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Abstract
Systems biology provides new approaches for metabolic engineering through the development of
models and methods for simulation and optimization of microbial metabolism. Here we explore
the relationship between two modeling frameworks in common use namely, dynamic models with
kinetic rate laws and constraint-based flux models. We compare and analyze dynamic and
constraint-based formulations of the same model of the central carbon metabolism of E. coli. Our
results show that, if unconstrained, the space of steady states described by both formulations is the
same. However, the imposition of parameter-range constraints can be mapped into kinetically
feasible regions of the solution space for the dynamic formulation that is not readily transferable to
the constraint-based formulation. Therefore, with partial kinetic parameter knowledge, dynamic
models can be used to generate constraints that reduce the solution space below that identified by
constraint-based models, eliminating infeasible solutions and increasing the accuracy of
simulation and optimization methods.
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1. Introduction
The prevalence of systems approaches to biological problems has renewed interest in
mathematical models as fundamental research tools for performing in silico experiments of
biological systems (Kitano, 2002). In the context of metabolic engineering, models of
metabolism play an important role in the simulation of cellular behavior under different
genetic and environmental conditions (Stephanopoulos, 1998). Typical experiments include
knockout simulations to study how metabolic flux distributions readjust throughout a given
network. With the selection of an optimal set of knockouts or changes in enzyme expression
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levels, it is desirable to optimize the production of compounds of industrial interest (Burgard
et al., 2003; Patil et al., 2005).

Systems of ordinary differential equations (ODEs) have been applied in different areas to
model dynamical systems. In the context of metabolic networks, they describe the rate of
change of metabolite concentrations. These dynamic models contain rate law equations for
the reactions as well as their kinetic parameters and initial metabolite concentrations.
Building this type of model requires insight into enzyme mechanism to select appropriate
rate laws, as well as experimental data for parameter estimation. Therefore, their application
has been more limited, but areas of application include central metabolic pathways of well-
studied organisms such as E. coli (Chassagnole et al., 2002) and S. cerevisiae (Rizzi et al.,
1997). There are, however, some recent efforts to overcome these limitations in the
reconstruction of large-scale dynamic models, such as through the hybrid dynamic/static
approach (Yugi et al., 2005), the ensemble modeling approach (Tran et al., 2008), and the
application of approximative kinetic formats using stoichiometric models as a scaffold
(Smallbone et al., 2010; Jamshidi and Palsson, 2010). Nevertheless, these techniques have
so far been applied to very few organisms.

On the other hand, advances in genome sequencing have facilitated the reconstruction of
genome-scale metabolic networks for several organisms, with over 50 reconstructions
available to date (Oberhardt et al., 2011). Due to the lack of kinetic data at the genome scale,
this type of model only accounts for reaction stoichiometry and reversibility. Analysis is
performed under the assumption of steady state using a constraint-based formulation that is
underdetermined, resulting in a continuous space of solutions for the reaction flux
distributions. This uncertainty of the flux distributions requires additional conditions to
determine unique solutions and predictions. Often this takes the form of an optimization
based on a particular assumption, such as optimal biomass growth for wild-type (Edwards
and Palsson, 2000) and minimization of cellular adjustments for knock-out strains (Segré et
al., 2002; Shlomi et al., 2005). The inclusion of regulatory constraints, introduced by Covert
and Palsson (2003), is a current approach to reduce the size of the solution space and
eliminate infeasible solutions. One limitation of the constraint-based approach is the
unability to express transient behavior. In order to simulate fermentation profiles, a few
methods have been developed to integrate the variation of external concentrations while
assuming an internal pseudo steady state (Oddone et al., 2009; Leighty and Antoniewicz,
2011).

