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Abstract

We present a boundary-element method (BEM) implementation for accurately solving problems in
biomolecular electrostatics using the linearized Poisson—Boltzmann equation. Motivating this
implementation is the desire to create a solver capable of precisely describing the geometries and
topologies prevalent in continuum models of biological molecules. This implementation is enabled
by the synthesis of four technologies developed or implemented specifically for this work. First,
molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were
discretized with curved boundary elements that faithfully reproduce molecular geometries.
Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear
systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm
(FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods
were employed to accurately evaluate singular and near-singular integrals over the curved
boundary elements. Finally, we present a general boundary-integral approach capable of modeling
an arbitrary number of embedded homogeneous dielectric regions with differing dielectric
constants, possible salt treatment, and point charges. A comparison of the presented BEM
implementation and standard finite-difference techniques demonstrates that for certain classes of
electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding
free energies, the improved convergence properties of the BEM approach can have a significant
impact on computed energetics. We also demonstrate that the improved accuracy offered by the
curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding
models, are used to compute the relative electrostatic effects of molecular modifications. In
addition, we show that electrostatic calculations requiring multiple solves using the same
molecular geometry, such as charge optimization or component analysis, can be computed to high
accuracy using the presented BEM approach, in compute times comparable to traditional finite-
difference methods.
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Introduction

Continuum theories of solvation have become common tools for molecular modeling and
have led to an improved understanding of electrostatic interactions in biomolecular systems
[1-3]. One of the most popular models of continuum solvation treats a molecule and its
solvent environment as homogeneous regions of low- and high-dielectric constants
respectively, with embedded point charges in the low-dielectric region representing the
molecular charge distribution and Debye—Hiickel theory optionally used to model the effect
of salt in at least part of the high-dielectric region. The Poisson-Boltzmann equation, which
governs this continuum model, has received much attention in recent years, especially in its
linearized approximation [4-6]. The linearized Poisson—-Boltzmann equation (LPBE), an
elliptic partial differential equation (PDE) [7], is well understood theoretically and can be
solved numerically using a variety of techniques including finite-difference methods (FDM)
[8-16], finite-element methods (FEM) [17-22], and boundary—element methods (BEM)
[23-36].

Boundary-element methods possess several properties that make them an attractive
alternative for solving the LPBE with regions of homogeneous dielectric [37]. The focus on
discretizing the actual two-dimensional boundary surfaces rather than three-dimensional
volume regions may be beneficial, in and of itself, as the boundary geometry can be treated
exactly [38-40]. Furthermore, the dimensionality reduction may allow for problems to be
solved with a smaller number of degrees of freedom. Moreover, boundary methods
inherently capture the correct zero-potential condition at infinity. In addition, the effects of
point charges are modeled exactly rather than being approximated by grid-projected charges.

In general, boundary-element methods require sophisticated numerical techniques in order to
obtain a favorable tradeoff between accuracy, flexibility, and computational cost.
Consequently, four enabling technologies were developed or synthesized here in order to
enable a BEM solver for biomolecule continuum electrostatics capable of solving a wide
variety of molecular geometries to high precision. Three of the four technologies have been
studied in detail previously, and our work in these areas [40-43] has built on those efforts
[44]. The calculations described in this paper are, to our knowledge, the first that combine
all three of these well-studied technologies, and demonstrate that their combination allows
BEM to reach levels of convergence previously unrealizable in BEM or other methods using
only workstation-level computational resources. The fourth technology, which represents a
novel extension of relatively well known integral-equation formulations, allows the high-
accuracy-capable BEM to simulate problems identical to those commonly solved using well-
known methods.

A principal development applied here was the use of surface discretizations that allowed for
exact representation of curved molecular surfaces [39,40]. Exact surfaces are important for a
biomolecule BEM because solution accuracy depends strongly on the quality of the surface
representation. In this work, and in most others, the dielectric and ion-exclusion surfaces are
described according to one of two definitions. Solvent-accessible surfaces [45] are defined
as a union of spheres, where the atomic radii are expanded by a probe sphere's radius.
Molecular surfaces [46] represent the surface of closest approach of a probe sphere rolled
over a union of spheres representing a molecule. These curved molecular surfaces, which
consist of portions of spheres and tori, are analytically defined [38] but often are difficult to
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discretize because the surfaces have cusps and singularities. These discontinuities in the
surface normal complicate the implementation of some BEM approaches, and therefore
methods for generating modified, smoothed molecular surfaces have been developed
[31,39]. Most boundary-element methods for solving the LPBE represent these surfaces
approximately using large numbers of planar triangular elements that can never exactly
capture the curved geometries. The importance of using curved elements has already been
discussed [40,44,47], but most previous implementations have introduced other surface
approximations. For example, other work has modified the molecular surface definition to
avoid generating singularities and thin regions, used elements with low-order curvature that
cannot accurately represent spheres or tori, or discretized surfaces using standard spherical
triangles that cannot exactly represent the intersections between atoms. In this paper, the
accessible and molecular surfaces are represented essentially exactly using curved
boundary-element discretizations that accurately reproduce even singularities, cusps, and
thin regions [40]. The surface discretizations described here generate the exact solvent-
excluded-surface described originally by Richards, with self-intersecting reentrant surfaces
removed in the same fashion as Connolly [38,48]. The resulting piecewise-smooth surfaces
suffice for existence of a unique solution [37]. Although the exact solutions may exhibit
singular behavior near discontinuities in the surface normal [49], one may still use a
piecewise-constant basis set to approximate the space of solutions. Recently, Ong and
collaborators have introduced singular basis functions for surface normal discontinuities,
and these functions may allow higher-fidelity representation of the true surface distributions
[50,51].

Another important technology was a matrix compression algorithm that allows the BEM
equations to be solved with an improved tradeoff between compute time and memory use. In
the BEM, discretization of surface integral equations gives rise to dense linear systems of
equations. As a result, memory costs scale quadratically in the number of unknowns. In
contrast, the FDM and FEM generate sparse matrices that reflect the local nature of the
differential operators. Solving the BEM linear system by matrix factorization requires O(/7)
time, where nis the number of unknowns. Computational costs rapidly become prohibitive
for systems with more than 104 unknowns, which is currently insufficient to accurately
model biological macromolecules such as proteins. The quadratic memory and cubic time
costs can be reduced to linear or near-linear complexity by combining two approximation
schemes. First, the linear systems are solved to a specified numerical tolerance using Krylov
subspace iterative methods such as the conjugate gradient method (CG) or the generalized
minimum residual algorithm (GMRES) [52]. Every iteration of a dense Krylov subspace
method requires the multiplication of a vector by the BEM matrix, costing a prohibitive
O(r7) memory and time. A second approximation reduces the matrix-vector product cost by
interpreting the formation of the product as an 7-body potential calculation [53]. This
interpretation enables the use of techniques such as multipole methods [28,30,32,33,53-55],
or multiscale methods [31], to reduce the solution costs to O(n) or O(r1log 7) in both
memory and time. Multipole methods require specialized expansions for every governing
equation, and expansions for the LPBE have been developed in recent years [56]. One
disadvantage of most multipole methods is that the computational costs grow rapidly when
improving accuracy [57]; in particular, the fast-multipole method (FMM) uses dense
translation operations between multipole and local expansions, which have motivated the
development of more efficient techniques [43,57,58]. In this work, the dense linear systems
that arise in the BEM are efficiently solved using preconditioned Krylov subspace methods
and the FFTSVD matrix compression algorithm [43]. The FFTSVD algorithm efficiently
sparsifies the dense BEM matrix, and memory and time requirements scale effectively
linearly in the number of boundary elements. This fast BEM technique can be applied
without modification to compress all of the integral operators in biomolecule electrostatics.
Furthermore, the dense translation operations that dominate the FMM computational cost
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are replaced in the FFTSVD method with more efficient diagonal translations, allowing for a
better tradeoff between computational expense and accuracy.

