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I describe physiologically plausible ‘‘voter-coincidence’’ neural net-
works such that secondary ‘‘coincidence’’ neurons fire on the
simultaneous receipt of sufficiently large sets of input pulses from
primary sets of neurons. The networks operate such that the firing
rate of the secondary, output neurons increases (or decreases)
sharply when the mean firing rate of primary neurons increases (or
decreases) to a much smaller degree. In certain sensory systems,
signals that are generally smaller than the noise levels of individual
primary detectors, are manifest in very small increases in the firing
rates of sets of afferent neurons. For such systems, this kind of
network can act to generate relatively large changes in the firing
rate of secondary ‘‘coincidence’’ neurons. These differential am-
plification systems can be cascaded to generate sharp, ‘‘yes–no’’
spike signals that can direct behavioral responses.

The behavior of elasmobranchs (sharks, skates, and rays) is
affected dramatically by very small electric fields in their

pelagic environment (1). Those fields are known to change the
electrical potential across the apical membranes of large num-
bers of detector cells in the ampullae of Lorenzini of the animals.
These added potentials, as small as DVm ' 200 nV, generate
small changes in the firing rates of the afferent nerves that serve
those cells (2–4) and the animal makes use of these small changes
to determine his behavior.

The signal to any one detector element is very small
compared with noise. Assuming that the signal acts by chang-
ing the opening probability of voltage-gated ion channels in
the apical membrane of the cells and the effective gating
charge is qg 5 6e, characteristic of the Hodgkin–Huxley model
(5), the threshold signal energy for one channel is, dw 5 DVmqg
' 5 z 1025 kT. Although the accompanying noise probably plays
a significant role in amplifying the signal-to-noise (SyN) ratio
somewhat as described by stochastic resonance arguments (6,
7), the effective SyN ratio is still quite small. However, there
are many voltage-gated channels in each detector and large
numbers of detector cells lining the ampullae, hence the
overall SyN ratio can exceed 1.

Although the elasmobranch systems constitute the paradig-
matic example inferentially addressed by this report, other
sensory systems are known with similar sensitivities that may
generate similar primary information. In the warmth–cold sen-
sor system of mammals, changes in temperature as small as DT 5
0.02 K (thus DTyT ' 1y15,000) generate small changes in the
firing rates of two sets of sensory neurons—a warmth-sensing set
and a cold-sensing set—that lead to behavioral modifications
(8–10).

Also, honey bees make use of 100-nT variations in the
magnetic field to map the position of food sources (11, 12). It
seems that the fields generate forces on magnetosome elements
(biological magnetite domains) held in hairs on the abdomen. On
a small change in the ambient magnetic field, each of these
elements presumably generates a small signal, perhaps by chang-
ing the firing rates of afferent neurons that serve hair-cell-like
detector elements. The energies for so small a field acting on one
detector seem likely to be small compared with kT, but there are
probably many tens of thousands of detectors.

Hence, in each of these three paradigmatic systems, it seems
that signals that involve energy transfers to the sensory elements
that are much smaller than the basic thermal energy, kT,
generate small changes in the firing rates of primary neurons.
These rates are processed, somehow, so as to generate behaviors
that must derive from some final, definite, ‘‘yes’’ or ‘‘no’’ neural
signal. I describe biologically plausible neural network structures
that might serve to take such small changes in firing rates and
generate definite binary decision signals.

An Elementary Voter-Coincidence Network
I consider a set of N primary ‘‘detector’’ neurons, n1, n2,
n3, . . . nN with a mean firing rate of vp action pulses per second
(pps) but different individual firing rates, vj, where the rates are
modified by stochastic effects so that the interval between pulses
varies irregularly. These may be primary sensors themselves, as
is the case for the warmth–cold systems, or afferent neurons that
serve primary sensor cells that generate graded responses and do
not, themselves, produce action pulses. Adair et al. (4) have
suggested that the elasmobranch sensory neurons generate
action pulses, a hypothesis that allows better fits to some data
(13), whereas A. J. Kalmijn (23) has emphasized the possibility
that the sensory cells generate a graded response as do the
phylogenetically related mammalian hair cells.