The two most common model types in use, therefore, represent two extremes. The dynamic
ODE formulation contains detailed mechanistic information that gives solutions of the
transient dynamic approach to equilibrium from any given set of initial conditions (generally
concentrations of enzymes and metabolites), as well as the steady state specified by
metabolite concentrations that depend on total enzyme concentrations (for the usual case
where they are treated as fixed) but often do not depend on the initial metabolite
concentrations. Steady-state fluxes are readily computed from the steady-state
concentrations and the rate laws. The constraint-based formulation seems minimalist by
comparison: it has no mechanistic knowledge of any of the chemical reactions beyond their
stoichiometry, its solutions have fluxes at steady state but no information regarding
concentrations or dynamics, and rather than giving a unique solution, it produces a high-
dimensional continuum of steady-state solutions (referred to as a flux cone). The dynamic
formulation needs significant information (parameters in term of rate constants and total
enzyme concentrations, as well as reaction mechanisms to give rate laws), but generally
rewards that effort with unique and detailed solutions. The constraint-based formulation
requires less (no parameters except maximum fluxes) but delivers less.
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Because of these significant differences between dynamic and constraint-based
formulations, they treat the effects of network perturbations, which might be undertaken as
part of a metabolic engineering study, very differently. A dynamic formulation will make
very specific predictions about the response to a gene knockout, for example, but generally
such models lack information about gene regulatory changes that accompany metabolic
changes, and so without foreknowledge to adjust relative enzyme concentrations, such
predictions can be significantly in error. Constraint-based formulations can access all
possible steady-state solutions but can only rely on relatively simple heuristics to select
among them, and are uncertain how to include specific information on gene regulatory
changes.

Here we explore further the relationship between these formulations by essentially
considering the continuous ensemble of dynamic formulations obtained by varying
parameters (principally rate constants and enzyme concentrations) and compare the steady-
state solutions to those from the corresponding constraint-based formulation. We find an
equivalence between the sets of steady states when only maximum flux constraints are
present, but that more specific constraints and enzyme concentrations can be directly
incorporated to define a reduced dynamic ensemble that is significantly more informative
regarding possible steady-state solutions than the constraint-based formulation.

2. Methods
2.1. Models

We have used a dynamic model of the central carbon metabolism of E. coli (Chassagnole et
al., 2002) available at the Biomodels database (Le Novere et al., 2006). The model was
converted from its original SBML format into a MATLAB (The Mathworks; Natick, MA,
USA) file that was used for all computations in this work. The model consists of a total of
18 metabolites and 31 reactions, including several enzymatic reactions, one exchange
reaction, and a few lumped versions of biosynthetic pathways. Several types of rate laws are
used, including constant-rate, mass-action, Hill cooperativity, allosteric regulation, and
Michaelis-Menten with its variants for reversibility and inhibition, with a total of 125
parameters. We have not considered metabolite dilution or algebraic rules for co-metabolite
variation, as they cannot be represented in the constraint-based model. Also, we changed the
rate law of MurSynth from constant rate to Michaelis-Menten, as it leads to inconsistencies
when its substrate (f6p) depletes. The model maintained its original steady state despite
these changes.

A constraint-based version of the model was built by accounting only for the stoichiometry
and reversibility constraints. The glucose uptake rate was allowed to vary between 0 and the
maximum value in the dynamic model. The dynamic model also contains two other inputs
(TrpSynth, MethSynth), with a constant rate, that were treated in the constraint-based
version with constant fluxes.

2.2. Hit-and-Run sampler
As a means of mapping out the feasible steady-state flux space for the constraint-based
model, we implemented an algorithm for random sampling (Figure 1a) adapted to this
problem following the concept of hit-and-run methods (Smith, 1984). The solution space of
the constraint-based model is contained within the null space of the stoichiometric matrix.
Starting with a point inside this coordinate space, the sampler started generating new points
by iterative steps in one direction. Each point was then projected into the flux space and
tested by checking the flux boundary constraints. Each time the test failed, meaning that it
crossed the boundary of the flux cone, the point was discarded and a new direction was
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randomly chosen. Otherwise, the point’s projection in the flux space was stored. To
facilitate uniform sampling of the whole space, the sampler only stored one point every 1000
iterations. Also, in order to adapt to cones of different sizes, it used a variable step size that
increased (decreased) in case of successful (failed) iterations, which quickly converged to an
average size.