Given surface elements that can exactly represent molecular geometries and a means of
compressing the dense linear systems of BEM equations, technologies needed to be
developed to accurately and robustly compute certain matrix elements of these compressed
integral operators. The computation of these elements requires the integration of singular or
near-singular functions over the elements used to discretize the boundary surfaces. These
integrations can be interpreted as the calculation of the potential at an evaluation point due
to a charge distribution defined on a boundary element. In contrast, the matrix elements for
FDM and FEM problems are relatively easily computed. Although analytical expressions
exist for the integral of the Laplace (Poisson) kernel over flat triangular elements [59,60],
integration of the LPBE kernel, or integration over general curved domains, requires
numerical approximation. When the evaluation point is sufficiently far from the element,
quadrature rules can be used to perform numerical integration, even over curved elements
[25,27]. However, when the evaluation point is near or on the element, even high-order
quadrature rules do not suffice to capture the singularity. The evaluation of near-singular
and singular integrals has been noted to be a limiting factor in the accuracy of BEM
implementations for molecular electrostatics [29], and a variety of techniques have been
developed to either avoid computing these integrals [29] or to approximate them with
adaptive quadrature rules [61]. Here, robust methods were used to compute singular and
near-singular integrals of the singular Laplace (Poisson) and LPBE Green's functions [40],
allowing the presented BEM to achieve exceptional accuracy.

A final and important technology was developed to allow the BEM implementation to
efficiently handle a wider variety of molecular topologies. Some Poisson—-Boltzmann
modeling problems require treatment of multiple embedded or disconnected regions with
differing dielectric constants and screening parameters (see references 62 and 35). These
features allow the simulation of solvent-filled cavities within macromolecules, salt-filled
regions in large cavities, and an ion-exclusion layer, also known as a Stern layer [63],
surrounding the molecule with solvent dielectric but no salt. Some studies based on FDM
have used an electrostatic model with smoothly varying dielectric [64,65]; such problems
are easily modeled using volume-based methods like FDM or FEM because the dielectric
constant and the presence of salt can be assigned to each grid point or volume element
independently. This modeling flexibility is a noted advantage for volume-based methods
(see, for example, reference 65) relative to boundary-element methods, which are poorly
suited to such problems, in general. In this paper we focus exclusively on modeling multiple
regions of homogeneous dielectric. Implementing these features using a BEM requires the
discretization of every interface between dielectric regions and between those governed by
different PDEs. Previous BEM approaches have addressed these limitations by developing
specific formulations to treat multiple embedded dielectric regions without salt [62],
multiple disconnected dielectric bodies with salt [35,36], and hybrid boundary-element/
finite-difference methods to treat ion-exclusion layers [66]. In this work, we present a
general boundary-integral approach, based on Green's theorem, that can treat an arbitrary
number of embedded regions of homogeneous dielectric with different dielectric constants
and possibly salt to represent a wide variety of possible molecular topologies, including ion-
exclusion layers and solvent-filled cavities in the solute. Finite-difference and finite-element
simulations have long been capable of modeling problems with these features, but this paper
presents the first general, detailed derivation for BEM treatment.

We first detail our boundary-element method for solving the linearized Poisson—-Boltzmann
equation (LPBE) that implements these four enabling technologies, with the ultimate goal of
achieving high accuracy given reasonable computational resources. After describing the
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implementation, we present a set of computational experiments in order to illustrate the
accuracy and computational cost of finite-difference and boundary-element method
simulations for several categories of calculations. We calculate the electrostatic
contributions to free energies of solvation for an analytically solvable sphere geometry, a
short peptide derived from an HIV-1 protease substrate site [67], and the barnase—barstar
protein complex [68]. We also compute rigid and non-rigid electrostatic binding free
energies for the wild-type barnase—barstar complex as well as three single mutants.
Solvation calculations demonstrate that the BEM presented here provides better
discretization error reduction, or convergence, as a function of compute time as compared to
a successive over-relaxation (SOR)-based implementation of the FDM. Rigid-binding
results also suggest that the BEM converges more rapidly than FDM. However, when
comparing differential rigid binding energies between wild-type and mutant protein
complexes, where the structure remains the same except at the site of mutation, even low-
resolution finite-difference simulations accurately capture this differential energy. The
curved BEM regains an accuracy advantage for differential non-rigid binding calculations,
suggesting that the accuracy of finite-difference rigid binding calculations may result from
fortuitous error cancellation. Finally, we demonstrate that the BEM implementation offers a
clear advantage in accuracy, given comparable simulation time, for calculations that require
repeated solution of the same problem geometry with different sets of atomic charges.
Electrostatic component analysis [69-71] and charge optimization [72,73] are examples of
calculations that fall into this category. Our implementation demonstrates that highly precise
continuum-electrostatic calculations are feasible on modern workstations and that such
precision can be important for biological investigations.

Green's theorem integral formulation

We begin our presentation of the multi-region integral formulation by deriving the one-
surface Green's theorem-based integral approach described by Yoon and Lenhoff [74]. This
method is also known as the non-derivative Green's theorem formulation [34,44]. Figure 1
illustrates the problem and notation.

A single boundary a divides space into two regions. The molecular interior, labeled region /,
has a uniform permittivity ;and contains 77 discrete point charges. The /7 point charge,
located at r;, is of value g;. In region /, the electrostatic potential ¢/7) is governed by a
Poisson equation

Vo, (==L E50-r). @

1

where &(r— r;) is the Dirac delta function translated by r; and all quantities are in the
International System of Units (SI). That is, the potential ¢ is in volts, the charges g;are in
coulombs (ampere—seconds), and the permittivity €, is in farads per meter.

The solvent region //exterior to a represents solvent with mobile ions; we model the region
as having a uniform dielectric constant ,;and an inverse Debye length &, where

2N, el
“=\/ e, kT and is typically around 0.125 A~1 (A4 = Avogadro's number, €= electron
charge magnitude, /= ionic strength (in molar), e = permittivity of the vacuum, &=
Boltzmann's constant, 7 = absolute temperature). In this region, the electrostatic potential
@11 is assumed to obey the linearized Poisson—-Boltzmann equation:
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The free-space Green's functions for the Poisson and linearized Poisson—Boltzmann
equations,

1

G, (r;r ) = 747‘[”1’ 7 Region I (3)
, |

G, (1 = ——— Region 1I, ¢4

W) = g Re @

satisfy V2G(r, ') = =8(r— r') and (V2= k2) G,(r, ' = —=&(r- I’) respectively. Across the
boundary surface g, the electrostatic potential and the normal displacement are continuous
[49]. Using the relation D= e£, where the electric field £ satisfies £= -V ¢, we can write
the continuity conditions at a point 7, on the surface aas

¢1 (ra) = ¢” (ru) (5)

09,

€ on

6(ﬁll
on

(ra). (6)

(ro) = ¢

In Equation 6, the normal direction is defined to point into the solvent region.

After specifying the problem domains and boundary conditions, one applies Green's theorem
in both regions. Green's theorem,

o0 d)a—ql}dﬁ, 7

[, [pvi0 - ov?e|av=], [‘Pa—n -0

where ¥ (1) and ®(7) are two scalar fields, allows the determination of the potential at a point
in a volume V/given the free-space Green's function for the governing equation in Vas well
as the potential and its outward normal derivative at the bounding surface Q.

We first apply Green's theorem to find the potential at a point r;in region /, which has the
bounding surface Q = a. Using the Green's function (Equation 3) and substituting ¥ (/) =
GAri '), ®(r') = ¢r'), and Equation 1, we have

J. [Gl (i) (_éz—;é (- ri)) -,(r) VG, (r,;r/)] dv'=
[0 2 0) -0, ) 2

In Equation 8 and throughout this section, the normal derivative of G, is taken with respect

®

6G ’
to the integration variable 7 : that is, —n' (Vl;r ) denotes the potential at ryinduced by a
normally-oriented unit dipole at /. Simplifying the left-hand side using the definition of the
Green's function,

VZGI (r,;r,): - 6(r, - r') . (9)
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eliminates the volume integral in Equation 8, and by rearranging terms one obtains an
expression for the potential at 7, as a function of the solute charge distribution and the
boundary conditions:

&, (rl)zigil%le (r1;ri)+fa G, (rl;r/)%(r/)_gbl (r)[;i (r r)}dA/' (10)

To apply Green's theorem in region //, one must first bound the region by introducing a
hypothetical surface I" at infinity, and assume the potential obeys regularity conditions at
infinity [26] such that the surface integrals over I" vanish.

Employing the substitutions ¥ (r') = Gy (ry; '), ®(7") = ¢y ('), Equation 4, and the LPBE
Green's function definition, we can write the potential at a point 7y, in region //as

0 , 0 / ,
¢, (r;) f [ Il(rll’r) C;i”( ) ¢n( ) 6Gn” (r,,;r)]dA. (11)

Notice that the signs of the single- and double-layer integrals are reversed with respect to
those in Equation 10. This arises because Green's theorem is initially applied in region //
with the surface normals pointing out from region //. The surface normal direction is then
reversed so that Equations 10 and 11 share a consistent direction, which is outward from
region /. Reversing the surface normal direction changes the sign of the normal derivative
terms in the surface integral.

