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Abstract
In the modern world people frequently interact with retrieval systems to satisfy their information
needs. Humanly understandable well-formed phrases represent a crucial interface between humans
and the web, and the ability to index and search with such phrases is beneficial for human-web
interactions. In this paper we consider the problem of identifying humanly understandable, well
formed, and high quality biomedical phrases in MEDLINE documents. The main approaches used
previously for detecting such phrases are syntactic, statistical, and a hybrid approach combining
these two. In this paper we propose a supervised learning approach for identifying high quality
phrases. First we obtain a set of known well-formed useful phrases from an existing source and
label these phrases as positive. We then extract from MEDLINE a large set of multiword strings
that do not contain stop words or punctuation. We believe this unlabeled set contains many well-
formed phrases. Our goal is to identify these additional high quality phrases. We examine various
feature combinations and several machine learning strategies designed to solve this problem. A
proper choice of machine learning methods and features identifies in the large collection strings
that are likely to be high quality phrases. We evaluate our approach by making human judgments
on multiword strings extracted from MEDLINE using our methods. We find that over 85% of
such extracted phrase candidates are humanly judged to be of high quality.
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1. Introduction
Biological concepts are frequently expressed in terms of phrases. Not surprisingly then,
studies indicate that a significant fraction of queries in PubMed® are multiword queries
which are meaningful phrases, rather than simple collections of terms. This suggests that
users, in many cases, have a phrase in mind when they create a query [1]. Therefore
identifying high quality phrases can be beneficial for both document indexing and
information retrieval.

We are interested in detecting syntactically well-formed high-quality meaningful biological
phrases, i.e., given a sequence of tokens in a sentence, our goal is to assess whether or not
that expression exemplifies a syntactically well-formed high-quality meaningful biomedical
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phrase. Central venous pressure, placenta abruption, familial Mediterranean fever are
examples of such phrases. In contrast, central nervous is not a syntactically well-formed
phrase. One would like to detect central nervous system as a phrase. Moreover, syntactically
well-formed phrases are not always high-quality. For example, the phrase different statistical
methods is syntactically well-formed, but the phrase statistical methods presents a better
choice as a meaningful phrase. We will refer to such high-quality meaningful biological
phrases as good phrases. We do not restrict the phrases to terminology or idiomatic
expressions, nor do we restrict their length.

The ideal phrase will be useful, meaningful, and aesthetically pleasing. A frequently used
phrase is clearly useful. Meaningful means the phrase is comprehensible and understandable
without any additional context. Many phrases in a document are useful and valuable in the
context where they appear, but would leave obvious questions without that context. Finally,
aesthetically pleasing acknowledges that these are human judgments without a final
objective criterion.

We limit ourselves to phrases without prepositions or other stop words. By avoiding
prepositions we lose the ability to identify all good quality phrases. However, this limitation
leaves many good biomedical phrases to discover. In the 2011 edition of UMLS® only
24.9% of the unique phrases containing only alphanumeric characters include stop words.
Only 10.1% of these UMLS phrases which appear in MEDLINE include stopwords.
Similarly only 16% of the abbreviation full forms we find in MEDLINE® contain
stopwords. The list of UMLS phrases with stop words which appear in MEDLINE includes
phrases we are sorry to lose, such as “quality of life” and “head and neck.” However there
are also many phrases that are not helpful without additional context: “associated with,”
“use of,” and “followed by.” Clearly the vast majority of meaningful biomedical phrases
used in MEDLINE include neither stopwords nor prepositions. Reliable ways of identify
such phrases are useful.

Previous studies have addressed certain aspects of this problem. Some have concentrated on
identifying noun phrases [2–4]. Chen [2] designed a system to acquire noun phrases from
running text by using a probabilistic chunker to decide phrase boundaries and linguistic
knowledge to extract the noun phrases. Bennett et al. [4] simply used a finite set of rules
composed of different sequences of part-of-speech tags to detect noun phrases in
MEDLINE. Other studies have looked at identifying specific phrases, such as domain-
specific multiword terminology [5, 6] or multiword expressions [7], which are idiomatic,
fixed or partially separable expressions. Many of these approaches restrict the lengths of
phrases they detect.

