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The C-terminal domain (CTD) of the RNA polymerase II
largest subunit consists of multiple heptad repeats (con-
sensus Tyr1–Ser2–Pro3–Thr4–Ser5–Pro6–Ser7), varying in
number from 26 in yeast to 52 in vertebrates. The CTD
functions to help couple transcription and processing of
the nascent RNA and also plays roles in transcription
elongation and termination. The CTD is subject to exten-
sive post-translational modification, most notably phosphor-
ylation, during the transcription cycle, which modulates
its activities in the above processes. Therefore, under-
standing the nature of CTD modifications, including how
they function and how they are regulated, is essential to
understanding the mechanisms that control gene expres-
sion. While the significance of phosphorylation of Ser2
and Ser5 residues has been studied and appreciated for
some time, several additional modifications have more
recently been added to the CTD repertoire, and insight
into their function has begun to emerge. Here, we review
findings regarding modification and function of the CTD,
highlighting the important role this unique domain plays
in coordinating gene activity.

Eukaryotes have three nuclear DNA-dependent RNA
polymerases (RNAPs): RNAP I, RNAP II, and RNAP III.
RNAP II, responsible for the synthesis of all mRNA as
well as many noncoding RNAs (ncRNAs), consists of 12
polypeptides, of which Rpb1, which possesses the en-
zyme’s catalytic activity, is the largest. Rpb1 also con-
tains a C-terminal domain (CTD) composed of tandem
heptad repeats that constitutes a unique feature of RNAP
II and distinguishes it from all other polymerases. The
CTD is conserved from fungi to humans, although the
number of repeats and their deviation from the consensus
vary, reflecting to a large degree the complexity of the
organism. The CTD plays important roles at all steps of
the transcription process, including enhancing or modu-
lating the efficiency of all of the RNA processing reactions
required for completion of synthesis of the mature RNA.
The phosphorylation state of the CTD is critical in de-
termining its activity.

Transcription by RNAP II is an immensely complicated
process at each step from initiation to termination. Initi-
ation requires the assembly of the preinitiation complex
(PIC), composed of the general transcription factors (GTFs)
TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH; the Mediator
complex; and RNAP II with an unphosphorylated CTD
(designated RNAP IIA) (for review, see Cramer 2004;
Hirose and Ohkuma 2007; Sikorski and Buratowski 2009).
But, concomitant with initiation and throughout the tran-
scription cycle, the CTD becomes highly phosphorylated
(RNAP IIO), with the Ser2 and Ser5 positions of the
heptad being especially important sites of modification.
A generalized model of CTD phosphorylation during tran-
scription depicts that at the beginning of genes, the CTD
is phosphorylated on Ser5 by the TFIIH-associated kinase
CDK7 (cyclin-dependent kinase 7), and as RNAP II elon-
gates, Ser2 is increasingly phosphorylated by CDK9 or
pTEFb, while Ser5 phosphorylation is gradually removed
by phosphatases. Therefore, a phosphorylation pattern
emerges with Ser5 phosphorylation (Ser5-P) peaks around
the transcription start site (TSS), and Ser2-P accumulates
toward the ends of transcribed genes (for review, see
Chapman et al. 2008; Egloff and Murphy 2008). But, as
we discuss here, the situation is now known to be consid-
erably more complex.

The CTD orchestrates multiple events during the
transcription process. Genes transcribed by RNAP II are
bound dynamically by nucleosomes. The CTD, modu-
lated by phosphorylation, provides a means to recruit
histone modifiers and chromatin remodeling complexes
to influence transcription initiation, elongation, and ter-
mination (for review, see Spain and Govind 2011). RNA
transcribed by RNAP II is processed to mature RNA
through the steps of 59 capping, intron removal, and 39

end formation. These processes are frequently coupled
with transcription, and all involve the CTD (for review,
see Hirose and Manley 2000; Maniatis and Reed 2002;
Proudfoot et al. 2002). Through different patterns of
phosphorylation and other modifications, the CTD func-
tions to coordinate these events during transcription
(for review, see Phatnani and Greenleaf 2006; Buratowski
2009; Perales and Bentley 2009). It is striking that the
simplicity of the CTD structure (i.e., YSPTSPS consensus
repeats) is coupled with complex and dynamic patterns
of modification to organize the numerous and even
more complex nuclear events necessary to form mature
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transcripts. Below we review studies documenting the
structure and function of the RNAP II CTD.