We derive a pair of coupled integral equations by letting the points r;and r;; approach a
point 7, on the surface. Using Equation 10,

¢, (ra) = rler} ¢, (r,) (12)

G, (rar) 32 (r')dA" ~ lim [f o (r) 52 r’)dA’]
o r —r, (13)
2 G (rasri) .

The second term in Equation 13 can be interpreted as the potential induced by a dipole layer
of charge on the surface. Such a potential is discontinuous as the evaluation point crosses the
surface and must be handled with care. We write

e, NOG,
0, 00=1, (6 () 5 () =, () G ()

where frepresents a principal value integral, and we assume that the limit as r;— r, has
been taken from the direction opposite the normal. A similar limiting process applied to
Equation 11, in which we let r;;— r, yields

’ 6¢11 ! aG
¢11(Va)=fa [_G11(ra;r) on ( ) ¢11( ) on (r”’ )

;1 e q;
dA +_¢/ (ra) +‘Z _G/ (ru;ri) s (14)
2 i=1 €

’ 1
dA +§¢11 (ra) - (15)

9¢
Finally, we eliminate the unknowns ¢, (r,) and 6_; (r4) using the continuity conditions
(Equations 5 and 6). Two coupled integral equations result:
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200+, () T (v an' — [, 5 ()G, (rar )t = £ LG, Gy 1)

%Q{’, (ra) — faiﬁ, (r) % (ra;rl)dA'+ 6;;’ ( ) G, (ru;r')dAI:O. @n

Introducing an abbreviated notation allows the equations to be written as

$I+D* -S54 da |_| TiEG
1[ Du € Su [ 0 > (18)

ILa LI g on

0¢a
where ¢, and denote the surface potential and normal displacement on g, /denotes the
E[
identity operator, €,/ abbreviates ¢ | €, and S}, and D}, denote the single- and double-layer
operators that compute potential at the surface u due to a monopole or dipole charge density

on surface v, given the Green's function G(r; r’). The operator S,, is defined such that:

« 9y N N
"an fG(r“’ )6 ( )()A; (19)

similarly,
D! = a % )(ru,) ¢v(r')dA”. (o)

In Equation 18, we have also defined G; =G, (ru;r:).

Numerical solution using the boundary-element method

To simultaneously solve Equations 16 and 17 using the boundary-element method (BEM),

9¢,
we first approximate the surface variables ¢/r,) and - on (ra) as weighted combinations of a
set of n7basis functions y1(9, x2(9,..., x A1) on the surface:

b ()~ S () @)

O
"” L)~ Evoa(a). @)

The unknown weights v, and vy are then found by forcing the integral equation to be
satisfied as closely as possible in some choice of metric.

In this work, we discretize the surfaces into a discrete set of 77, non-overlapping curved
boundary elements and use piecewise-constant basis functions that have a value of one on a
single element and zero everywhere else:
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() = 1 ifr,is on element k
AklTa) =1 otherwise. %

Defining the integral equation residual to be the difference between the known condition on
the surface and the integral operator applied to the approximate solution, one can form a
square linear system by forcing the residual to equal zero at the boundary-element centroids,
a technique known as centroid collocation [75]. Using the piecewise-constant basis
functions and denoting the centroid of element 7as r; the discretized (matrix) form of the

operator S, from Equation 19 has entries
Si’j:felement jG1 (rci;r )dA./’ (24

and the double-layer discretized operator D, similarly has entries

aG,

Di,]: element j 95, (l’,)

(rq ;r/ ) dA;-. (25)

The total matrix equation representing the discretized form of Equation 18 therefore has
dimension 277, Once this equation is solved, the potential anywhere in space may be
calculated using the discretized forms of Equations 10 and 11.

Extension to multiple dielectrics, solvent cavities, and ion-exclusion layers

Continuum electrostatic models of biomolecular systems can be defined by multiple
embedded regions of differing homogeneous dielectric constant and salt treatment. Integral-
equation formulations that can solve these problems often possess a complicated block
structure because there exist numerous operators that couple variables on one surface to
conditions on other surfaces. To illustrate this block structure, we next present Green's
theorem formulations for two-surface and three-surface example problems. We then
describe how a tree-based representation of the enclosed regions facilitates the determination
of the appropriate Green's theorem-based integral operator for arbitrary multi-region
problems.

Two-surface formulation—Figure 2 is a schematic of a two-surface problem in
molecular electrostatics; salt ions are not permitted to directly reach the molecular surface a,
but instead are bounded by an accessible surface & a specified distance outside the molecule.
The enclosed volume between the surfaces is termed the ion-exclusion layer. Region /, again
representing the molecular interior, has dielectric constant €;,and 7, point charges. The ion-
exclusion layer, region //, has dielectric constant €;,, and in this region, the Laplace
equation governs the electrostatic potential. Region /// represents solvent with mobile ions
and has dielectric constant €, (usually the same as €/, but contains a Debye—Hiickel salt
treatment; the potential in this region is governed by the linearized Poisson—Boltzmann
equation. This problem has continuity conditions at both surfaces aand 4:

¢, (ra)=¢, (ra) (26)

a9,

0
€ (ra) =€, 9y

A0 (ra) (7)
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Gy (rp) =¢y, (rp) - (28)

a¢11

9¢
5, (=6 —

1 an

€, (rp). (29)

The associated integral equations have four surface variables, which are the potential and
. . 8¢a a¢b . .
normal derivative on both surfaces: ¢, 7=, #» and = The free-space Green's functions in
each region are again denoted by G with the region label as subscript: Gy, (r; r'), for
instance, denotes the free-space Laplace Green's function. As in the one-surface derivation,
we apply Green's theorem in each region using the appropriate substitutions, let the field
points approach the bounding surfaces, and eliminate redundant variables using the
continuity conditions. The resulting operator takes the form

1 a o ; @
31+ Dg, =57, o > ﬁ(’/;r

1 a qa a a Oda
3l = Dj . +ernSi, +Djp,, =Sty o 0

b b 1 b b "
~Dira  teruSia | 31+ Doy Sty o) 0

. b ) b oy
31 — Dy +erurSy n 0

(30)
which can be solved with the boundary-element method described above.

Note that the integral operator contains several zero blocks. These blocks arise from the
application of Green's theorem in regions for which one or more surfaces do not form part of
that region's bounding surface. For instance, surface 6 forms no portion of the bounding
surface for region /, and consequently variables on surface & contribute nothing to the
integral equation derived by applying Green's theorem in region /. Note also that two of the
integral equations derive from the application of Green's theorem in region //.

Three-surface formulation—To identify more general trends in the construction of
multi-boundary integral operators, we extend the two surface formulation by adding a
solvent-filled cavity inside the protein interior (Figure 3). In this problem and for the
remainder of this Section, we will follow the convention that region /is the outermost
solvent region. The additional region /V/has dielectric constant e,,,(generally equal to ¢,
and ey, and is not large enough to contain an ion-exclusion surface. Again, we apply
Green's theorem in every region, take limits on the surface integrals as the field points
approach the boundaries, and enforce continuity conditions. The resulting operator takes the
form
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+D5, -Si, o
L1 - D§yy Aervin gy +D11 =S5 ")}i
—Diy ctervanSin e |51+ Dy St =
31— DYy y+enruSy s +DY . —Sh . ?;%
=DiyytenruSiy 51+ Dl —Sira O
i1-Dng, e St )T
[ 0
Gy

(©)]

In this expression, the charges in region /// contribute to two of the integral equations, both
of which derive from the application of Green's theorem in the region. The point-charge
contributions are found by taking limits as the field point in the region approaches the
exterior and interior bounding surfaces. Note again that some of the off-diagonal 2 x 2
blocks contain nonzero 1 x 2 blocks. These operators represent the contribution of a region’s
interior (or exterior) bounding surface to the integral equation derived by letting the field
point in the region approach an exterior (or interior) bounding surface.

Tree-based general formulation—To derive an integral operator for an arbitrary
configuration of embedded boundaries with regions of differing homogeneous dielectric,
point charges, and salt treatment, we represent the topology using a tree. Traversing the
nodes of the tree, irrespective of the order in which they are visited, allows multiplication by
the entire integral operator taking into account all necessary interactions. Each node of the
tree represents one region, and is associated with a dielectric constant and possibly salt
treatment or point charges. The tree is constructed such that the node for a given region Xis
assigned to be the child of the node corresponding to the region surrounding X. Region /,
which is bounded only by a hypothetical surface at infinity, is defined to be the root node.
Furthermore, we associate with each node the exterior bounding surface of the
corresponding region. Figure 4B is a tree diagram constructed to describe the system shown
in Figure 4A.