Several methods have been used in an attempt to extract useful phrases from a document
collection. Statistical approaches detect sequences of words that occur contiguously in a
corpus more frequently than expected by chance [8–10]. Syntactic approaches are based on
the assumption that a sequence of words satisfying certain syntactic relations or a specified
structure form a phrase [4].

A comparison of several term recognition algorithms by Zhang et al.[11] identified the C-
value algorithm by Frantzi et al. [6] as the best on a biological corpus. The C-value method
combines both statistical and syntactic approaches into a hybrid method. Some of our
statistical features resemble the statistical values used to calculate the C-value. Our part-of-
speech features provide similar information to their part-of-speech filters. Our method uses
machine learning to combine this information in a very flexible manner.

Statistical and syntactic information is undoubtedly fundamental knowledge one can obtain
about a string of tokens. However, it is not evident how to combine that information
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optimally. In this work we propose using a machine learning approach that learns from
statistical and syntactic features utilizing existing sets of high-quality phrases. One such
source of high-quality phrases is UMLS, which is a curated source and contains meaningful
and well-formed content. Another source of good phrases is the list of full forms (defining
phrases) coming from abbreviation-definition pairs extracted from MEDLINE using an
abbreviation-definition identification algorithm [12].

We formulate our problem as follows. Suppose we have a large collection of multiword
strings that are unlabeled. Suppose further that we have an additional smaller set of phrases
which are known to be high-quality meaningful biomedical phrases. We believe that there
are more of these high-quality phrases in our large unlabeled collection. Our goal is to detect
and retrieve these unknown high-quality phrases from the unlabeled set. We treat the labeled
high-quality phrases as the positive class, and the unlabeled data as the negative class. We
use the term negative class in spite of the fact that phrases in the negative class are not
necessarily negative, they simply do not distinguish possible positive from true negatives.
We consider both cost-sensitive SVM (CS-SVM) and a wide-margin classifier with the
modified Huber loss function (Huber) as our learning algorithms. We find that Huber is
slightly superior in performance to CS-SVM with an optimal cost factor. The result of our
processing is a large set of strings (over 700,000) of which by our evaluation at least 85%
are high quality phrases.

The paper is organized as follows. Under Methods we describe the learning algorithms and
the data sets and define the features used to represent phrases. Under Results we describe
our experiments and the evaluation measures used and present the numerical results. This is
followed by an Application of our method. Lastly come the Discussion and Conclusion.

2. Material and methods
2.1. Data Sources and Preparation

First, MEDLINE was processed as follows. We processed the titles and abstracts of the
MEDLINE records and extracted all contiguous multi-token strings that contained neither
punctuation marks nor stop words. This set includes all multi-token substrings of longer
strings. The resulting strings were then normalized (lowercased, redundant white space was
removed) and duplicates were removed yielding a set of 280,737,434 strings which we call
M.

We considered two sources to acquire high quality meaningful multiword phrases for
training: UMLS (http://www.nlm.nih.gov/research/umls/) and a list of full forms
(abbreviation defining phrases) coming from abbreviation-definition pairs extracted from
MEDLINE [12]. UMLS is a curated source and contains meaningful, well-formed content.
The list of abbreviation-definition pairs is automatically extracted from MEDLINE using
AB3P, an abbreviation-definition identification algorithm, which achieves an F-measure of
90% on several manually evaluated datasets and compares favorably to other existing
abbreviation-definition identification algorithms.

From the UMLS Metathesaurus® file we take the subset of English strings. These are
normalized and duplicates are dropped. The overlap of this set with M consists of 297,005
phrases which we denote by U. Similarly, we normalize the set of full forms, drop duplicates
and find the overlap with M to consist of 733,410 phrases which we denote by F.