The positive voltage pulses that are the outputs of these
primary elements, uncorrelated in time, are fed in parallel into
a ‘‘coincidence’’ neuron presumably through axon-to-dendrite
synapse structures as suggested by the cartoon diagram of Fig. 1.
(This is akin to a two layer perceptron with the input taken
implicitly.) Those structures attenuate the voltage signals so that
the voltage impulses passed to the coincidence neuron have
different amplitudes, vj, manifest as depolarization potentials.
These neurons fire when the sum of the small incoming signals
(from the voters) that are received in a characteristic resolution
time Dt (the coincidence) exceeds a threshold value, (vj . S.
Measured as a depolarizing transmembrane potential, for Na1

channels described by Hodgkin–Huxley dynamics that threshold
is (14) S ' 7 mv, but I do not use that number specifically in these
calculations. As a consequence of various noise sources, the
threshold, S, is assumed to vary stochastically over a small range.
I show that under these realistic conditions, small changes in the
mean firing rates of the detector cells will generate much larger
changes in the firing rate of the coincidence cell.

A Toy Coincidence Model. To provide insight into the character of
the realistic model, I consider a ‘‘toy’’ model where certain
simplistic simplifications are imposed. In particular, I assume
that the mean firing rate of each of the N primary elements is
equal to vp pps, although the pulses are emitted randomly in
time. Further, I take the amplitudes of the signals received by the
coincidence element as identical and equal to v. Then I assume

Abbreviations: pps, pulses per second; SyN, signal-to-noise.
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a definite threshold of S 5 Mv taken over a resolution time, Dt,
for the generation of action pulses where M is an integer.

With these assumptions, the mean number of signals arriving
at the coincidence element in a time Dt will be « 5 NvpDt. The
coincidence neuron will fire when k $ M signals arrives in the
interval Dt. That probability is expressed by the Poisson relation,

Pk $ M 5 O
k $ M

F«k

k!G e2« , [1]

where « 5 NvpDt is the mean number of signals received in the
characteristic time, Dt, and the firing rate of the secondary
coincidence neuron will be vV 5 Pk $ MyDt.

For such a Poisson process (15), the proportional increase in
the secondary (output) frequency, vs, will be much greater than
that of the primary (input) frequency, vp. For a biologically
interesting set of numbers—e.g., n 5 50, vp 5 30 pps, M 5 12,
and Dt 5 5 ms—the multiplication factor,

Q 5
dvsyvs

dvpyvp
< 7.3. [2]

A Realistic Model. The properties of the toy model follow largely
from the character of the Poisson distribution. Given a mean
value of a random variable, the probability of a value larger than
a threshold value that is itself significantly larger than that mean
is dominated by the strong dependence of the Poisson distribu-
tion on that threshold. Thus, the introduction of further random
variation might not be expected to modify the results of the
simple toy model very much. Although the general tenor of more
realistic models is then strongly suggested by such general
arguments, it seems important to address the subtleties of reality
by a model that encompasses more realistic constraints.

Although the model I use might reasonably be considered a
stochastic version of the McCulloch–Pitts (16) model, it is
arguably closer to biology, if less suited to formal analysis.
Although the model is properly defined by the computational
Monte Carlo program used to derive its properties, I will
describe it in physiological terms both to make it more accessible
and to better define its special characteristics and limitations.

I assume, first, that each member of a set of Np primary sensor
neurons generates action potentials (spikes) that feed into a
secondary coincidence neuron. Stochastic noise seems to play a
key role in amplifying the sensitivity of the primary sensory

detectors (6). That noise, derived especially from shot noise in
the pumping and leakage currents that set resting potentials and
in the chatter of channels opening and shutting, is reflected in
variations in the firing periods of the primary sensory elements
andyor in the periods of the afferent nerves that serve primary
elements that generate graded responses. Hence, I take it that
each individual primary neuron, j, fires with a given probability,
pj, per unit time. In general, the primary elements will differ as
a consequence of general biological diversity and will emit action
pulses at different frequencies. This is especially evident in the
large differences between individual cold-sensing neuron fibers
(17) and between different warm sensing fibers (18). Hence, I
take the individual frequencies as, vj ' 1ypj, where the firing
probabilities, pj, are to be distributed about a central probability,
pP 5 1yvp, in a normal distribution with a standard deviation of
ppy2. I also assume a refractory dead-time after each pulse of 3
ms and adjust the firing probabilities so as to generate the
assigned frequencies.