The example geometry shown may be representative of an encounter complex in protein—
protein binding, where two nearly associated binding partners (Regions ///,and ///5) are
surrounded by a single ion-exclusion layer (Region //). There are also several solvent-filled
cavities present in both binding partners (Regions /V_), and one cavity is large enough to
contain a small ion-exclusion layer (Region V).

Applying the multi-surface integral operator—A multi-region electrostatics problem
with nsurfaces generates a system of 27 coupled integral equations. For each surface, one
writes Green's theorem for the regions exterior and interior to the surface and takes the
appropriate limits as the evaluation points approach the surface. Accordingly, one may refer
to the resulting integral equations as the exterior and interior equations corresponding to the
surface.

An integral equation derived from an application of Green's theorem contains contributions
from the surfaces bounding the region. As an example, consider the interior equation for
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surface Qyp. Applying Green's theorem in region ///, defines the potential at a point in this
region as a function of the surface potential and its normal derivative on Qs Q v, and
Qe Taking the limit of the Green's theorem expression as the field point approaches s,
we obtain the interior equation. Clearly, a surface's interior equation contains contributions
from the surface as well as its children. Similarly, a surface's exterior equation contains
contributions from the surface, its parent, and its siblings. This can be seen by letting the
field point approach any of the cavity surfaces.

Multi-surface problems demand that careful attention be paid to the definition of the surface
normal. In this work we follow the mathematical convention that a normal always points
outward from the finite volume enclosed by the surface. To apply the entire multi-surface
operator for an arbitrary problem, we first define a tree such as shown in Figure 4B. The tree
is traversed depth first, and at each node we apply several integral operators, which in the
discretized problem correspond to dense block matrix—vector multiplications. Because each
block multiplication may be interpreted as the computation of the potential at a surface due
to a distribution of monopole or dipole charge on another surface, we refer to the two
surfaces as the source surface and the destination surface. The set of block multiplications to
be performed at every node is determined by the topology of the surfaces, and is defined
such that every non-zero block in the integral operator is applied exactly once.

We define four types of block integral operators: the self-surface interior operator, the self-
surface exterior operator, the non-self interior operators, and the non-self exterior operators.
As previously discussed, each operator represents an interaction between two surfaces. The
labels /nterior and exterior specify whether the integral operator arises from an application
of Green's theorem to the region interior or exterior to the source surface. The self and non-
self operators are distinguished because the discontinuity in the self operator double-layer
calculation requires specific treatment.

For every node, the following block matrix-vector multiplications are performed. Let the
current node correspond to the region X. Denote its parent region by I sibling regions by
S, and child regions by Y} Lowercase letters correspond to the outer bounding surfaces for

g\
these regions. Every dense block is applied to the vector (‘7’“’ %)

1. Apply the self-surface interior operator

2

1 X X

and add the result to the node's interior equation.

2. Apply the self-surface exterior operator
1 X X
51 — Dy teSy | (33

and add the result to the node's exterior equation.

3. Apply the appropriate non-self exterior operator
[—D‘V;,:X +€yS ;‘] (34)

and add the result to the interior equation of the parent node.
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4. For each sibling node S;, apply the appropriate non-self exterior operator
[_D e tew S| (39)

and add the result to the exterior equation of the sibling node.

5. For each childnode Y;, apply the appropriate non-self interior operator
[+0y, =83 @9

and add the result to the exterior equation of the child node.

Matrix compression with the FFTSVD algorithm

As discussed in the Introduction, boundary-element methods give rise to dense matrix
equations whose solution by LU factorization or Gaussian elimination requires O(/?) time
and O(/#) memory for a system with 77 unknowns. Combining Krylov-subspace iterative
methods with fast-solver algorithms reduces these costs to nearly O(n). Krylov methods
require only a way to apply the matrix A (or its transpose) to a vector; in contrast, LU
factorization and Gauss elimination require explicit access to every entry of A. In this work,
we use the FFTSVD algorithm [43] to rapidly apply the dense integral operators.

FFTSVD, like multipole methods, exploits the smooth decay of the Green's functions as the
distance between source and evaluation point increases. Both types of methods use a spatial
decomposition of the set of boundary elements to separate near-field interactions, which are
computed exactly, from far-field or long-range interactions, which can be accurately
approximated. The long-range interactions are approximated by projecting the dominant
element source distributions, computed using an approximate singular value decomposition
(SVD), onto a grid. Grid—grid interactions are computed via the fast Fourier transform
(FFT), and the dominant responses are interpolated back to the destination integral equation
collocation points. An overview of the FFTSVD method is presented in Figure 5, and a fully
detailed description of the algorithm can be found in reference 43.

For the general multi-boundary Green's theorem formulation, each node in the tree contains
an FFTSVD-compressed operator that simultaneously stores both the single- and double-
layer interactions between all elements that bound the region.

Preconditioning

It has been previously noted in the literature that the non-derivative Green's theorem
formulation can lead to ill-conditioned systems of linear equations, especially with
decreasing boundary-element size [32]. To address this issue, we have implemented
preconditioning in order to efficiently solve these systems with iterative methods. By
definition, a preconditioner is any matrix Psuch that the equation PAx = Pb has better
convergence properties than the original system Ax= bwhen the systems are solved
iteratively. In general, Krylov iterative methods are most efficient at solving linear systems
with clustered eigenvalues [76]. Because the identity matrix /(or multiples) has an optimal
clustering, Pis generally selected such that P~ A1 but is inexpensive to form and apply.

For the discretized integral operator matrices that arise from the Green's theorem
formulation, the dominant entries tend to be the self-influence terms, for which the
evaluation point is on the element over which the integral is performed. Consequently, a
reasonable choice for Pis the inverse of a sparse matrix that contains only these self-term
entries. As an examination of Equations 18, 30, and 31 should make clear, the sparse matrix
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that includes just the self-influence terms is not diagonal, but no row has more than two non-
zero off-diagonals. We call such a matrix block-diagonal because it possesses 2x2 diagonal
block structure and each block is diagonal. Here, P can be easily applied using the LU-
factorization of this block diagonal matrix because the factors have the same sparsity pattern
as the original matrix.

Curved element discretization

In order to generate the basis functions used in the boundary-element method, we discretize
the molecular and accessible surfaces that define the problem into curved elements that can
exactly represent the underlying geometry [40]. Accessible surfaces [45], also called
expanded van der Waals surfaces, are generally used to model the ion-exclusion layer and
can be completely described by convex spherical patches bounded by circular arcs. These
circular arcs are not necessarily geodesic arcs, and thus we use the concept of a generalized
spherical triangle (GST) (Figure 6A) [39,40]. A GST is a three-sided curved element that
lies on the surface of a sphere, where each edge is a portion of a circular arc. If the arc center
for all three edges happens to be the center of the sphere, a traditional spherical triangle is
recovered. A spherical patch can be discretized into a set of GSTs by starting with a flat
element triangulation, and then assigning the appropriate circular arc to each element edge.
Typically, edges that lie along the interface between atoms are assigned non-geodesic arcs
that follow the curve of intersection, while all other edges are assigned geodesic arcs.
However, the generation of topologically valid GST discretizations from flat elements is
challenging, and one technique for achieving this is presented in [40].

Molecular surfaces [38,46,48], used here to model dielectric interfaces, are the surfaces of
closest approach for the surface of a probe sphere that is rolled over a molecule. They can be
described using three types of surface patches [38]. Convex spherical patches are defined
where the probe sphere is in contact with only one atom, and can be described by portions of
a sphere bounded by circular arcs and discretized with GSTs. Concave spherical re-entrant
patches are formed when the probe touches three or more atoms simultaneously, and are also
described by GSTs. When the probe simultaneously touches two atoms, a portion of a torus
is generated. Toroidal regions are discretized into four-sided curved torus elements (Figure
6B) that are isomorphic to a rectangle. A fully meshed curved element discretization for the
barnase—barstar complex molecular surface is shown in Figure 7.