For each phrase in U, we randomly select up to 5 MEDLINE sentences containing it. If there
are five or fewer sentences containing a phrase we take all of them, but if there are more
than five we randomly select five. We denote the resulting set of 1,198,849 MEDLINE
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sentences by SU. Just as we processed MEDLINE text to obtain M, we process SU to extract
all contiguous multiword normalized strings. Of this set 5,789,943 strings are not present in
U. We refer to this subset as MU. Starting with F we carry out exactly the same procedure to
obtain SF and MF. Selecting up to 5 MEDLINE sentences containing each phrase in F, we
obtain the set SF and subsequently the set MF. MF consists of 12,044,070 strings and by
construction has no overlap with F. For machine learning we consider U to be the positive
class and MU the negative class. Similarly for F and MF. These numbers have been
summarized in Table 1.

2.2. Description of Features
In order to apply machine learning we must define features to represent a phrase (or multi-
token string). We first define basic statistical features based on properties of a phrase and its
appearances in MEDLINE text. We then discretize these values.

2.2.1. Basic Statistical Features—Given a phrase ph that is composed of n words, i.e.,

ph = w1w2…wn, we extract a set of 11 associated numeric values . These values
are defined as:

f1: Number of occurrences of the phrase ph throughout MEDLINE;

Rationale: Phrase frequency reflects the usefulness of the phrase. Good phrases tend to
be frequently used.

f2: Number of occurrences of w2…wn not following w1 in documents with ph;

Rationale: Is w1 a critical part of the phrase ph or is it a modifier of w2…wn, the true
essential phrase? We look at the documents that contain ph. If w2…wn occurs
frequently in these documents without following w1, then w1 is likely to be an optional
word and is not a fundamental part of the phrase. Documents without ph are ignored
because we are not directly concerned with whether w2…wn itself is a meaningful
phrase.

f3: Number of occurrences of w1…wn−1 not preceding wn in documents that contain ph;

Rationale: Is wn a critical part of the phrase ph ? We look at the documents that contain
ph. If w1…wn−1 occurs frequently in these documents not followed by wn, then wn is
likely to be an optional word and is not a fundamental part of the phrase. Documents
without ph are ignored because we are not directly concerned with whether w1…wn−1
itself is a meaningful phrase.

f4: Number of occurrences of strings of the form xw1…wn throughout MEDLINE;

Rationale: This feature represents the tendency of ph to be preceded by another term.
Can it stand alone or does it need another word to begin the phrase? For example,
`fibrosis patients' is not a good stand alone phrase, as it most frequently appears as
`cystic fibrosis patients'.

f5: Number of occurrences of phrases of the form w1…wnx throughout MEDLINE;

Rationale: This feature represents the tendency of ph to be followed by another term.
Again can it stand alone or does it need another word to end the phrase? For example,
`central nervous' is not a stand alone phrase, it most frequently appears as `central
nervous system'.

f6: Bayesian weight between w1 and w2, 
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Rationale: Given that w2 is the second word in the phrase ph, how likely is w1 the first
word? The more likely w1 appears before w2, the more likely w1 is an important part of
the phrase.

f7: Mutual information between w1 and w2;

Rationale: Mutual information measures the mutual dependency between w1 and w2.
The more w1 and w2 appear together, the more likely w1 is an important part of the
phrase.

f8: Bayesian weight between wn−1 and wn, 

Rationale: Given that wn−1 is the next to last word in the phrase ph, how likely is wn to
be the last word? The more wn appears after wn−1, the more likely wn is an important
part of the phrase.

f9: Mutual information between wn−1 and wn;

Rationale: Mutual information measures the mutual dependency between wn−1 and wn.
The more wn−1 and wn appear together, the more likely wn is an important part of the
phrase.

f10: Number of different multiword phrases beginning with w1 in MEDLINE;

Rationale: The more different phrases begin with w1, the more likely w1 is a generic
modifier and is not an essential part of the phrase.

f11: Number of different multiword phrases ending with wn in MEDLINE.

Rationale: The more different phrases end with wn, the more likely wn is a generic word
and is not an essential part of the phrase.

We also normalize fi values for 1< i ≤11 by dividing each fi by f1 and denote it as 

(1)

Therefore we have a total of 21 basic statistical feature values (11 fi values and 10

normalized ) to be used for machine learning.