CTD architecture and modification

The structure of the RNAP II CTD displays several in-
triguing and idiosyncratic features. For example, verte-
brate CTDs contain 52 tandem consensus Y1S2P3T4S5P6S7

heptapeptide repeats, whereas the budding yeast CTD has
only 26, and other eukaryotes have intermediate num-
bers. In vertebrate CTDs, 21 out of 52 tandem repeats
match the consensus perfectly, while the remaining 31
heptads have one or more substitutions, at position 2, 4,
5, and/or 7 (Corden et al. 1985; Chapman et al. 2008; Liu
et al. 2010). Strictly conserved consensus heptads occur
mostly in the N-terminal half of the CTD, whereas less
conserved, divergent, heptads are found largely in the
C-terminal half (Fig. 1). The most conserved residues are

Tyr1 and Pro6, present in all 52 repeats, while Ser7 is the
least conserved, found in only 26 repeats. A 10-residue
sequence is present at the very C terminus, which func-
tions to help stabilize the CTD (Chapman et al. 2004). The
CTD extends from the core of the enzyme to form a tail-
like structure that provides binding sites for various
factors involving in RNA processing and transcription-
coupled modifications. The structural length of the tail-
like CTD is determined by the phosphorylation status,
with the unphosphorylated yeast CTD likely forming
a more compacted spiral (;100 Å), and the phosphory-
lated CTD forming a more extended tail (;650 Å), about
four times the diameter of the surface of RNAP II (for
review, see Meinhart et al. 2005).

The CTD is subject to extensive modification. While
the most widely studied of these is phosphorylation,
glycosylation, ubiquitinylation, and methylation have
also been reported (Kelly et al. 1993; Li et al. 2007; Sims
et al. 2011). All five of the hydroxylated amino acids can
be phosphorylated. Coupled with the fact that a number
of the heptads are degenerate, the existence of different
combinations of phosphorylated residues suggests that
the CTD may form a remarkable number of distinct
conformations or functional states. This potential com-
plexity can be further increased by the activity of cis/
trans prolyl isomerases. For example, Pin1 (Ess1 in yeast)
specifically recognizes phosphoserine–proline bonds (Yaffe
et al. 1997), and its activity can alter the structure (Verdecia
et al. 2000) and function (Xu et al. 2003; Xu and Manley
2007; Xiang et al. 2010) of the CTD.

Genetic analyses in several organisms have provided
insight into the number of heptads required for cell via-
bility as well as into the importance of specific residues in
the repeat and the spacing between heptads. In general,
cells expressing Rpb1 with CTDs consisting of only ;50%
of the natural numbers of heptads are viable. For example,
the CTD of budding yeast contains 26 repeats, but only
eight heptads are required for cell viability and 13 are
required for wild-type-like growth (West and Gorden
1995). Similarly, chicken DT40 cells expressing an Rpb1
with only 26 all-consensus repeats are fully viable (Hsin
et al. 2011). Mouse cells require for viability a CTD with
>26 repeats (Bartolomei et al. 1988), and mice homozy-
gous for a deletion of 13 repeats of the CTD are viable, but
with high neonatal mortality (Litingtung et al. 1999).
Requirements for specific residues can vary from species
to species. Thus, in Saccharomyces cerevisiae, substitu-
tion of all Tyr1 residues to phenylalanine (Phe) or of Ser2
or Ser5 to alanine (Ala) is lethal (West and Gorden 1995).
However, surprisingly, in Schizosaccharomyces pombe,
only Ser5 is absolutely essential, and cells with Tyr1
mutated to Phe or Ser2 replaced with Ala, although cold-
sensitive, are viable (Schwer and Shuman 2011). It will be
interesting to learn the requirement of these residues for
viability in vertebrates. Both budding and fission yeast
with Thr4 or Ser7 substituted with Ala are viable (Stiller
et al. 2000; Schwer and Shuman 2011). However, DT40
cells expressing an Rpb1 with all Thr4 residues changed
to valine (Val) are inviable (Hsin et al. 2011), as are human
cells with Thr4-to-Ala substitutions (Hintermair et al.