Techniques for integrating singular Green's functions over these curved GST and torus
elements have been developed, and are discussed in detail in [40]. Briefly, when the
evaluation point in the integrand is far away from the element, low-order quadrature rules
are used to perform numerical integration. These quadrature rules are generated by creating
a smooth mapping between a reference flat triangle or rectangle (for GSTs and torus
elements, respectively) that relates a known quadrature rule on these simple domains [77] to
those applicable on the curved elements. When the evaluation point is near or on the curved
element, even high-order quadrature rules are not sufficient to capture the singularity. As a
result, we adopt specialized methods for each element type and Green's function. For the
single-layer Laplace (Poisson) kernel, we integrate over GSTs using a technique that
reproduces the effect of element curvature using a higher-order distribution on a reference
flat triangle [78]. Single-layer Laplace integrals over torus elements are evaluated using an
element-splitting approach, which avoids integration near the singularity using recursive
subdivision. Details of the subdivision procedure can be found in reference 40. When
integrating the double-layer Laplace kernel in the near-field over both GST and torus
elements, we exploit the fact that the double-layer potential is equal to the solid angle
subtended by the curved element when observed from the evaluation point [49,79]. In order
to integrate the linearized Poisson-Boltzmann kernel or its normal derivative in the near
field, we adopt a previously presented desingularization technique [32]. This method divides
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the integral into a singular Laplace component that can be integrated as described above, and
a smooth component that can be integrated using quadrature.

Computational details

Peptide and protein structure preparation

The structure of a peptide derived from an HIV-1 protease cleavage site was obtained from
the Protein Data Bank (PDB) with accession code 1F7A [67]. This structure contains nine
visible residues of a decameric peptide bound to an inactivated mutant of HIV-1 protease;
only the peptide was considered in further calculations. An N-terminal acetyl blocking group
and a C-terminal methylamide blocking group were added to the peptide. The wild-type
structure for the barnase—barstar protein complex was also obtained from the PDB as
accession code 1BRS [68]. To prepare this structure for calculation, we followed a previous
protocol [80] where all but a set of 12 interfacial water molecules were removed. These
water molecules were associated with barnase in all binding calculations. For both the
peptide and barnase—barstar structures, hydrogen atoms were added using the wsuio module
[81] in the crarmm cOmputer program [82] using the raram22 parameter set [83] and a distance-
dependent dielectric constant of 4. In addition, side-chain atoms that were missing from the
crystal structures were rebuilt using crarwm and the default raram22 geometry. All ionizable
residues were left in their standard states at pH 7, with histidine side chains left neutral and
protonated on the e nitrogen.

Modeling of barnase—barstar mutations

Three point mutations (E73Q in barnase, D39A in barstar, and T42A in barstar) were built
into the barnase—barstar complex for subsequent analysis. The alanine mutations were
created by cutting back the wild-type residue to the S-carbon. The E73Q mutation was built
by sampling glutamine side-chain dihedral angles in 30-degree increments using cqarwm [82]
and the raram22 parameter set [83]. For each sampled conformation, the side chain was
energy minimized until convergence keeping all other atoms in the structure fixed. The
lowest-energy minimized geometry was taken to represent the E73Q mutation. The selected
rotamer for the E73Q mutation utilized the same )(1 and ;(2 angles as the crystallographic
E73 residue, but the ;(3 angle differed by approximately 30 degrees.

BEM and FFTSVD parameters

Parameters used in the FFTSVD algorithm [43] included a drop tolerance of 1072 for SVD
compression, spatial decomposition until each cube contained no more than 32 elements,
and a grid size of 4 x 4 x 4 in each finest-level cube to represent dominant sources and
responses during FFT translation. The boundary-element matrix equations were solved using
the Krylov subspace method GMRES [52] to a relative residual of 1076. All curved BEM
calculations were performed on a machine with two dual-core 2.0-GHz Opteron processors
running a parallel version of the FFTSVD library. All presented timings are the sum of CPU
usage across all four cores.

Finite-difference solver and parameters

In order to compare our curved boundary-element solver to finite-difference methods
(FDM), we have independently implemented a FDM solver using previously described
methods [10]. This implementation uses successive over-relaxation (SOR) with an
optimized acceleration factor to solve the finite-difference equations to a relative residual of
1076. An analytical molecular surface representation was used to assign dielectric constants
to the finite-difference grid. In order to address truncation of the boundary condition at
infinity, a focusing scheme [9] was employed in all FDM calculations where the molecule of
interest occupied first 23% and then 92% of the finite-difference grid. For the low-percent
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fill run, a Debye—HoUickel screened potential in solvent dielectric was used to assign
potentials to the boundary of the cubic grid. For the high-percent fill run, boundary
potentials were taken by interpolation from the low-percent fill solution. It is common to
average results from multiple translations of the molecule relative to the grid in order to
reduce error due to the grid representation [9]. Unless otherwise stated, here only one
placement was used to compare to the curved BEM, which is insensitive to translations or
rotations of the geometry. Cubic grids used to discretize molecular geometries in the FDM
spanned 129 to 481 grid points per side in increments of 32, which are all solvable within 4
GB of computer memory. These sizes correspond to grid resolutions of approximately 2.3 to
8.6 grid points per angstrom for the barnase—barstar complex. All FDM calculations were
performed in serial on one core of a machine with two dual-core 2.0-GHz Opteron
processors.

The use of multigrid approaches in finite-difference methods produces solutions of equal
accuracy to SOR in less time while requiring only a slightly larger memory footprint
[11,14]. Because the accuracy does not improve and memory is often limiting, we have
chosen to compare to SOR here.

Electrostatic solvation and binding calculations

All continuum electrostatic calculations were performed using a molecular dielectric
constant of 4, a solvent dielectric constant of 80, a molecular surface with probe radius 1.4 A
for dielectric interfaces, an accessible surface with probe radius 2.0 A for ion-exclusion
layers, and an ionic strength of 145 mM. To compute the solvation free energy of a
molecule, we subtracted from the free energy of the solvated state that of a reference state,
where the solvent dielectric constant was equal to the molecular dielectric constant and no
salt was present. The BEM calculates this free energy difference directly, and an explicit
reference state is not needed. In the FDM implementation, the energy of the reference state
is explicitly computed to cancel grid energy.

For rigid-binding calculations, the electrostatic component of the free energy of binding was
computed as the sum of Coulombic interactions (computed with the molecular dielectric
constant) in the bound state and the differential solvation energy between the bound
complex and infinitely separated individual binding partners. For the FDM, identical
placement of each molecule on the grid was used to accelerate the calculation by canceling
the grid energy in the complex with grid energies for the individual binding partners.

Non-rigid electrostatic binding energies were computed by first energy minimizing the
geometry of the complex and each of the isolated binding partners separately. The
minimization was performed using cuarwm and the raram22 parameter set, relaxing all atoms
with 1,000 steps of adapted basis Newton—-Raphson (ABNR) minimization using a distance-
dependent dielectric constant of 4. The binding energy was then computed using a
thermodynamic cycle where the two isolated binding partners were first desolvated to a
uniform medium with the molecular dielectric constant and no salt. In low-dielectric
medium, the partners were deformed to their bound-state structures and then rigidly bound,
computing all electrostatic changes with Coulomb's law in molecular dielectric. Finally, the
complex was re-solvated. The sum of the energetic changes in these three steps was taken as
the non-rigid electrostatic binding free energy. Due to the change in geometry between the
bound and unbound states in non-rigid binding, the FDM grid energy cancellation technique
could not be used to avoid low-dielectric simulations, and explicit reference states were
employed for all FDM solvation calculations.
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Generating curved element discretizations

Molecular and accessible surfaces were discretized into curved elements starting with high-
quality flat triangular meshes for spherical regions from the program rercen [84]. These
elements were then converted, along with torus patches, to curved elements as described in
reference 40. Curved-element discretizations for molecular geometries were generated such
that memory requirements did not exceed 4 GB. For the sphere test case, discretizations
were obtained between roughly 80 and 58,000 curved elements including ion-exclusion and
dielectric interface surfaces. These element counts correspond to inverse average element
edge lengths between approximately 0.1 and 1.6 A ~1. For the peptide example, element
counts spanned approximately 5,200 to 128,000, and for the various barnase—barstar
complexes, the span was roughly 92,000 to 310,000 total curved elements. These element
counts correspond to inverse average element edge lengths between approximately 1.4 and
7.4 A ~1 for the peptide and between 2.1 and 4.5 AA™1 for barnase—barstar complexes.

Results and Discussion

For all calculations, we compared our boundary-element results to those generated using
finite-difference methods. Although geometric measures can be defined for such
comparisons [28,31], we chose to use computer resources, such as time and memory, as our
primary metrics, to determine which method can achieve Rerior convergence properties for
given resources. We could not guarantee that the geometry of the problem being solved was
exactly the same in both methods because different algorithms were used to generate
molecular boundaries. In principle, both algorithms compute with identical surfaces;
however, implementation details can cause different surfaces to be returned, particularly
when the surface possesses singularities or features too small to be represented given
machine precision. Therefore, for systems without closed-form solutions, the level of
convergence for a particular method was assessed solely on how little the solution changed
as additional computer resources were expended.