2.2.2. Discretization—While one can use numerical values as features to train a classifier,
we discretize these numeric values into categorical values in order to get more robust
behavior of classification algorithms. Given the set of phrases, every feature variable defines
a range of values that the feature assumes. At discretization, that range of values is
partitioned into a small number of bins, and all values that fall into one bin are represented
using a single nominal feature. Thus, for each numerical feature, discretization reduces the
space of feature values to a much smaller set of categorical values. The advantage to this is
the machine learning can then independently weight these different discrete features.

Several discretization methods are proposed in the literature, including entropy-based
methods that are among the most commonly used discretization techniques. Such methods
work well for obtaining an optimal result for a single numerical feature. But when one has a
number of numerical features to discretize, such methods can make no guarantee that the
final set of features is optimal for learning on all features. Thus we use a uniform
discretization approach and examine different numbers of bins in search of good machine
learning results.
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2.2.3. Syntactic Features—In addition to statistical features we include features based
on part-of-speech tags for a phrase ph. We use the MedPost tagger [13]. To obtain the tags
for a given phrase ph, we randomly select a sentence from SU (or SF) containing the phrase
ph, tag the sentence, and consider the tags t−1t1t2…tn−1tntn+1 where t−1 is the tag of the word
preceding word w1 in phrase ph, t1 is the tag of word w1 in phrase ph, and so is the tag of the
word preceding word on. We construct the features

These features emphasize the left and right ends of the phrase and include parts-of-speech in
the middle without marking their position. A phrase can have up to n+2 features, if the
interior words have unique parts of speech. If the phrase begins at the beginning of the
sentence, then a feature (Lend,1) replaces the (t−1,1) feature. Similarly, if the phrase ends at
the end of the sentence, then a (Rend,4) feature replaces the (tn+1,4) feature. The resulting
features are included with the discretized features we discussed in the previous section to
represent the phrase.

2.3. Learning Algorithms
The set MU is a large collection of unlabeled multiword strings to compare with the set U of
high-quality phrases. Our goal is to use machine learning to identify additional high-quality
phrases in MU based on the high quality data in U. Similarly for F and MF.

A naïve approach to this problem would simply take the known high-quality phrases as the
positive class and the rest of the collection as the negative class (unlabeled documents) and
apply support vector machine learning to learn the difference and rank the negative class
based on the resulting scores. It is reasonable to expect that the top of this ranking would be
enriched for the positive class. But previous studies [14–17] have shown that due to the
imbalanced nature of the problem an appropriate choice of methods can improve over this
naïve approach.

The issue with imbalanced learning is that the dramatic difference in class size compromises
the performance of some classification techniques. The large prevalence of negative
documents dominates the decision process and harms classification performance. Several
approaches have been proposed to deal with the problem including sampling methods and
cost-sensitive learning methods and are described in [18–20]. These studies show that there
is no clear advantage of one approach versus another. In fact, cost-sensitive methods and
sampling methods are related in the sense that altering the class distribution of training data
is equivalent to altering misclassification cost. Based on these studies we chose to examine
cost-sensitive learning in which the cost for misclassifying elements of the positive set is
increased.

Zhang and Iyengar [16] considered the problem of recommender systems which use
historical data on customer preferences, purchases and other available data to predict items
that might be of interest to a customer. By their nature recommender systems deal with
imbalanced data. They showed a wide margin classifier with a quadratic loss function to be
very effective for this purpose. It may be a better method than varying costs because it
requires no searching for the optimal cost relationship between positive and negative
examples.

In this study we apply both cost-sensitive SVM and a wide-margin classifier with modified
Huber loss function with quadratic properties designed to take advantage of the insight of
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Zhang and Iyengar [16]. Both algorithms address the problems with imbalanced and noisy
data sets.

Here we write the standard equations for an SVM following Zhang [21]. Given training data
{(xi, yi)} where yi is 1 or −1 depending on whether the data point xi is classified as positive
(C+ or negative (C−), an SVM seeks that weight vector  which minimizes

(2)

where the loss function is defined by

(3)

The SVM classifier can be sensitive to a large class imbalance, resulting in a drop in
classification performance. It is susceptible to generating a classifier that has an estimation
bias towards the majority class, resulting in a large number of false negatives. Cost sensitive
learning has been proposed to deal with that problem. The cost-sensitive version of SVM
modifies (3) to become and now we can choose

(4)

and now we can choose r+ and r− to magnify the losses appropriately. Generally we take r−
to be 1, and r+ to be some factor larger than 1. Choosing r+ to be greater than r− helps
overcome the dominance of negative points in the decision process. Generally, the same
algorithms used to minimize (2) can be used to minimize (4).