I assume that the signal that reaches the secondary neuron is
attenuated variously by the transmission through primary axons
and secondary dendrites. Synapse inefficiencies also act so as to
reduce the effective signal strength of the input neurons. Al-
though individual synapse efficiencies can be less than 0.5, the
axon-to-dendrite connection can involve several synapses, thus
increasing the overall efficiency. To simulate such differences, I
assumed that the received signal strengths vary about normally
about a central value, vp, with a standard deviation of sv 5 vpy4.

In these calculations I assumed, implicitly, rather small syn-
apse inefficiencies, the effects of which are presumed to be
reflected in the variation of the effective frequencies of the input
neurons. If the synapse inefficiencies are large—e.g., .0.5—the
specific calculations shown here may not apply, although the
general tenor of the model should still obtain.

I take the signal as effecting a depolarization potential in the
secondary neuron proportional to the signal amplitude and
consider that the depolarization dissipates with a ‘‘pulse-length’’
relaxation time constant, t. Implicitly, I treat the incoming spike
signal as short—no greater than the 1-ms time-slices used in the
numerical computation. However, the results are not much
changed as long as the spike duration is shorter than t.

I then assume that the secondary, coincidence neuron will fire
when the average incremental depolarization voltage, V(t), taken
over an integration time Dt, exceeds a threshold potential, S.
That potential derives, in turn, from the summed input of the Np
primary neurons over time where that depolarization voltage
decays with the pulse-length time, t. Thus the condition for a
spike generation is,

E
t2Dt

t

V~t9!dt9 . SDt, where V~t9! 5E
0

t9 O
j 5 1

Np

yj~t0!e~t9 2 t0!ytdt0,

[3]

where vj is the magnitude of the depolarization pulse from the
primary neuron, j. In the actual calculation, I use 1-ms time-
slices, the time-integrals are then approximated by appropriate
summations and I take the trigger time, Dt 5 1 ms or one
time-slice. After every secondary spike, I introduce a secondary
refractory dead time of 3 ms.

At this point, after a secondary output spike, I calculate two
refractory variations: (i) I leave the V(t9) untouched and (ii) I
reset the ‘‘depolarization potential,’’ V(t9) in Eq. 3, to zero. Of
course, realities can be expected to be richer yet in variations.

Even as the occupation of different states—open and
closed—of the ion channels is subject to thermal noise fluctu-
ations the trigger process and trigger potential can be expected
to vary to some extent. To simulate this variance I inject noise
into the secondary firing process by varying the threshold every

Fig. 1. A schematic diagram suggesting the connections for a two-layer
neuron network such that the firing rate of a secondary, coincidence neuron
will vary proportionately more than the variance of a set of primary neurons.
The input dendrite structures to the primary neurons may be absent when
those neurons act as the sensory detector elements, as is the case for the
warmth–cold systems (8).
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ms taking the values as distributed normally about the primary
value, S, with a standard deviation of sS 5 Sy10. That threshold
is defined in units of vp such that no assignment of absolute
values for either S or vp is necessary.

By comparing the arithmetic sum of the input pulses with the
threshold, I implicitly assume a linear response to the input
pulses. Although for very small pulses a linear response is likely
(19), for the accumulation near the thresholds some deviation
from linearity can be expected. (Of course, the spike action that
follows from the threshold crossing is quite nonlinear.) Quali-
tatively, the arguments hold for almost any monotonic variation
of the response to the input and modest variances from linearity
do not affect the character of the results stated here.