2.3. Geometric sampler
To provide improved mapping of the steady-state flux solution space for the constraint-
based model, given the poor results obtained by the hit-and-run method at the edges of the
flux cone, we designed and implemented a geometric sampler (Figure 1b) that started by
searching the corners of the flux cone. It found the corners by solving linear programing
problems within the model with randomized objective functions using the GLPK library
(Makhorin, 2006). After finding the corners, it sampled along all possible edges between the
corners, which defined the boundary of the cone. Then, it iteratively sampled from all edges
in the direction of the center of the cone, defined as the mean of all corners. This method
facilitated the visualization of the flux cone. However, in this case, the probability
distribution of the points did not have any statistical meaning.

2.4. Parameter sampler
We developed a sampler to sample from the parameter space (concentrations and kinetic
parameters) of the dynamic model to map out its allowed steady states. Metabolite
concentrations and kinetic parameters are theoretically defined in an infinite semi-positive
space. Therefore, in order to sample this type of space without constraints, we scaled each
element individually (concentration or parameter) by a random factor with log-normal
distribution (log10(X) ~ 0, 1)). This distribution is defined over ℝ+, with nearly all values
(99.73%) within 3 orders of magnitude above or below unity. This resulted in variation of
the original values by several orders of magnitude. In order to perform constrained
parameter variation within well-defined ranges, specified in terms of orders of magnitude
(m), we scaled each parameter by a factor with uniform distribution in logarithmic scale
(log10(X) − −m/2, m/2)). All kinetic parameters associated with binding and rate constants
were varied, while other parameters such as Hill coefficients, co-metabolite levels, and
dilution rate, were kept fixed.

2.5. Calculating steady states
For each simulation of the dynamic model, the steady state was calculated by numerically
integrating the differential equations from time zero toward infinity with a stop condition
when the steady state was reached. To avoid non-halting computations when the system
diverged or was oscillatory, a second stop condition, based on a computational time limit,
was also added.

2.6. Relative volume estimation
In order to estimate the volume of the cone after imposition of the kinetic parameter
constraints, we started by sampling the dynamic model under those constraints. In this way
the kinetic parameter ranges could be mapped to flux ranges (Figure 1e). Then, we used a
random sample of the constraint-based model (obtained with the hit-and-run sampler) and
calculated the fraction of points of that sample that were contained within the generated flux
ranges. This fraction determined the relative volume of the subspace compared to the
original space (Wiback et al., 2004).
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2.7. Mapping steady-state fluxes to parameter space
In order to find the parameters that match any given steady-state flux distribution (v) we
solved the system of non-linear equations v = r(x, p), where r(x, p) is a vector function that
represents the reaction rate laws as a function of the metabolite concentrations (x) and the
kinetic parameters (p). Given a vector of arbitrary steady-state concentrations the system can
be solved for the kinetic parameters only. Furthermore, because each individual rate law has
its own parameters, we can define a partition of the set of parameters , that
effectively decouples the system of equations into n independent equations of the form vi =
ri(x, si), si ∈ Si. These equations are underdetermined because there are usually several
parameters per equation (with an average of 4). Therefore, each equation has multiple
solutions. In order to obtain a single solution, the strategy implemented in this work
consisted of mapping the variables into logarithmic space (which enforces positively defined
solutions) and minimizing the length of the solution vector. Additional constraints could be
placed on the parameters at this stage.

3. Results
In order to explore the gap between both types of formulations, we analyzed and compared
the dynamic and constraint-based formulations of the same model of the central carbon
metabolism of E. coli (Chassagnole et al., 2002) (see Methods section for model
formulation).