Zhang and Iyengar [16] proposed a wide margin classifier with the quadratic loss function
h(z)2 as effective for imbalanced and noisy training sets. We use a variation of quadratic loss
function, the modified Huber loss function [21], which is quadratic where this is important
and has the form

(5)

We refer to this as the Huber method as opposed to SVM. We compare it with CS-SVM. We
also used the multivariate Bernoulli naïve Bayesian classifier [22, 23] as a baseline with
which we compare results.

We believe that MU and MF contain many syntactically well-formed and meaningful
phrases, and our goal is to identify them. In order to do that, we set up machine learning
experiments to learn the difference between the phrases in set U and elements in set MU.
Similarly, we learn the difference between the phrases in set F and elements in set MF.

We perform 3-fold cross validation by training the method on two-thirds of U ∪MU and
scoring the remaining one-third of the phrases. When all three folds are completed the whole
list of phrases in U ∪MU have been scored. Similarly, we train and score phrases in F ∪MF.
We then rank the phrases in sets MU and MF and expect the top of these respective rankings
will be enriched for high-quality phrases.
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We evaluate performance of the learning using the Mean Average Precision measure (MAP)
[24]. Average precision is the average of the precisions at each rank that contains a true
positive element, i.e. a high-quality phrase from the positive class U. What we report are the
MAPs or mean of the average precisions coming from the three rounds of cross validation.
We believe that better classification between phrases in U and MU leads to better ranking of
phrases in set MU. Since we are only interested in phrases in MU that look like phrases in U,
the more successfully we can learn to separate the phrases in MU that don't look like U from
U the more useful the resulting ranking of MU will be. On the other hand we expect that
there will be many phrases in MU that look so close to U they cannot be separated by the
learning and this puts an upper bound on how good the learning can be based on counting
only U as the positive set. The same remarks apply also to F and MF.

Before finalizing our approach we had to determine the number of bins in the uniform
discretization approach to obtain the best learning performance. Figure 1 shows the MAP
values for the classification problems U ∪MU and F ∪MF based on 3-fold cross-validation
applying Huber learning with different numbers of uniform bins. We conclude that 60,000
bins is a reasonable choice. For F ∪MF, one could consider more than 60,000 bins, but we
doubt the improvement from 60,000 is significant. Therefore, we chose to use 60,000
uniform bins for discretization of all numerical features for both problems and used the
resulting features for all learning algorithms tested.

3. Results
Here we provide results of applying our machine learning methods to U ∪MU and F ∪MF.
Figure 2 and Figure 3 represent the MAP values for U ∪MU and F ∪MF based on 3-fold
cross-validation. We present results for three different classifiers: Naïve Bayes which we use
as a baseline, Huber, and CS-SVM with a range of cost factors. We observe that the Huber
and CS-SVM classifier performs much better than Naïve Bayes. CS-SVM with the cost
factor of 1 (standard SVM) is not optimal. As we increase the cost factor, the performance
of CS-SVM improves and reaches a best performance with an optimal cost factor. However,
the Huber performs better than the CS-SVM with the optimal cost factor. Furthermore the
Huber does not require a search for the optimal cost factor as CS-SVM requires. Therefore,
we conclude that the Huber classifier may represent the best approach for this problem.

The MAP scores represent how well the positive labeled points are ranked ahead of the
negative labeled (actually unlabeled) points. As we argue above, it is reasonable to use MAP
to compare different classification methods. However our main goal is to use the trained
classifiers to rank the unlabeled sets and to achieve a ranking that places the unlabeled yet
high quality phrases high in this ranking. In order to evaluate the quality of such rankings,
the Huber learner was used to produce rankings for both and MU and MF. We then extracted
four different sets of 100 multiword strings:

Set 1: 100 candidate phrases randomly selected from the subset of MU strings, whose
Huber scores are above the median score of the set U phrases. There are 224,249 such
strings in MU.