Even as the secondary firing rates vary sensitively with the
primary rates, the secondary rates are sensitive to any variation
of the central threshold value, S, which must, then, be held within
narrow limits if the system is to operate effectively. Such a
threshold must also adapt to long-term physiological changes.
Adaptation mechanisms that will handle such variations operate
in other modalities (8, 14) and I postulate that such mechanisms
operate in coincidence neurons.

Sensitivities. In the numerical Monte Carlo calculations, the
incoming pulses from each primary element were recorded, or
not recorded, by chance for each millisecond time-slice, accord-
ing to probabilities defined by their firing rates. The sum of these
stochastically determined intensities was than compared with the
coincidence threshold, S, and if that sum exceeded S, an output
action pulse was recorded.

Using this ‘‘realistic model,’’ the coincidence firing rate, vj,
was calculated by Monte Carlo techniques as a function of the
‘‘primary’’ rate for sets of 25, 50, and 100 primary cells feeding
into one coincidence neuron. Although the results specifically
discussed here follow from the choice of vp 5 30 pps as the
central primary frequency, taken to be near that recorded for
afferent nerves serving the primary detectors of skates (2),
qualitative similar conclusions also hold for other choices of the
central frequency.

Fig. 2 shows the calculated gain factors, Q, for the two
secondary spike refractory models, as a function of the number
of primary elements and effective primary pulse lengths where
the central primary frequency vp 5 30 pps and the secondary
frequency is also held at vs 5 30 pps. Calculations made with
other values of vs showed that for either model variant, Q was
insensitive to the choice of the central secondary frequency
made although changes in the threshold, S. For the first (no
reset) model variant, the gain increases with an increase in the
number of primary sources and with the pulse length. As these
quantities increase, the number of contributions from incoming

pulses that are required to exceed the threshold increases (as «
in Eq. 1), thus generating an increase in sensitivity. For the
second (reset) model variant, Q decreases with increasing pulse
length for lengths greater than the 3-ms secondary spike refrac-
tory period that was introduced even as after a such pulse the
sum of the extant pulses is reduced to zero and the build-up
toward the trigger point must begin anew.

In my presentation of the results shown in Fig. 2, I have limited
the range of pulse lengths, t, to those such that vt , 1y3, where
v is either the primary or secondary frequency. That product is
a measure of the portion of time the element is in a refractory
state and for larger values of that product the conclusion are
excessively sensitive to assumptions concerning the firing mech-
anisms of the neurons, which I prefer to avoid.

Output Noise. Even as the properties of the output of the
secondary coincidence neuron follow from the random character
of the input, the secondary output is also random. For any time
period that is long compared with the output neuron spike
refractory period taken as 3 ms, the number of spikes varies as
a Poisson distribution about the mean number. (The generation
of spikes from the secondary coincidence neuron is then a
Poisson process, though the production of primary spikes may be
less random.) As a consequence of the random generation of
secondary spikes, the secondary output from a set of primary
neurons can serve as a primary input to a tertiary coincident
neuron in this scheme.

Input Noise. Although the random character of the received
primary pulses plays an essential role in the networks discussed
here, the magnitude of the noise does not. A relaxation of the
variances introduced in the model does not much compromise
the model. In particular, by direct calculation the multiplication
factor Q was shown to be little affected by a reduction of the
random variation in every physiological and stochastic parameter
by a factor of 3. It seems that as long as the variation in the
periods between pulses from the different primary sources is not
much smaller than the secondary neuron integration time, set
here as 1 ms, Q is not much affected by the magnitude of the
noise.

Indeed, in general the model is extraordinarily robust, de-
manding little in the way of any conformation to specifics by
nature.

SyN Discrimination. For the primary elements used in the specific
calculations presented here, the mean number of spikes emitted
in a period, dt, will be NP 5 vpdt, where the mean frequency of
the primary elements is vp and the integration time is dt. For this
discussion I assume a normal distribution of the number of spikes
in an interval such that the standard deviation is sp ' =Np 5
=Npvpdt. For the elasmobranch signals, the noise is not well
known but may be somewhat less than that calculated by the
above recipe (2, 4).