Our goal is to compare the steady states achievable by the two model types. Intuitively the
dynamic formulation has more constraints than the constraint-based one because the later
only enforces the steady-state condition and maximum flux constraints. Therefore, any set of
steady-state fluxes achieved by the dynamic formulation that do not violate the maximum
flux constraints will automatically be a solution of the constraint-based formulation. Thus,
here we focus on mapping solutions in the opposite direction: Is every solution of the
constraint-based formulation also a steady-state solution of the dynamic one? Or, instead,
does the extra information in the dynamic formulation effectively reduce the steady-state
solution space so that it is a proper subset of the constraint-based formulation.

3.1. Solution space of the constraint-based model
We implemented a Monte-Carlo based random sampler, which is a variation of the hit-and-
run method (Smith, 1984) (see Methods) and applied it to the constraint-based model. The
sampling distribution for each reaction (Figure 2, diagonal) forms skewed gaussian shaped
curves, very similar to the results obtained by Wiback et al. (2004) for the human red blood
cell model. However, more insight into the shape of the solution space can be revealed by
plotting the sample two-dimensionally for every pair of reactions (Figure 2). We observe
that, due to the random nature of this method, the edges of the flux cone are not sharply
defined due to the low probability of samples in the tails of the distributions. To obtain a
clearer delineation of the borders of the space, we implemented a geometric sampling
approach that systematically identified first the vertices of the flux cone through solution of
linear programs, then the edges through vertex connection, and finally explored the interior
of the flux cone (see Methods). The full solution space of the constraint-based model
became clear (Figure 2), and it could be compared to that from the dynamic model.

3.2. Solution space of the dynamic model
Whereas the constraint-based model has no adjustable parameters (beyond maximum flux
values not implemented here), the dynamic model has a large number of parameters that
describe the specific chemistry being modeled, consisting of the rate laws, kinetic
parameters (in which we include a fixed total concentration for each protein), and initial
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metabolite concentrations. This results in a single deterministic steady-state solution. To
examine how this solution is influenced by the extra information, we varied the initial
conditions and kinetic parameters, again by random sampling (see Methods).

If the system has a unique steady state, then simulations will converge to the same steady
state, independent of the initial concentrations. This network exhibits multistability; two
distinct steady states were identified when the initial concentrations of metabolites were
varied (Figure 3). This bi-stability is caused by a positive feedback loop that is formed when
phosphoenolpyruvate (PEP), a product of glycolysis, is used as an energy source to import
external glucose through the phosphotransferase system (PTS). During the transient phase of
the system, the concentration of PEP may reach a critical level, whereby it becomes depleted
before re-entering PTS. If this happens the cell is unable to capture its external substrate, and
all internal metabolites eventually deplete as well, leading to a network with residual
activity. This steady state (referred to here as secondary) occurs much less frequently than
the steady state obtained with the original conditions (Figure 3, diagonal).

A random procedure was used to vary the kinetic model parameters, including binding and
rate constants (because all enzyme concentrations are included in Vmax, which was varied,
effectively enzyme concentrations were varied as well), but not Hill coefficients, co-
metabolite concentrations, or the dilution rate (see Methods). A single set of initial
concentrations was used (that for which the unperturbed model goes to the higher
probability steady state). A projection of the resulting steady-state concentrations shows that
the dynamic model, through parameter variation, appears to be able to produce the same
steady states as the constraint-based model, but no additional steady states. This situation is
tempered by two issues: (i) there are areas of light coverage in Figure 4 that one presumes
are truly occupied, and (ii) even if the two-dimensional projection overlaps, this does not
confirm that the full-dimensional flux cones for the two models overlap. To more stringently
test the notion that the polytopes are identical, we generated a procedure to optimize
parameters for the dynamic model to reproduce any desired steady-state solution (see
Methods). We applied this to 10,000 randomly selected solutions from the constraint-based
model and the resulting parameters recovered the desired steady state when run in the
dynamic model every time. Thus, operationally the steady-state flux cones for ODE and
constraint-based models are the same.