Set 2: 100 candidate phrases randomly selected from the subset of MF strings, whose
Huber scores are above the median score of the set F phrases. There are 520,848 such
strings in MF.

Set 3: 100 phrases randomly selected from set F.

Set 4: 100 randomly selected multiword MEDLINE strings from set M.

These four sets of phrases were individually judged by all four authors of the paper. The
phrases from the different sources were randomly arranged and the judging was performed
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without knowledge of their source. Judges were instructed not to mark a phrase containing a
token used as a verb or a phrase ending in a token used as an adverb or adjective as a good
phrase. Beyond this they were to use their judgment based on whether the phrase was
aesthetically pleasing and meaningful without additional context. A string was considered to
be a high quality phrase if it was rated high quality by at least three judges. The results are in
Table 2.

We found that 85% of the phrases in the set MU that scored above the median score of the
set U are well-formed high quality meaningful phrases. This is a dramatic improvement over
randomly selecting a phrase from set M, which yielded only 35% high quality phrases.
Similarly, we found that 91% of the phrases in the set MF that scored above the median
score of the set F are well-formed high quality meaningful phrases. Set 3 was included as a
check on the quality of F and showed that while it is not perfect, it is indeed high quality.

Based upon the size of M and the above humanly judged sets, we can estimate a lower
bound on the number of the high quality biomedical phrases in MEDLINE. We expect at
least 9.2 million high quality well-formed phrases based upon the set 1 of quality
comparable to U. Likewise, we expect at least 11 million high quality well-formed phrases
estimated from the set 2 of quality comparable to F. Of course there are likely to be many
more phrases that have some level of acceptability to a human, but which do not score high
on either of the scales we are using (at or above the median for either U or F based learning)
and this includes half of U and F themselves. Thus we see these estimates as quite
conservative lower bounds on the number of high quality phrases.

We also used the Huber algorithm to learn the difference between U and MU, and applied
the trained classifier to classify F ∪MF, and vice versa. The average precision is 0.21 in
classifying F ∪MF and in the reverse direction 0.19. This suggests a systematic difference
between the sets U and F which deserves further investigation.

In Table 3, we measured the contribution of each individual feature by removing it only in
the Huber machine learning. One can observe that the part of speech tags are especially
important features for this problem.

4. Application
Frequently PubMed queries retrieve many more documents than a user can examine. For
example, queries such as `alzheimer's disease', `deafness', `autism' and `hypertrophic
cardiomyopathy' retrieve 81,326, 31,046, 18,974, and 13,543 documents respectively.
Obviously, one cannot manually examine them all. We are currently involved in developing
a system that can provide alternative ways of browsing these results.

One way to present retrieved contents is by dividing these documents by underlying theme.
Then we must present the phrases that are most central and provide the best representation
for each theme. While developing the themes, we treat as synonymous multiword strings
that stem the same in any order and strings that occur in the same UMLS concept. For
example, the text strings autoimmune disease, autoimmune diseases, autoimmune disorder,
autoimmune disorders, autoimmunity disease, autoimmunity diseases, autoimmunity
disorders are recognized as variants of the same concept. If one of the best strings to
represent a theme is one of several synonyms, we want to present the reader with the variant
most likely to be a good biomedical phrase.

We use the method of identifying well-formed biomedical phrases introduced in this paper.
We score all the text string variants using our methods and choose the one with the highest
score to represent the group of related text strings. Scores are computed using both U ⋃ MU
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and F ⋃ MF training and averaged. This process ensures that with high probability a good
quality phrase is displayed to the user.

As an example, phrases identified by this system to represent documents retrieved with the
query `deafness' are:

a1555g mutation; non syndromic deafness; waardenburg's syndrome; hearing
disorders, genetics; deafness, congenital; vestibular aqueduct; alport's syndrome;
cochlear implants; pure tone; hair cells, auditory

Of these 10 phrases, 6 phrases belong to groups of string variants. In particular, the phrase
cochlear implants belongs to a group containing 12 string variants, presented in Table 4.
When these string variants are scored the phrase cochlear implants is the highest scoring and
is chosen to represent this group of string variants.