A single network consisting of a set of primary neurons and a
secondary neuron then loses information. Approximating the
deviance of the number of primary output pulses over a period
Dt as sp

2 ' vpDt, characteristic of a Poisson process, and taking
the multiplication factor of the coincidence system from Fig. 2
(and Eq. 2) as Q } 0.42Np

1y3, where Np is the number of primary
elements, Q increases less with the number of primary detectors,
Np, than Q9 } =Np expected if the information from the primary
array were used efficiently.

For some models, the deviance of the primary output is
appreciably less than from a Poisson model and the information
loss is then more drastic. (In their model of detector cell spike
production in elasmobranch electric field detection, which they
consider realistic, Adair et al. (4) find that the detector neurons

Fig. 2. The frequency multiplication factor, Q, as derived from Monte Carlo
calculations, taken as a function of primary pulse length for 25, 50, and 100
primary elements feeding into a coincidence neuron. The solid lines show the
values for the no reset model.
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have, effectively, a long refractory period that reduces their
deviance to about 10% of that for a Poisson process.)

Extensions: Cascade, Yes–No, and Differential Networks
Cascade Networks. Further layers of voter-coincidence arrays, as
suggested by the diagrams of a miniature three-layer system in
Fig. 3, can sharpen discrimination. Here eight primary elements
each feed two of the four secondary elements, which in turn feed
one tertiary element. With larger numbers, such cascading
generates a strong multiplication factor, Q, for a given number
of neurons.

It is useful to apply the cascade model to the estimation of the
SyN in the elasmobranch system to demonstrate that the cascade
model is roughly adequate to explain the observed sensitivity of
the fish. For a least-detectable signal, I take the membrane
potential deviation as DVm 5 100 nV (1, 3, 14) and the signal
applied to a single voltage gated calcium ion channel as S1 5 6e
z DVm. Assuming thermal noise and N1 5 kT, S1yN1 5 S1y
kT ' 2.5 z 1025, where k is Boltzmann’s constant and T the Kelvin
temperature. If the area of the apical membrane is 100 mm2 and
the density of channels is 450 per mm2, for the whole sensor cell,
ScyNc ' 2.5 z 1025 3 =45,000 ' 0.005 for the cell with 45,000
channels.

Taking the rate of increase of the neuron firing rate with the
incremental membrane voltage as (dvyv)ydVm ' 0.03ymV (2, 4),
the 100-nV threshold signal would cause a change of about
Dvpyvp ' 0.003 or about 0.1 pps in the 30 pps normal firing rate
of the cell. Choosing a signal duration of Dt 5 100 ms as a
plausible fish reaction time, the SyN for one sensor cell will be
SyN ' Dvp =Dtyvp ' 0.006.

Then 50 such elements, servicing a secondary coincidence
neuron operating such that the multiplication factor is 7, will
generate a spiking frequency change of 2% from that secondary
cell. If 50 such secondary neurons (and thus 2,500 primary
neurons) feed a tertiary coincidence neuron, also with a gain of
Q 5 7, the original signal will cause the spike frequency of that
neuron to change by about 14%. The ratio SyN ' 0.25 will still
be less than one. But if 50 tertiary neurons feed one quartiary
neuron, again with a gain of 7, we can expect that SyN ' 1.7 and
that a reasonably clean signal will emerge. Thus, 125,000 primary
sensory neurons can be processed to generate a definite dis-
crimination in a period of less than 100 ms.

Hence, with but one connection per unit to the higher array,
this system would require '105 cells to produce a distinctive
signal in 0.1 seconds. But for an ideally efficient system SyN }
=Nc and only about 5,000 primary detector cells would be
needed to gain the same SyN. For cascaded systems, under ideal
conditions, where the final efficiency is still appreciably less than

one, that efficiency will vary as the square root of the number of
secondary elements fed by an average primary element. Hence,
if each primary detector feeds many secondary neurons and each
of these feeds many tertiary neurons, a reduction to as few as
25,000 elements seems in reach.