3.3. Kinetically feasible solution space
An ODE kinetic model of central carbon metabolism has exactly the same set of possible
steady-state solutions as the corresponding flux balance model, as demonstrated in the
previous section. The ODE model maps out the solution space through systematic variation
of model parameters (binding constants, rate constants, and enzyme concentrations) with no
constraints beyond non-negativity. Knowledge of actual parameter values or ranges, from
experimental measurement or physical constraints, would lead to further constraints on the
feasible parameter space. To explore how constraints on the feasible parameter space affect
the range of steady-state solutions achievable in the ODE kinetic model, we sampled
parameter combinations from constrained spaces and computed the steady states of the
resulting models. The fluxes in those steady states are plotted in Figure 5 for parameter
ranges from 100 up to 104-fold around the base parameter values. The results show that
parameter variation of 100-fold or greater appears to produce the full set of steady-state flux
solutions observed from the unconstrained non-negative parameters in the ODE model,
which corresponds to the flux-balance steady states. Parameter constraints leading to less
than 100-fold variation produced significant restriction of the steady-state fluxes.

The solution-space volume reduction due to parameter constraints is plotted quantitatively in
Figure 6. The ratio of the solution flux cone with constrained and unconstrained parameters
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is shown as a function of the constrained parameter ranges. The results (labeled “normal
uptake”), show that reduction of parameter uncertainty to a 10-fold range leads to a
reduction in the solution flux space to 10% of its unconstrained volume. Moreover, because
the size of the original space depends on a control variable of the system, namely the
glucose uptake rate, we increased glucose uptake from 1.28 mmol gDW−1 h−1, the value in
the original model, to 10.50 mmol gDW−1 h−1, the maximum value for E. coli under aerobic
conditions (Varma and Palsson, 1994). The results, shown in Figure 6 as “maximum
uptake”, show a similar sigmoid shape but shifted toward greater parameter variation. Under
these conditions the flux cone of solutions is reduced to 10% of its unconstrained volume
with 300-fold parameter variation.

4. Discussion
We have analyzed and compared dynamic and constraint-based formulations of the same
model for the central carbon metabolism of E. coli (Chassagnole et al., 2002). The
constraint-based version does not account for metabolite concentrations, and it does not
express transient behavior. Therefore, the formulations can only be compared in their
common domain, which is the steady-state flux distribution.

The constraint-based model defines a solution space for the steady-state flux distribution
(called the flux cone). This space is difficult to visualize due to its high dimensionality. We
addressed this problem by developing sampling and projection approaches that facilitate the
visualization of the shape of the solution space.

The steady state of the dynamic model contains the same constraints as the constraint-based
model (stoichiometry, thermodynamic reversibility, and maximum uptake rates) and also
any additional constraints imposed by the kinetic rate laws, kinetic parameters, and initial
metabolite concentrations. Therefore, its solution space is a subset of the constraint-based
solution space.

For a predefined set of initial conditions and parameter values, the dynamic model usually
determines one steady-state solution. In fact, the initial metabolite concentrations of
dynamic models determine their transient behavior, but, for the steady-state flux
determination, they serve only to determine which steady state is chosen in the case of
multistability. In this case, sampling the metabolite concentration space revealed a second
steady-state characterized by a flux distribution with lower values of the fluxes and an
accumulation of external glucose.

Instead, we also verified, as expected, that the location of the steady-state solution(s) inside
the solution space is determined by the kinetic parameters, because by varying the kinetic
parameters, the solution moves inside the solution space. The sampling of the kinetic
parameter space revealed that, with unconstrained parameter values, the solutions of the
dynamic model cover the whole steady-state solution space identified by the constraint-
based model. This overlapping may seem unintuitive, as one would expect the rate laws to
impose one additional layer of constraint into the steady-state solution space. However,
besides having observed this with our sampling approaches, we also observe that, given any
valid steady-state flux distribution, one can find kinetic parameter values that make the rate
laws produce those steady-state flux values by solving each equation separately. This
separation is only possible because the parameters are specific for each rate law, which
defines a partition over the parameter set. The running example contains an average of 4
parameters per rate law, yielding many degrees of freedom for each equation. Thus, it is not
surprising that, generally, parameter values can be found that satisfy the equations.