5. Discussion and Conclusions
We find that given a collection of well-formed and meaningful biomedical phrases such as
can be obtained from the UMLS Metathesaurus or the full forms coming from abbreviations
in MEDLINE, we can learn to distinguish these phrases from other similarly prepared
phrase candidates taken from the same set of sentences at a MAP level of about 42%. When
we use such a trained model to score the phrase candidates we find a large number score at
or above the median score for the high quality set we used in training and on judging such
high scoring phrases we find that over 85% of them are high quality meaningful phrases. We
chose to look at those candidate phrases that scored higher than the median of the high
quality set because with perfect learning this would imply they are at least as good as half of
the phrases in the positive training data we started with. Of course no training is perfect, so
we are not surprised when they prove to consist of between 80 and 90% high quality
phrases. However, we do believe the results justify the approach and prove that there is
significant learning taking place here.

One may ask what motivated the choice of features we use for the learning. If we were only
attempting to identify noun phrases syntactic information may be sufficient and perhaps we
only would need parts-of-speech. If we defined a useful phrase as a frequently used phrase
again the problem would be relatively simple. But when we ask for the most useful phrases
to a human we are asking a much more difficult question without a simple or precise answer.
This makes the problem more challenging. Certainly we want well-formed phrases so syntax
is important. Also we believe the most useful phrases will be used more frequently than less
useful phrases, so frequency information is important. But as we illustrated in the
Introduction, frequency does not tell one all that is needed. The machine learning methods
we apply have the ability to ignore features that are not useful, so in some sense more
features increase the chance of good performance. We have given some justifications for the
features we have chosen to use in section 2.2. However, the main justification for using
these features is that we found they improved MAP as seen in our tests. Even though
features f6 and f7 measure similar things we found including both improved overall
performance. As seen in Table 3 many of the features seem to make only a small
contribution to performance. We believe this is due to two factors. First, there is some
redundancy because of the number of different features we use. Second, some of the features
are less important. However, even if features individually make only a small contribution, in
aggregate they can make a substantial improvement in performance. It may well be that
there are more useful features yet to be discovered.

Again one may ask whether the machine learning methods we have applied are the best
possible. Our reason for choosing them is quite simple. Support vector machines generally
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give performance that is excellent on a wide variety of classification problems [25]. Further
cost sensitive SVMs and the related Huber based classifiers are especially well suited to the
problem of imbalanced data with which we deal here [14–17]. The fact that we obtain nearly
equal performance with the two methods and the results are a very large improvement over
naïve Bayes is perhaps some justification for our approach.

Since our approach is a machine learning approach and departs from previous methods, it is
of interest how our method may compare with prior approaches. For such a comparison we
rely on the work of Zhang, Iria, Brewster and Ciravegna [11] who compared five different
methods of term recognition on the GENIA corpus and found that the C-value method of
Frantzi and Ananiadou [6] performed the best and even better than a voting combination of
the different methods. With this in mind we compared the C-value method with our
approach. The C-value method first applies one of several possible filters to restrict to a
syntactic class and then ranks all the phrases that pass the filter by their C-value. We can
make an essentially equivalent computation by combining the C-value as a feature with the
POS features and training the Huber classifier with these features. When we do this and
compute MAP numbers using the same cross validation used to compute the results in Table
3 we obtain a MAP of 0.238 for UMLS and 0.219 for Full Forms. Thus our machine
learning almost doubles the performance obtained by the C-value approach applied to our
data with our evaluation approach. Based on these results we conclude that machine learning
with many different features can impart a significant advantage over prior methods when a
large set of high quality phrases are available for training.

One peculiarity of our approach is that we have two sets of high quality phrases and they are
not completely equivalent. We find that when a classifier is trained with the U ⋃ MU data
and the learning is applied to the F ⋃ MF problem or vice versa, the classification MAP
drops to approximately half the value obtained in the cross validation experiments. This
suggests there are significant differences between U and F . One difference we believe may
be important is frequency. There are more low frequency phrases in F than in U. In fact the
average frequency of a phrase in F is 263 while the average frequency of a phrase in U is
408. Likewise 20% of phrases in F only appear in MEDLINE text once while this is true of
15% of phrases in U. While this is a consistent difference, we believe it is not the full
explanation of the difference between these two phrase sources. Further research may clarify
the differences.