Although more complex networks might require only 5,000
primary elements to achieve the same SyN, the organism may,
through evolutionary imperatives, prefer to increase its sensi-
tivity by increasing the number of detector elements rather than
by constructing more efficient, but much more complex, infor-
mation handling circuitry.

If the primary signals are wholly random—as in a Poisson
process—SyN varies as the square root of the number of spike
periods observed; but this, of course, requires long observation
times to gain sensitivity. In the sensory systems that I have
singled out as plausible candidates for this model—the detection
of weak electric fields by elasmobranchs, the warmth–cold
sensation in mammals, and the detection by bees of very small
changes in the terrestrial magnetic field—the time constraint on
the behavioral response is not likely to be severe. Applying this
model to sharks, typically, four cascade layers servicing 100,000
primary detectors, with a total gain of, perhaps, 350, can operate
in less than 1y10 of a second. With smaller signal transfer
distances, bees may gain the same sensitivity in less time or, more
likely, be able to use more amplification stages. Many fewer
detector neurons contribute to the warmth–cold sensation, but
the integration time is about 3 s (8, 10), giving a nominal
improvement of about 5.5 in SyN over a 1y10-s observation time.

A cascade system will operate with several connections to the
next coincidence level only if the nominal equivalence of the
pulses sent by a primary to different detector elements is
destroyed. In some circumstances, weak interactions—such as
through gap junctions connecting geographic neighbors—
between the neurons of such a set can induce a self-organization
that results in correlations between the pulse generation times of
members of the set (4). Even if such strong correlations are
absent, if two nearly equivalent secondary detectors receive the
same incoming pulses from the same set of primaries, their
secondary pulses will be highly correlated. That correlation will
be reduced by the stochastic noise variation in thresholds, by
differences in the incoming pulses that follow different axon–
dendrite paths connecting each primary element to the different
secondary elements, and by different synapse efficiencies for the
different axon–dendrite connections. The different paths gen-
erate different attenuation factors and somewhat different time
delays. The time delay differences are not likely to be more than
a millisecond (14), but that difference might be sufficient to
reduce the correlations to some extent. My numerical calcula-
tions have suggested that those secondary detectors that serve
overlapping primary populations are effectively independent if
those populations do not greatly overlap.

Although a final binary output that follows from a cascade of
coincidence networks can lead to definite signals that derive
from very small changes in the mean firing rates of primary
neurons, the additional stages, each effected by thermal and
other noise, can only increase the fundamental SyN ratio of the
primary set. I have not been able to describe that increase
analytically, but the results of numerical calculations suggest
that, for practical systems, that increase is small and masked by
the fundamental inefficiencies of the network design.

Yes–No Decisions. If small changes in firing frequencies are to lead
to behavior decisions, the logical chain of networks must termi-
nate in a yes–no element. The voter-coincidence circuit can be
used to transform a change in frequency to such a binary result.
The diagram of Fig. 4 shows the output frequency as a function
of input frequency for a voter-coincidence circuit with inputs of
25, 50, and 100 elements with 5- and 10-ms pulse lengths. The

Fig. 3. Diagram of a three-layer system (with the inputs suppressed) showing
schematically a miniature neuron network where eight primary neurons (1)
feed four secondary neurons (2) that, in turn, feed a tertiary neuron (3).
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model i choice, with no reset of secondary potential, was used in
the calculations, although the results are not highly sensitive to
that choice. The sigmoid curves represent best fits of the function
P(v) 5 1y(1 1 exp{2aDv}), to points generated by Monte Carlo
calculations. Here P is the probability of the secondary element
generating a spike in a 100-ms interval, Dv 5 v 2 v0, where v
is the mean frequency of the primary input elements, v0 is the
neutral frequency, and a is the steepness variable adjusted to
generate a least-squares best fit.

Such a 100-element circuit processing 10-ms-long pulses will
generate a spike in 1y10 s with a probability of 95% if the primary
frequency is greater than 34 pps, but only 5% of the time if the
primary frequency is less than 24 pps. A trigger rate greater than
39 pps will then generate a positive output more than 95% of the
time, whereas rates less than 24 pps will give false positives less
than 5% of the time.