Machado et al. Page 7

Metab Eng. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Interestingly, we found that by varying only one class of rate constants (Vmax = kcat[E]0),
the dynamical model formulation was able to achieve all of the same steady states as the
constraint-based model (data not shown). This is an important observation, because it
suggests that by changing only the expression levels of proteins ([E]0’s), which can be
achieved through regulation, a cell can adapt to reach essentially any possible steady state,
without the need to introduce mutations that change rate constants. This observation reflects
the adaptability of cell under different conditions and is in agreement with observations that
microorganisms can undergo adaptive evolution to attain their optimal theoretical yields
when placed under conditions where they originally performed sub-optimally (Ibarra et al.,
2002).

The observations stated above show that, in theory, a dynamic model can be fitted to any
steady-state flux distribution inside the constraint-based solution space. However, there are
physical limitations to the values of the kinetic parameters. Also, by querying parameter
databases such as BRENDA (Schomburg et al., 2002) and SABIO-RK (Rojas et al., 2007), it
is possible to observe that for each kinetic parameter there is a range of possible values
determined by experimental conditions (such as temperature and pH) in which the cells are
able to grow. Therefore, we evaluated how the imposition of parameter ranges map into flux
ranges within the steady-state solution space. Although the rate laws do not constrain the
solution space by themselves, they influence the probability distribution of the steady-state
solutions. This is evidenced by the imposition of the kinetic parameter constraints. As the
constraints become tighter, the solutions of lower probability disappear and the reachable
solution space becomes smaller. Our results show that the impact of these constraints
depends on the size of the solution space of the genome-scale model, which is mainly
determined by the uptake rate of the limiting substrates, and on the allowable ranges of the
kinetic parameters in the dynamic model.

The subset of the solution spaced obtained by constrained variation of kinetic parameters
reveals that it is possible to map parameter ranges into flux ranges. This can be performed
by sampling the parameter space and determining the respective steady-states. The
generated flux ranges can be directly added into the FBA formulation as flux bounds. A
similar sampling procedure, although with a different goal, is performed in the ensemble
modeling approach (Tan et al., 2010).

5. Conclusions
In this work we have explored the solution spaces of both dynamic and constraint-based
models in order to bring together top-down and bottom-up approaches, and we have
proposed methods of treating each as well as their interrelation.

Dynamic model reconstruction is a bottom-up approach for iteratively building large-scale
metabolic pathways with kinetic detail. Due to a lack of experimental data, differences in
experimental conditions, and measuremental uncertainty, the kinetic parameters are often
unavailable or defined within certain ranges.

On the other hand, genome-scale reconstruction is a top-down approach that takes advantage
of available high-throughput data to build models of metabolic networks that account for
stoichiometry and thermodynamic constraints. These models are analyzed under a steady-
state assumption through the constraint-based approach. Reducing the solution space of
constraint-based models so as to eliminate infeasible solutions is an important topic. Several
approaches are in use, including the imposition of regulatory constraints (Covert and
Palsson, 2003), the experimental determination of some fluxes (Wiechert, 2001), and the
imposition of thermodynamic reversibility constraints (Beard et al., 2002; Hoppe et al.,
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2007). The results obtained in this work are complementary to those efforts and can be used
in combination with any of them. For the case of thermodynamic constraints, their
application can be two fold. When applied to the dynamic model, the estimation of the
Gibbs free energy can be used to determine the value of the equilibrium constant, which
further constrains the kinetic parameters. When applied to the constraint-based model, it can
be used to constrain the direction of reversible reactions and, consequently, the solution
space.