While high scoring phrases based on the trained Huber classifier tend to be of high quality,
results are not perfect. We examined a number of the high scoring phrases judged by us to
be of poor quality. While a number of the errors appear to be unique one-of-a-kind errors,
one can detect some patterns. For example it can happen that two names appear together
repeatedly in a corpus but the combination does not make for a good phrase. For example,
“dia niemela” is a juxtaposition of two author last names which in the text appear as “Dia &
Niemela”, but our processing ignored the “&” symbol and led to the error of scoring “dia
niemela” as a good phrase. Another example is the expression “cell cell” which was scored
high but is not very meaningful as a phrase. A further example is “california los angeles”
which occurs in text repeatedly as “University of California Los Angeles”. Were
prepositions allowed in the phrases we extract, it is possible that this error would have been
avoided. Another type of error is when a phrase is truncated on one end. An example is the
phrase “fkhr fusion gene” which is truncated on the left and appears in the text as “PAX7-
FKHR fusion gene” where the two genes that are fused are included in the phrase. Clearly a
more sophisticated processing would have corrected this error. Another example is “heart
association functional class” which appears in the text as “New York Heart Association
functional class”. Again a more sophisticated processing could have corrected this error.
From these examples it is evident that our processing could be improved. However, for our
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application where the phrases in a synonymy class are predetermined and we are only
choosing the best representative of the class such improvements may provide little benefit.

Our application does not require perfect identification of high quality phrases, but it is
benefited by the ability to choose with high probability the representative among several
semantically equivalent choices that will be most acceptable to a human user of a system.
On the other hand one can imagine other applications where this ability may not be useful.
For example, a language generation system would not likely find such a discrimination
useful because all the phrases we deal with, both the positive and the unlabeled, are snippets
from actual written language produced by a human. Thus for language generation there may
be little value in discriminating as we are doing here. Finally, if one requires perfection in
choosing phrases most meaningful to a human, then our results would still require human
review.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

We study extraction of well formed and high quality biomedical phrases from
MEDLINE.

Syntactic and statistical features are employed.

Machine learning is applied using sets of known good phrases.

Over 85% of such extracted candidates are humanly judged to be of high quality.
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Figure 1.
Huber Classifications with Different Number of Uniform Bins
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Figure 2.
Huber, CS-SVM and Bayes classifiers applied to U ∪MU
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Figure 3.
Huber, CS-SVM and Bayes classifiers applied to F ∪FU
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Table 1

Sizes of the phrase and string sets.

M, unique MEDLINE strings 280,737,434

U, the part of UMLS contained in M 297,005

SU, sentences 1,198,849

MU, unique MEDLINE strings in set SU other than UMLS phrases 5,789,943

F, full forms contained in M 733,410

SF, sentences 2,732,911

MF, unique MEDLINE strings in set SF other than full forms 12,044,070
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Table 2

Quality assessments for four humanly judged sets. Sets 1 and 2 each contain 100 phrases randomly selected
from the subset of MU and MF phrases, whose Huber scores are above the median score of the set U and set F
phrases, respectively. Sets 3 and 4 each contain 100 phrases randomly selected from sets F and M,
respectively.

Set 1 Set 2 Set 3 Set 4

Fraction of high-quality phrases 85% 91% 92% 35%

J Biomed Inform. Author manuscript; available in PMC 2013 December 01.
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Table 4

The group of string variants is scored using the method of identifying well-formed biomedical phrases
presented in this paper. The phrase cochlear implants is chosen to represent this group of string variants.

0.189 auditory prostheses

0.042 auditory prosthesis

0.739 cochlear implant

0.326 cochlear implant procedure

0.319 cochlear implant procedures

0.511 cochlear implantation

0.471 cochlear implantations

0.858 cochlear implants

0.601 cochlear prostheses

0.178 cochlear prosthesis

0.063 cochlear prosthesis implantation

0.165 hearing prosthesis
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