetic in origin.

Energy Landscape Topography Determines the Kinetics of Folding. To
explore the relationship between the landscape topography and

kinetics, we have simulated folding and calculated the kinetic
rates. We first investigated proteins of different sizes, using an
energetically unfrustrated model that has been shown to produce
folding kinetics that are correlated with experimental measure-
ments (11, 45–58). Kinetic simulations were performed at the
temperature Tχ, where 80% of the population occupies the na-
tive ensemble (38). We find that the rates are strongly negatively
correlated with the landscape topographic measure Λ (Fig. 7).
This illustrates that the steeper, less rugged, or smaller size
(i.e., less entropy) of the folding funnel, the faster folding occurs
(59, 60). This strong correlation indicates that experimental
measures of the folding speed can be used to obtain quantitative
measures of the underlying energy landscape.

Because the kinetic rate and landscape topography measure
Λ depend on size, the correlation for proteins of different sizes
(in the energetically unfrustrated model) may result from size-
dependent effects. To address this potential limitation in our
description of kinetics and topography, we calculated the folding
kinetics for proteins of different sizes, with a variable degree of
energetic roughness included (Fig. 7B). We find a comparable
correlation when using models with energetic roughness. Because
the landscape topography is directly related to the energetic
roughness, and the kinetic rates also depend on the energetic
roughness (rougher landscape slows down kinetics), the correla-
tion between the landscape topography and folding speed reflects
the influence of energetic roughness. It is worth noting that, when
the nonnative interaction strength is increased from zero, the
correlation between folding rate and Λ is negligible. This is
consistent with theoretical considerations and simulations that
have shown that a small degree of nonnative interactions (relative
to a completely unfrustrated landscape) can decrease the free-
energy barrier and accelerate folding rates (39, 61). In the present
study, the model is structure based, where large values of Λ cor-
respond to a very small degree of energetic roughness, whereas
proteins must have a finite degree of roughness in their land-
scapes. Thus, for proteins in solution, one does not expect to
observe such accelerating effects because the landscapes have
a finite degree of roughness already. Therefore, the correlation

A B

C D

Fig. 6. The correlation between folding against trapping Tf∕Tg and land-
scape topography Λ. The red line is the analytical mean field theory predic-
tion of the relationship between Tf∕Tg and Λ: Tf∕Tg ¼ Λþ ðΛ2 − 1Þ1∕2. The
blue line is a linear fit of Tf∕Tg versus Λ. For all cases, the correlation coeffi-
cient (c.c) is greater than 0.9. (A) Folding of proteins of different sizes and
different structural topologies, but no energetic roughness. (B) Folding of
different-sized proteins with energetic roughness. (C) Folding of proteins
of similar size with different structural topologies but no energetic roughness
included. (D) Folding of same-size proteins with energetic roughness in-
cluded. In B and D, b sets the energy variance of the non-native interactions
(details in SI Appendix). Λ monotonically correlates with b.

A B

C D

Fig. 7. The correlation between the kinetic rates of folding and landscape
topography Λ, shown for: (A) proteins of different sizes and topologies, with-
out energetic roughness included (c:c: ¼ −0.87); (B) proteins of different sizes
with varying degrees of energetic roughness included; (C) proteins of similar
size and different structural topologies but no energetic roughness included
(c:c: ¼ −0.89); (D) proteins of the same size with energetic roughness in-
cluded. The landscape topography Λ is strongly correlated with folding time.
The folding time is in reduced units.
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between folding rates and Λ is likely to be monotonic in real pro-
teins, where larger Λ leads to larger folding rate.

To remove size-scaling effects and identify the structural con-
tributions to the folding kinetics, we performed simulations of
nine proteins that are comparable in size (Fig. 7C). We first
explored the folding kinetics for proteins of the same size and
different structural topologies, with a model that lacks energetic
roughness. For those cases, the structural topologies determine
the configurational entropy, landscape slope, and connectivity of
substates. The correlation between the landscape topography and
folding speed, therefore, demonstrates the structural-topology
dependence of the landscape. To ensure that these results are not
model dependent, we repeated these calculations with a model
that included stabilizing nonnative interactions (Fig. 7D). We
again find that the energetic roughness has a considerable impact
on the landscape topography and leads to a correlation between
the underlying topography and folding speed.

Because other metrics, such as contact order [CO, an entropic
measure based on the native structure of proteins (53, 61–64)],
are found to be correlated with the kinetics of folding, Λ should
be correlated with those quantities. The correlation between the
relative contact order (RCO) and Λ for proteins of the same size
with the energetically unfrustrated model implies that Λ contains
the structural topological information of each protein (Fig. 8A).
In addition, our results show that RCO is correlated with the
folding rate for the nine same-sized energetically unfrustrated
proteins (Fig. 8B). Compared with RCO, the energy landscape
topography measure Λ shows a stronger correlation with the fold-
ing rates. Although such observations reinforce the notion that
native-state topology influences the kinetics, the presented land-
scape topography measure Λ captures the topological and ener-
getic contributions to the landscape and is capable of predicting
the thermodynamics and kinetics of folding.