Electrostatic solvation free energies

One of the simplest linearized Poisson—Boltzmann calculations is the computation of the
electrostatic component of the free energy associated with the transfer of a molecule from
low- to high-dielectric medium, where the high-dielectric region contains an ion-exclusion
layer with salt outside. This quantity, known as the electrostatic solvation free energy, is
useful in many calculations and forms the basis for computing more complex quantities such
as electrostatic binding free energies. We first validated the multi-surface formulation by
computing the solvation free energy for a simple spherical test case, which has a closed-
form solution. Then, we gauged the accuracy of the solver by examining more complicated
geometries including a peptide derived from an HIV-1 protease substrate site as well as the
barnase—barstar protein—protein complex.

Protein-sized sphere with ion-exclusion layer—To test the correctness of the
multiple surface formulation, the electrostatic solvation free energy for a protein-sized
sphere of radius 20.0 A with a charge of +1e placed 2.0 A inside the surface was computed.
An ion-exclusion layer was added 2.0 A outside the sphere surface, creating a two-boundary
problem. BEM and FDM solutions were compared to the analytical solvation free energy for
this geometry [73] as displayed in the convergence plots shown in Figure 8. Relative errors
are computed by the relation | Eqa/cusated = Eanalytical2! Eanalytica @nd are therefore
dimensionless.

Although the BEM and FDM methods produced similar absolute electrostatic solvation free
energies (Figure 8A), it is clear that in terms of relative error from the analytical solution
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(Figure 8B) that the curved BEM method is able to achieve Rerior accuracy given the same
amount of compute time as the finite-difference method. For this problem, the FDM is
limited to 2-3 digits of accuracy, even when using resolutions greater than 8 grid points per
angstrém. In terms of memory usage, the curved BEM also offers significant improvements
over traditional FDM for the sphere (Figure 8C), allowing similar accuracy to be obtained
while using an order of magnitude less memory.

Another metric commonly used to compare BEM and FDM is accuracy achieved given the
characteristic length scale for the discretization used to solve the problem. In finite-
difference methods, this length is generally taken to be the grid spacing, and in boundary-
element methods, one common definition is the average edge length of the elements forming
the mesh [31]. As shown in Figure 8D, the grid spacings used in the FDM are smaller than
the average element edge length in the curved BEM, indicating that finer discretization
scales in the FDM are still insufficient to provide similar accuracy to the curved BEM.

To verify that the curved BEM presented here does indeed offer improved accuracy over
FDM approaches, we implemented from the literature several improvements to the FDM
that have the potential to increase accuracy. Specifically, we considered translational
averaging [9,85], where the solvation energies of multiple relative placements of the
molecule on the grid are averaged. In addition, we examined a 3-stage focusing scheme
where an additional 5.75% fill calculation was added to improve the representation of the
far-field boundary condition. Finally, a previously described nine-point dielectric boundary
smoothing scheme [86] was employed. As shown in Figure 8E, none of these alternatives
have a significant impact on the computed energetics of the protein-sized sphere example.

Another popular improvement to FDM is the scaled surface charge method proposed by
Honig and co-workers [15]. In this method, potentials at the atom centers are computed
using induced surface charges on the molecular surface rather than using grid interpolation.
We have found that this method offers improved accuracy for problems with zero ionic
strength (data not shown), but it is currently not applicable to problems containing salt
regions.

HIV-1 protease substrate peptide—To evaluate the method on a more complex
example, the electrostatic solvation free energy for a peptide derived from an HIV-1
protease substrate site was computed using BEM and FDM including salt and an ion-
exclusion layer. The computed solvation free energy was plotted as a function of compute
time (Figure 9A) or computer memory usage (Figure 9B). It is clear from examining Figure
9A that the solutions provided by the curved BEM implementation appear more converged
than those obtained from the FDM. The solution at the finest discretization levels for the
curved BEM are changing by as little as 1073 kcal/mol given a 1.5-fold increase in the
number of curved elements, while those from FDM are still changing on the order of tenths
of kcal/mol when the grid resolution is improved by only 15%. In addition, the BEM
compares favorably to FDM in terms of memory usage, allowing higher accuracy to be
achieved with the same amount of storage.

Barnase—barstar complex—To be competitive with finite-difference methods, the
curved boundary-element method presented here must be able to achieve high accuracy per
unit compute time on large macromolecules, where the number of curved elements required
to discretize the geometry can be large. To test the solver on a moderately sized protein
system, we computed the solvation free energy of the barnase—barstar protein complex
[68,87,88], a model binding system for which electrostatic interactions have been shown to
be important [80,88-92]. In addition to an ion-exclusion layer, the problem geometry
included four continuum-solvent-filled cavities inside the main dielectric boundary. These
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cavities are holes in the protein structure large enough for a molecular-surface probe sphere
to fit, and are treated as high-dielectric regions in both the curved BEM and FDM
calculations. A comparison between the BEM and FDM for computing the absolute
solvation free energy of this complex is shown in Figures 9C and 9D. Even the finest BEM
and FDM discretizations that can be solved on a computer with 4 GB of memory give
answers that differ by 8-9 kcal/mol out of more than 600 kcal/mol. Furthermore, it is
difficult to establish whether the two methods will converge to the same answer, although
there is no evidence that they will not. However, the curved BEM profile does appear to be
relatively flat, even though the solution changed by approximately 0.2 kcal/mol between the
two highest-resolution calculations, which suggests that it may be near convergence.

As can be seen in Figure 9C, even the coarsest BEM discretization obtained for the barnase—
barstar complex requires more compute time than the finest discretization used for the FDM.
The timings for the FDM remain relatively constant across the presented problems because
they depend primarily on the grid size. In contrast, the BEM requires more curved elements
to discretize a larger molecular surface, resulting in significantly increased simulation cost.
However, this increased cost appears to be accompanied by improved convergence;
achieving a similar level of convergence using FDM is theoretically possible but would
require memory beyond that currently available in general-purpose workstations. In
addition, previous work [40] demonstrated that ten-fold fewer curved elements are needed to
achieve the same level of convergence as a flat element discretization, suggesting that flat
BEM would also be unable to provide a similarly converged answer without dramatically
increased memory costs.

The accuracy of the BEM scales with the element density; accordingly, the larger barnase—
barstar complex cannot be discretized at the same fineness as was feasible for the peptide
example. The BEM-calculation solvation energies in Figures 9A and 9C exhibit similar
curvature, and the “knees” of the two curves are separated by approximately a factor of ten
in compute time. This difference is expected considering the ratio of the surface areas for the
peptide and barnase-barstar complex (952 A2 and 8019 AZ, respectively). The level of FDM
convergence might also be expected to suffer for larger problems due to decreasing grid
resolution given the same number of grid points. Surprisingly, the FDM appeared to lose
less relative accuracy with increasing problem size as compared to the BEM. For the peptide
and barnase—barstar solvation energies, the highest resolution FDM calculations were still
changing by approximately 0.05 and 0.5 kcal/mol respectively. In the curved BEM results,
they were changing by 0.001 and 0.2 kcal/mol, indicating a larger fold loss in convergence.

Importance of preconditioning

To demonstrate how effectively the block-diagonal preconditioner accelerates convergence
of the iterative solution of the BEM equations, we repeated the solvation energy calculation
for one discretization of the peptide example and one discretization of the barnase—barstar
complex using several preconditioners. Specifically, we performed the calculation without
preconditioning, with a purely diagonal preconditioner, and with the presented block-
diagonal preconditioner. As shown in Figure 10, the number of GMRES iterations required
to achieve a relative residual of 1076 without preconditioning was 422 for the peptide and
1131 for the barnase—barstar complex. The purely diagonal preconditioner required 198 or
526 iterations, and the full block-diagonal preconditioner reduced this even further to 40
iterations for the peptide and 106 for the barnase—barstar complex. In general, the block-
diagonal preconditioner allows even complex geometries to be solved to a relative residual
of 1076 in approximately 150 or fewer GMRES iterations.
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Rigid electrostatic binding free energies

Another useful quantity often calculated using the LPBE model is the rigid electrostatic
binding free energy between a pair of interacting molecules — the electrostatic free energy
difference between infinitely separated binding partners and the bound complex with no
change in conformation. One component of this quantity is the difference in solvation
energy between the bound state and the two unbound states. This differential electrostatic
solvation is added to the direct Coulombic interactions made between the partners in the
bound state. To measure the role that LPBE solver accuracy plays in this class of
calculations, as well as to compare the curved BEM to FDM, we computed the rigid
electrostatic binding free energies for the wild-type barnase—barstar complex and three
experimentally characterized single mutants (E73Q in barnase; T42A and D39A in barstar)
[88,93,94] that have been previously shown to have a significant effect on electrostatic
binding calculations [89,95-97]. These mutations were built into the wild-type barnase—
barstar complex with minimal perturbation, where all atoms remained in the same position
except at the site of mutation.