Taking advantage of the information available in dynamic models of central pathways can
increase the accuracy of genome-scale constraint-based models by imposition of kinetic
feasibility constraints, even if the dynamic model is not fully determined. Furthermore,
sampling the solution space of the dynamic model can be used as an experimental design
tool to determine which kinetic parameters have greater influence in defining the volume of
the solution space.

Increasing the accuracy of constraint-based models can influence simulation methods such
as metabolic flux analysis (MFA) (Wiechert, 2001), flux balance analysis (FBA) (Edwards
and Palsson, 2000), minimization of metabolic adjustment (MOMA) (Segré et al., 2002) and
regulatory on/off minimization (ROOM) (Shlomi et al., 2005). Tools that implement these
methods (Rocha et al., 2010) can be extended to include kinetic constraints.

The constraint-based approach has been recently applied to other kinds of biological
networks, namely gene regulatory and signaling networks (Gianchandani et al., 2006; Lee et
al., 2008). The availability of models for all kinds of networks will facilitate the creation of
integrated cellular models that account for all types of intracellular phenomena under the
same mathematical framework. Because those models can be either constraint-based or
dynamic, understanding relationships between the two as discussed in this paper will have
an even greater impact. In fact, although the use of common frameworks (either constraint-
based or dynamic) for representing different kinds of biological phenomena is a step towards
the use of integrated models, the development of tools that promote the integration of the
two most important representation frameworks is also necessary for true integration. The
current contribution is a step in that direction.

• Constriant-based and full kinetic models share the same set of steady states.

• Partial rate-constant knowledge can further constrain kinetic models.

• Such reductions can be transferred from kinetic to constraint-based
formulations.
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Figure 1.
Overview of the methods applied in this work to the constraint-based and the dynamic
model. The solution space of the constraint-based model has been sampled by (a) random
sampling using a Hit-and-Run algorithm and (b) geometric sampling using the corners of the
flux cone as starting points. The solution space of the dynamic model has been sampled by
(c) varying the initial metabolite concentrations and (d) the kinetic parameters. (e) By
constraining the kinetic parameters of the dynamic model we can delimit kinetically feasible
flux regions and transfer them to the constraint-based model.
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Figure 2.
Pairwise projection of the sampling of the constraint-based solution space using the hit-and-
run sampler (blue) and the geometric sampler (gray). The diagonal shows the probability
distribution for each reaction relative to the hit-and-run sampling. Only the first six reactions
are shown. The complete data are in Supplementary material. Note that the gray points are
plotted underneath the blue ones, and that the geometric sampler delineates all of the space
covered by the hit-and-run sampler, plus the additional spaces seen here.
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Figure 3.
Pairwise projection of the sampling of the solution space obtained for the dynamic model by
sampling the initial metabolite concentrations, overlapping the complete solution space
(gray) for better visualization. The blue dot shows the location of the original steady state.
The red dot shows the location of the secondary steady state. Only the first six reactions are
shown. The complete data are in Supplementary material. The diagonal gives the relative
probabilities of the steady-state flux distribution.
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Figure 4.
Pairwise projection of the sampling of the steady-state solution space for the dynamic model
obtained by sampling the kinetic parameters (blue). The corresponding space overlaps the
solution space given by the stoichiometric model (gray). The diagonal shows the probability
distribution for each reaction. Only the first six reactions are shown. The complete data are
in Supplementary material.
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Figure 5.
Pairwise projection, in heat-map form, of the solution space reachable by the dynamic model
as a function of the variation, in terms of orders of magnitude, of the kinetic parameter
space. The diagonal shows the variation for each flux independently. Only the first six
reactions are shown. The complete data are in Supplementary material.
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Figure 6.
Relative volume of the kinetically feasible solution space, compared to the original space, as
a function of the parameter variation, in terms of orders of magnitude. The volume was
calculated for the original glucose uptake rate in the model and also for the maximum uptake
rate.
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