Conclusions
We have quantified the energy landscape of protein folding by
calculating the underlying density of states. Based on the density
of states, we have shown that the dimensionless ratio between
the gap, roughness, and configurational entropy of the system
[Λ ¼ δE∕ðΔE ffiffiffiffiffiffi

2S
p Þ] quantifies the topography of the underlying

landscape and measures the degree of its funneledness. Λ repre-
sents a universal metric by which the overall landscape topo-
graphy may be extracted from thermodynamic or kinetic mea-
surements. Further, we have demonstrated that Λ is not only
appropriate for particular subsets of proteins (such as fast folding
proteins) but also for proteins of different sizes and energetic
character.

Each protein studied has a folding funnel associated with a
unique slope, roughness, and size. The topography measure of
the underlying folding landscape, Λ, is shown to be correlated
strongly (monotonically) with the thermodynamic stability
against traps, characterized by the ratio of thermodynamic stabi-
lity temperature versus trapping temperature. In addition, the
landscape topography measure Λ also monotonically correlates

with the folding kinetic rates. These demonstrate how the energy
landscape topography determines the thermodynamics and
kinetics of protein folding.

Energy landscape theory has guided our understanding of
protein folding and has led to progress in the study of folding
thermodynamics and kinetics. In our studies, because the land-
scape topography, thermodynamics, and kinetics are so strongly
correlated, Λ represents the meeting point for theoretical quan-
tification of the landscape topography and experimental evalua-
tion of stability and kinetics. In addition, this quantitative energy
landscape framework can be extended to multidomain proteins
and folding in vivo. It is worth noting that our studies have used
a coarse-grained structure-based model to explore the energy
landscape. However, as computing hardware and software con-
tinue to advance, the presented framework may be utilized in
conjunction with all-atom molecular dynamic simulations. Such
efforts will allow one to partition the effects of solvent interac-
tions on protein folding and identify how they contribute to the
global topology of the energy landscape. In closing, the current
study bridges the gap between the quantification of the underly-
ing folding energy landscape topography and experiments (or
simulations) on thermodynamics and kinetics of protein folding.

Materials and Methods
A structure-based model (13), coarse grained at the residue level, was used to
explore the density of states. To ensure efficient sampling, the density of
states was calculated from replica exchangedmolecular dynamics simulations
(25), performed at 48 temperatures for each protein. To obtain a single mea-
sure of the density of states, WHAM (33) was used. The deviation of each
configuration from the native structure was used to divide sampled config-
urations into native and nonnative ensembles. With the thermodynamic re-
lation 1∕T ¼ ∂S∕∂E, we calculated the slope of the density of states for the
nonnative ensemble to estimate the temperature at which the configura-
tional entropy of the nonnative states vanishes (1∕Tg). From the trapping
temperature Tg, we directly obtained the landscape topological roughness:
ΔETop ¼ ffiffiffiffiffiffi

2S
p

Tg. S is the configurational entropy of the nonnative states. The
energy gap δE is defined as the difference between the average energy of
the nonnative states and the energy of native state. S and δE were calculated
from the density of states.

To explore the role of the energetic roughness on the landscape topogra-
phical measure, we introduced energetic frustration into the structure-based
model by including nonnative interactions (39, 65). The weight of each non-
native interaction was assigned according to a Gaussian distribution with a
variance of b2. We modulated the scale of the energetic roughness by chan-
ging b2. b2 ¼ 0 corresponds to a structure-based model. The energetic rough-
ness ΔEEne introduced by nonnative interactions is expressed as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Amaxb2

p
,

where Amax is the maximum number of nonnative contacts the protein
can form.

The total landscape roughness of proteins ΔETotal is due to both topo-
logical and energetic roughness contributions. In purely structure-based
models (13, 66), there are no nonnative interactions, and the energetic
contribution to the roughness is ΔEEne ¼ 0. When nonnative interactions
are included, the roughness of the energy landscape is the sum of the topo-
logical roughness and energetic roughness. To calculate ΔETotal, we make the
assumption that modulating the variance of nonnative interactions does not
significantly alter the topological contribution to the roughness. This assump-
tion is valid because the topological roughness arises from constraints on
the geometry and shape of the native structure, which is not significantly
perturbed when the energetic roughness is sufficiently low (6768). In other
words, the nonnative interactions in real proteins can be approximated as
energetic heterogeneity perturbations to the background roughness intro-
duced by the topology. Accordingly, we use the expression: ΔE2

Total ¼
ΔE2

Top þ ΔE2
Ene to calculate the total roughness of each protein. The trapping

transition temperature (Tg) will be: Tg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔE2

Total∕2S
q

. The folding landscape
measure is Λ ¼ δE∕ðΔETotal

ffiffiffiffiffiffi
2S

p Þ.
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