The results of these rigid electrostatic binding calculations are shown in Figure 11. For the
wild-type barnase—barstar structure as well as the mutant complexes, the BEM calculations
showed smaller changes in the computed energies with increasing problem discretization. In
addition, the FDM appears to converge towards the BEM solution, with FDM rigid-binding
free energies underestimated by 1-2 kcal/mol. Given the decreasing effect of FDM grid
resolution on improving accuracy, significantly finer discretizations would be required for
the FDM to achieve a similar solution to the curved BEM.

Differential rigid electrostatic binding free energies between mutants and wild type

Often, when comparing a set of protein mutations to identify those with improved
electrostatic properties, one is more interested in the relative electrostatic rigid binding free
energies compared to wild type than in the absolute binding free energies themselves. To
gauge the effect of solver accuracy on relative binding free energies, we calculated the
difference in rigid electrostatic binding free energy between each mutant and the wild type
at every level of problem discretization (Figure 12).

For all mutants studied, both methods appear to be converged to tenths of kcal/mol or better,
and give very similar relative binding energies. Low discretizations of the FDM provide
solutions very close to the final answer in a very short amount of time. This may be due to
error cancellation because the mutant structures differ little from the wild type; mutant and
wild-type structures were placed identically on the grid, which should facilitate error
cancellation. For problems in which electrostatic energies are being compared between
structures for which most atoms are located at identical positions, finite-difference methods
may be particularly well suited. Minimal-perturbation relative-binding calculations are often
used when making predictions to improve protein binding or stability, especially in the field
of computational protein design [71,98-101].

Non-rigid electrostatic binding free energies

The rigid binding model, although a useful approximation, is deficient in that it does not
allow structural relaxation between the bound and unbound states. In contrast, non-rigid
binding calculations allow the two binding partners to adopt lower-energy conformations in
their unbound states that are different from their geometry in the bound complex.
Accounting for this relaxation is important because the energetic costs associated with
adopting the bound-state conformation contribute to experimentally determined binding free
energies. Consequently, a variety of methods have been presented in the literature for
treating non-rigid effects in protein—protein binding using continuum electrostatics
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[102-104]. For example, in the Molecular Mechanics — Poisson-Boltzmann Surface Area
(MM-PBSA) methodology [102,103], snapshots of bound-state geometries are taken from
explicit-water molecular dynamics simulations. The electrostatic free energies associated
with these snapshots are calculated by removing the water molecules and using continuum
electrostatic calculations to estimate the solvation free energy for each independent solute
configuration. The ensemble averages over the snapshots can then be used to estimate the
free energies associated with molecular events such as binding. One feature these non-rigid
binding techniques share is that there is no longer a direct correspondence between the
majority of relative atomic positions in the bound and unbound states. As a result, we
hypothesized that the FDM would no longer be able to take advantage of cancellation of
error when computing non-rigid binding effects and that the accuracy of the overall
calculation would depend strongly on the ability to independently converge the solvation
free energy for each state. To test this idea, we implemented an approximation to the MM-
PBSA scheme involving independent minimization of the complex and unbound binding
partners and a thermodynamic cycle to compute electrostatic free energies [104]. The non-
rigid electrostatic binding free energies for mutants were subtracted from those for the wild-
type barnase—barstar complex to generate non-rigid relative binding free energies.

As shown in Figure 13, the curved BEM method regains an accuracy advantage in non-rigid
binding calculations. The curves in this plot resemble those from absolute binding free
energy calculations (Figure 11). The finite-difference solution does not appear to be well
converged at low resolution and seems to gradually approach the boundary-element
solution. Although in some cases it appears there may be systematic differences in the
solutions provided by FDM and BEM, it is important to note that in the FDM, the error is
proportional to the grid spacing squared while compute time increases as the grid size cubed.
Therefore, increasing the grid size significantly increases computational expense and
memory use, but offers diminishing returns in improved accuracy.

Because grid cancellation could not be exploited in non-rigid binding to avoid reference
state calculations in the FDM, we computed the solvation of each state independently
allowing the protein complex or binding partners to fill the entire finite-difference grid.
Therefore, when subtracting the solvation energies of binding partners from the bound
complex, we were subtracting calculations solved at very different grid resolutions. To
determine if this was responsible for the inability of FDM to converge relative non-rigid
electrostatic binding energies, we repeated the calculation using fixed grid placement to
ensure that the solvation energy of each state was computed at roughly the same number of
grid points per angstrom. However, this modification did not improve the ability of FDM to
converge relative non-rigid binding energies (data not shown).

Multiple electrostatic solves for the same problem geometry

As shown above, the curved BEM, although offering better convergence properties, can be
time consuming on large geometries. Currently, the dominant computational cost in our
implementation is compressing the integral operators using the FFTSVD algorithm, which
primarily involves computing costly integrals over nearby curved elements. In contrast, the
FDM requires very little time to initialize the system of linear equations and spends almost
all compute time solving them. There exist several types of useful electrostatic calculations
that involve multiple simulations of the same problem geometry; for these problems, the
expensive BEM “setup” time can be amortized over all calculations.

One such example is charge optimization [72,73,80,105-107], which determines the optimal
partial atomic charges for a ligand that minimize the electrostatic component of its binding
free energy with a receptor molecule. In charge optimization, two geometries for the ligand
are considered: the bound state, where it is complexed with the receptor molecule, and the
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unbound state, where it is isolated in solution. Each ligand charge is set to +1e
independently, leaving all others at zero, and one determines the difference in solvation
potential at the ligand charge locations between the bound and unbound states by solving the
LPBE twice. This produces the ligand desolvation matrix, an important component of the
charge optimization equation [72,73]. Overall, 217solves of the LPBE are required, where n
is the number of atoms in the ligand. When using the BEM, each state's integral operator
only needs to be compressed once, and the compressed operator can be used to solve the n
right-hand sides that only depend on the atomic charges.

To compare the performance of the curved BEM and FDM on a charge optimization
problem, we computed the ligand desolvation matrix for barstar in the wild-type barnase—
barstar complex. In total, 1403 simulations were performed in each of the bound and
unbound states (2806 total). In Table 1 we report the time required to compute the ligand
desolvation matrix for three discretization levels of the finite-difference and curved
boundary-element methods. The inverse length scales in Table 1 may be compared to the
labeled points on the absolute binding free energy plot shown in Figure 11A.

For the finer discretization BEM calculations, the compute time was comparable to that
required for the finer FDM discretizations. Relating these discretization levels to the
convergence plot suggests that for these multiple-solve problems, the BEM may offer
superior accuracy for similar computational cost. Normalized timings demonstrate that the
curved BEM method can calulate the ligand desolvation matrix in significantly less time
than 217 independent PBE solves due to amortization of the cost of initializing and
compressing the matrix operators.

In addition to charge optimization, electrostatic component analysis [69-71], which
examines the contribution of independently charged groups of atoms to electrostatic binding
or stability, also requires multiple solves of the same problem geometry. It is expected that
similar performance improvements should be seen for these calculations as well.

In conclusion, we have presented an implementation of the boundary-element method for
linearized Poisson—Boltzmann continuum electrostatics that is capable of achieving high
accuracy and solving the same topologies of homogeneous dielectrics, point charges, and
salt regions that volume-based methods are capable of solving. The goal of high accuracy
has been achieved via the synthesis of several enabling technologies. These included a
general Green's theorem integral formulation for multiple embedded regions, curved-
element discretization with robust integration methods, and preconditioned Krylov subspace
methods combined with matrix compression using the FFTSVD algorithm. Solutions may
now be converged to high precision (tenths of kcal/mol) even for protein geometries, with
reasonable computer resources such as a workstation with 4 GB of memory and two or four
processors. Although such requirements are somewhat higher than commonly found on the
desktop at the present time, future work may identify improvements to reduce time and
memory use. In particular, the representation of surface variables with higher-order basis
functions is an appealing approach that warrants further study. Additionally, the ability to
accurately model multiple embedded regions of homogeneous dielectric permits the use of
more than one dielectric constant to represent the protein interior, allowing for more
complex models of protein polarizability to be explored [62,108-111].