Here I assume implicitly that, under appropriate circum-
stances, the information carried by one spike can lead to a
definite decision (20) by the organism.

In this model, the yes–no system would be applied as a final
stage after several stages of sensitivity amplification.

Differential Discrimination Networks. An electric field to the left
[right] of the swimming elasmobranch acts to increase the firing
rate of the afferent nerves serving the sensory cells in the
left-hand [right-hand] ampullae and decrease the rates in the
nerves serving the right-hand [left-hand] ampullae. Because of
the general symmetry of the animals, the base rates of the left
and right sensory cells are likely to be very nearly the same,
although both rates probably vary with temperature and that
temperature will vary with the water temperature and with the
different energy expenditures of the swimming fish. Hence, it is
attractive to consider signal processing networks that are sensi-
tive to changes in the difference between two input firing rates
and are relatively insensitive to the mean rates.

In a somewhat similar pattern, a slight increase (decrease) in
temperature decreases (increases) the firing rate of the cold-
sensing sensory nerves in humans and other mammals, and
increases (decreases) the firing rates of the warmth-sensing
nerves. Again, networks that exploit the differences in the firing
rates are attractive. Although the base firing rates for the
warmth-sensing and cold-sensing sets of sensors seem to be
about equal, the two sets differ greatly in their structure and in
the number or density of elements, and differ somewhat even in

their depth in the skin (8). Hence, any mechanisms that exploit
the dual changes are likely to work on data from layers of
processing that are quite different for the two modalities.

To exploit differences in firing rates, I suggest a coincidence–
anticoincidence system where the elements from the set with
increasing (or decreasing) firing rates are in coincidence, adding
their inputs, while the elements from the set with decreasing
(increasing) firing rates are in anticoincidence, subtracting their
input amplitudes. I assume, in effect, that the pulses from the
coincidence elements act to incrementally depolarize the cell
and that the pulses from the anticoincidence elements act to
incrementally hyperpolarize the cell.

In my calculations, excepting for the reversal of sign of the
pulses from the anticoincidence entries, I use the same calcu-
lational procedures as described above for the coincidence
network. Here I used the model i variant with no reset of the
potential after a secondary pulse although the results were not
sensitive to that choice. Again I take the positive, yes, output as
one or more pulses in a 100-ms interval and select a threshold
that generates a 50% positive response when the mean pulse rate
for each primary element is 30 pps. Although the positive
coincidence inputs and negative anticoincidence inputs are likely
to have different properties (21, 22), the numerical results given
here are for systems in which the relaxation time constants—
pulse-lengths—are taken to be the same for the two kinds of
input. However, as a consequence of the uncertain character of
the approximations, the vernier model must be considered as
suggestive rather than descriptive and the numerical results are
meant only to suggest the general character of such models and
to provide an estimate of simply achievable sensitivities.

Fig. 5 shows the rate of yes counts, so defined, as it varies with
the difference in firing rate frequency of two equal sets of i
elements where the mean rate of all elements is held at 30 pps.
Again, the sigmoid curves of the form P 5 1y(1 1 exp{2a Dv})
represent best fits to points calculated by Monte Carlo methods.
Here, Dv was the difference between the primary yes and no
counting rates, P was the probability of generation of secondary
spike in a 100-ms interval, and a was the steepness fit parameter.

For 200 primary elements, 100 positive and 100 negative, with
both effective pulse lengths of 10 ms, we can expect a yes count
for about 90% of the 100-ms intervals if the mean positive input
frequency is 6 pps greater than the negative input frequency.

Fig. 4. Probability of yes output spike indications (one or more output
pulses) registered by a secondary coincidence in a 1y10-s interval for a neuron
fed by 25, 50, and 100 primary neurons with pulse lengths of 5 ms and 10 ms.
The threshold is set to generate 50% yes indications for primary counting rates
of 30 pps. The curves represent the best least-squares fit to sigmoid functions
described in the text to points generated through Monte Carlo calculations.
The points are shown for the 50-counter results with a 10-ms pulse length to
suggest the quality of the fit to the points.