Comparing the performance of the curved BEM against a reference finite-difference solver
identified types of calculations for which improved accuracy may be important. For

example, when computing absolute electrostatic solvation free energies or the electrostatic
component of rigid binding energies, the curved BEM method offers superior convergence
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properties. Even at the highest discretizations possible within 4 GB of computer memory,
finite-difference methods did not appear to be converged, as the solutions continued to
change significantly with increased expenditure of computing resources. However, when
comparing differential rigid binding energies between mutant and wild-type protein
complexes, even coarse finite-difference simulations sufficed to capture relative effects.
This is not surprising considering that the local structural perturbations allow for
cancellation of error. Relative rigid binding calculations with local geometry perturbations
are prevalent in ranking the results of molecular design efforts, and finite-difference
methods are an attractive tool for this class of computation. However, when non-rigid effects
were introduced into the binding model, and the bound and unbound states were allowed to
relax independently, finite-difference methods performed much less well. Therefore, as
more sophisticated non-rigid models of binding are employed in ranking results of
molecular design calculations, higher-accuracy LPBE solvers such as the presented curved
BEM may become necessary to make reliable predictions.
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Figure 1.

A one-surface problem in molecular electrostatics. The molecular interior (Region 1),
containing point charges g;, is surrounded by a salt solution with high dielectric constant and
inverse Debye length & (Region /J).
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Figure 2.

A two-surface problem in molecular electrostatics. The molecular interior (Region 1),
containing point charges g;, is surrounded by an ion-exclusion layer with solvent dielectric
and no salt (Region //), which in turn is surrounded by solvent with a salt treatment (Region

).
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Figure 3.

A three-surface problem in molecular electrostatics. This geometry is analogous to the two-
surface problem (Figure 2) except that a solvent-filled cavity has been added within the
molecular interior (Region /V). Note that in contrast to previous examples, the regions and
surfaces have been labeled in reverse order.
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Figure 4.

Tree representation of a general surface problem. The example molecular geometry shown
in (A) might correspond to an encounter complex between two associating proteins (Regions
111, and //1p) with point charges g;, surrounded by a single ion-exclusion layer (Region //),
which in turn is surrounded by solvent with salt (Region /). The binding partners contain
several solvent filled cavities (Regions /V,_p), and one cavity is large enough to contain a
small ion-exclusion layer (Region V). The tree representation for this example multi-surface
geometry is shown in (B).
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Figure 5.

An overview of the FFTSVD matrix compression algorithm. FFTSVD uses a multi-level
octree spatial decomposition to separate element—evaluation point interactions into near- and
far-field components at multiple length scales. When two cubes at the finest length scale are
nearby, interactions are computed through direct integration. However, when two interacting
cubes are well separated, dominant sources are projected onto a cubic grid and translated to

a grid surrounding the recipient cube. The FFT is used to accelerate this translation

operation. Finally, the grid potentials can be interpolated back onto the dominant responses

of the element centroids. This Figure has been adapted from reference 43.
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Figure 6.

The two types of curved elements used to discretize accessible and molecular surfaces. A
generalized spherical triangle (GST) (A), is a three-sided region on the surface of a sphere
bounded by three circular arcs. These arcs are not necessarily geodesic arcs. Torus patches
on molecular surfaces are discretized using toroidal elements (B), which are isomorphic to a
rectangle.
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Figure 7.

A rendering of a curved element discretization for the molecular surface of the barnase—
barstar protein complex. Red regions indicate convex spherical patches, green regions are
re-entrant spherical patches, and blue regions are re-entrant toroidal patches. Black lines
indicate the boundaries between elements. The graphic depicts an approximation to the
discretized geometry used for calculation. Every GST and torus element has been
approximated by a very large number of flat triangles for the purpose of visualization only,
and the true surface normal in conjunction with Phong shading have been used to render the
image. Surface patches with higher curved element densities were regions where finer
discretization was necessary to exactly represent the molecular geometry.
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surface charge and ion-exclusion layer. Results are compared between the curved BEM and

FDM implementations in terms of absolute electrostatic solvation free energy per unit

compute time (A), relative error from the analytical solution per unit compute time (B),

relative error per unit computer memory (C), and relative error per unit inverse

discretization length scale (where the length scale is average mesh curved edge length for

BEM and distance between grid points for FDM) (D). In addition the effect of several

common improvements to the FDM on the relative error is shown (E). For (C), dashed lines

have been added at 1 GB, 2 GB, and 4 GB of computer memory for convenience.
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Figure 9.

Computed solvation free energies, using curved BEM and FDM, for an HIV-1 protease
substrate peptide (A, B) and the barnase—barstar complex (C, D). The absolute electrostatic
solvation free energy is plotted as a function of compute time (A, C) or computer memory
usage (B, D). In (B, D) dashed lines have been added at 1 GB, 2 GB, and 4 GB of computer
memory for convenience. The slight decrease in memory usage with increasing refinement
observed in B is an artifact of the spatial partitioning scheme used in the FFTSVD
algorithm.
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Figure 10.

Comparison of preconditioning strategies when solving for the electrostatic solvation free
energy of an HIV-1 protease substrate peptide discretized with 18,657 and 7,089 elements
on the dielectric and ion-exclusion surfaces, respectively (A) or the barnase—barstar complex
discretized with 61,493 and 28,800 elements (B). In both cases, the block-diagonal
preconditioner significantly reduced the number of GMRES iterations required to solve the
linear system of BEM equations to a relative residual of 1076.
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Figure 11.

Comparison between curved BEM and FDM for computing the electrostatic component of
the rigid binding free energy between the wild-type barnase—barstar complex (A), and three
mutant complexes, E73Q in barnase (B), D39A in barstar (C), and T42A in barstar (D). The
binding free energy obtained is plotted as a function of the compute time required. In (A),
several FDM and BEM results are labeled with their inverse discretization length scale in
angstroms™1 (inverse grid spacing or inverse average curved element edge length,
respectively).

J Comput Chem. Author manuscript; available in PMC 2012 October 8.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Altman et al.

Page 38

=
es]

Barnase E73Q Mutation Barstar D39A Mutation

—s— Curved Boundary Element —s— Curved Boundary Element
—+— Finite Difference —+— Finite Difference

'
&

S

S
=

!
@
©

o
N

-3.95]

>
@

o

-4.05

Relative Rigid Electrostatic Binding Free Energy (kcalimol)

Relative Rigid Electrostatic Binding Free Energy (kcal/mol)
=

!
A

3 n s

3
3
3,
3,

3 n

Compute Time (s) Compute Time (s)

Q

Barstar T42A Mutation

—— Curved Boundary Element
—i— Finite Difference

o

S

Relative Rigid Electrostatic Binding Free Energy (kcal/mol)
I
3

Compute Time (s)

Figure 12.

Comparison between curved BEM and FDM for computing relative rigid electro-static
binding energies between mutant and wild-type barnase—barstar complexes. Results are
shown for the mutations E73Q in barnase (A), D39A in barstar (B), and T42A in barstar (C).
The relative binding free energy is plotted as a function of the compute time for the mutant
complex rigid binding free energy.
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Figure 13.

Comparison between curved BEM and FDM for computing relative non-rigid electrostatic
binding energies between mutant and wild-type barnase—barstar complexes. Results are
shown for the mutations E73Q in barnase (A,B), D39A in barstar (C,D), and T42A in barstar
(E,F). The relative binding free energy is plotted as a function of compute time (A,C,E) or
computer memory usage (B,D,F) when calculating the mutant complex non-rigid binding
free energy. In (B,D,F), dashed lines have been added at 1 GB, 2 GB, and 4 GB of computer
memory for convenience.
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Compute time required to calculate the entries of the ligand desolvation matrix for barstar in the wild-type
barnase—barstar complex (2806 independent PB solves). For both the curved BEM and FDM, the calculation
was repeated at three discretization levels. For the curved BEM, the inverse average curved element edge
length reported is for all surfaces in the bound state geometry. Normalized timings are relative to a single

complete solve of the bound-state geometry.

Table 1

Method
Inverse Grid : Normalized Timing
Spacing (A1) Time (s) to 1 PB Solve
FDM 0.3 4.2 x 104 2806
11 6.3 x 10° 2806
1.6 1.8 x 106 2806
Inverse Average Curved Time (s) Normalized Timing
Element Edge Length (A1) to 1 PB Solve
Curved BEM 2.1 7.6 x 10° 279
2.4 1.3 x 108 414
2.9 2.0 x 108 495
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