Fig. 5. The yes probability, defined by the receipt of one or more output
pulses in a 1y10 s-interval, from a vernier (coincidence-anticoincidence) net-
work as a function of the frequency difference between two sets of primary
elements, where each set consists of 100 yes (y) elements in coincidence and
100 no (n) elements in anticoincidence and sets of 50 y and 50 n and 25 y and
25 n elements. The curves represent the best fit to sigmoid functions described
in the text to points generated through Monte Carlo calculations. The points
are shown for the (25 y 1 25 n) results to suggest the quality of the fit to the
points. In each case, the primary pulse length was taken as 10 ms.
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Conversely, if the negative rate is 6 pps greater than the positive
rate, there will be a yes pulse only 10% of the time.

In nature, each set, plus or minus, will presumably be the result
of a cascade of sets of coincidence elements that serve to multiply
small variations of rates from very large numbers of sensory cells.
Hence, the difference of 6 pps can be presumed to reflect a very
much smaller frequency difference between two sets of basic
elements.

However, because the biology of the depolarizing coincidence
and the inhibiting anticoincidence (which I treat as a simple
hyperpolarization) are in fact rather different and may not add
arithmetically as I assume in the model, my symmetric linear
treatment of the two inputs may not be very close to Nature in
detail. However, I believe that the results shown in Fig. 5, and the
numerical conclusions stated by using those results, are sugges-
tive of the properties of possible real systems.

For symmetric systems such as that of the elasmobranchs, I
would expect two (sets) of coincidence–anticoincidence net-
works operating with the coincidence and anticoincidence en-
tries reversed. Then, with the result shown in Fig. 5 for 100
Y-counters and 100 N-counters, both with 10-ms-long pulses
with frequencies differing by 6 pps, about 10% of the time there
will be a false positive from the complementary set. Thus, for
Dv 5 6 pps, there will be a clear left–right signal about 81% of
the time, an incorrect signal about 1% of the time, and an
indeterminate signal (double positive or double negative) about
18% of the time.

At least for our paradigmatic elasmobranch sensory system,
the coincidence neuron for the yes–no network need only have
a sparse production of decision pulses. The spike that means
‘‘swim left’’ must be sent to trigger the neuron network in the
central nervous system, which sends a properly timed set of
pulses down long axons to the muscles that drive the fish through
the water. All of this must take on the order of 100 ms. Thus, a
set of ‘‘swim left’’ signals at a rate of 1 or more per 100 ms will

quickly turn the fish. If there intrudes an occasional blank or
absence of a signal, a confusing ‘‘swim right–swim left’’ signal, or
even a rare erroneous ‘‘swim right’’ signal, there will be little
disruption of the basic swim-left instruction and little harm.

Some systems may integrate signals. A 1y10-s integration time
seems within our biological understanding of the time constants
of different ion channels, and longer times do not seem unrea-
sonable. I note again that the warmth–cold response threshold
reaches a maximum sensitivity after about 3 s of exposure (8),
which suggests an integration time of that magnitude.

Conclusions
Some sensory systems generate information in terms of small
changes in the firing rates of afferent neurons where that rate is
affected strongly by noise. If that information is to lead to a
definite physiological or behavioral decision, the changes in the
firing rates of many elements must be processed in a manner that
amplifies the rate variation. Then, finally, that rate variation
must be processed in a manner than generates a binary yes–no
result.

I show that simple, physiologically plausible neural networks—
where the neuron acts as a voter-coincidence element—can be
constructed that amplify such firing rate variances for uncorrelated
primary neurons. Then, the same kind of elements can be used in
a further network element to produce the requisite binary yes–no
output.

The proposed networks, constructed from generic neurons
with generic properties, are robust; easily accommodating sig-
nificant variations. Broadly speaking, they accept large sets of
noisy uncertain information, which can be weighted, and derive
from that information a definite binary, yes–no decision. Al-
though the model networks introduced here are suggested as a
mechanism to process certain sensory data, their generality
suggests that such networks might be used also in other areas of
the nervous system.
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