Figure 1. Comparison of select CTD sequences. The CTD
sequences of fission and budding yeast, zebrafish, and humans
are shown and aligned to display the context of the heptad
repeats. All-consensus YSPTSPS repeats heptads are in red, and
the numbers next to the parentheses indicate the repeat number.
The CTD of fission yeast contains 29 heptads, 24 of which are all-
consensus, whereas the CTD of budding yeast consists of 26
heptads, 19 of which are perfect consensus. The fish and human
CTDs each consist of 52 repeats, with a 10- to 11-residue motif
(in bold) at the very C terminus. Highlighting the conservation
of the CTD among vertebrates, fish and human CTDs are 97%
identical. Residues in the fish CTD that differ from humans are
in yellow, and human residues that deviate from the consensus
are in blue.
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2012). With respect to spacing between heptads, experi-
ments in yeast defined a minimal functional unit that
requires two consecutive heptads. Insertion of single Ala
residues between such diheptad units was without effect,
while insertion of five Alas resulted in slow growth, but
cells remained viable, indicating a tolerance for consider-
able flexibility in the CTD (Stiller and Cook 2004; Liu
et al. 2008).

CTD kinases

Several kinases have been implicated in phosphorylation
of the CTD. For example, the CTD is phosphorylated by
several CDKs, most notably CDK7 and CDK9. Ser5 is
phosphorylated by CDK7, a component of TFIIH, and
Ser2 is phosphorylated by CDK9, or P-TEFb in mammals
(for review, see Meinhart et al. 2005; Hirose and Ohkuma
2007; Egloff and Murphy 2008; Buratowski 2009). CDK7
also appears to phosphorylate Ser7 (Akhtar et al. 2009;
Glover-Cutter et al. 2009), and CDK9 is required for
phosphorylation of Thr4 (Hsin et al. 2011). Surprisingly,
a Polo-like kinase (Plk3) has also recently been implicated
in Thr4 phosphorylation (Hintermair et al. 2012). Tyro-
sine residues are phosphorylated by Abl tyrosine kinases
Abl1 and Abl2 (Baskaran et al. 1993, 1997).

CDK7 is a component of the GTF TFIIH. Both yeast
(Kin28) and human CDK7 were initially discovered as
TFIIH-associated kinase activities (Feaver et al. 1991; Lu
et al. 1992), and the activity of CDK7/cyclin H was shown
to be necessary for reconstituted in vitro transcription
(Akoulitchev et al. 1995). Consistent with its presence in
TFIIH, CDK7 functions during transcription initiation,
phosphorylating Ser5 (Hengartner et al. 1998). In yeast,
mutations that reduce Kin28 kinase activity abolish Ser5
phosphorylation at promoters (Komarnitsky et al. 2000;
Rodriguez et al. 2000). More recently, evidence was
presented that shows CDK7 also phosphorylates Ser7 in
vitro, and inhibition of CDK7 activity decreases the levels
of Ser7-P on a collection of genes in vivo. RNAP II in early
transcription is thus phosphorylated on both Ser5 and
Ser7 residues (Akhtar et al. 2009; Glover-Cutter et al.
2009; Kim et al. 2009).

The CTD can also be phosphorylated by a second PIC
component, CDK8, a subunit of the Mediator. CDK8/
Cyclin C was shown to phosphorylate the CTD on both
Ser2 and Ser5 in vitro (Liao et al. 1995; Sun et al. 1998).
Furthermore, the ability of TFIIH to stimulate transcrip-
tion was shown to be repressed by CDK8, indicating that
CDK8 functions as a negative transcription regulator, per-
haps by its ability to phosphorylate the CTD (Hengartner
et al. 1998; Akoulitchev et al. 2000). However, deleting
SRB10 (yeast CDK8) does not affect the CTD phosphor-
ylation level in cells (Rodriguez et al. 2000), and how much
CDK8 in fact contributes to phosphorylating the CTD
in vivo is unclear (for review, see Galbraith et al. 2010).
CDK8/Srb10 indeed targets several other transcription
factors. For example, phosphorylation of the yeast tran-
scription factor Gcn4 by Srb10 leads to Gcn4 promoter
clearance (Rosonina et al. 2012) and degradation (Chi
et al. 2001), and a number of studies have provided evidence

that CDK8 can play a coactivator role (for review, see
Galbraith et al. 2010).

The CTD of elongating RNAP II is phosphorylated by
P-TEFb. P-TEFb was initially found to overcome pausing
of RNAP II near promoters and to stimulate transcription
elongation in vitro (Marshall and Price 1995; Marshall
et al. 1996). P-TEFb is composed of CDK9 and cyclin T,
and CDK9 kinase activity is inhibited by 5,6-dichloro-1-
b-D-ribofuranosylbenzimidazole (DRB) (Peng et al. 1998a,b),
which was known to block transcription elongation in
vitro (Marciniak and Sharp 1991). CDK9’s ability to trigger
the transition from transcription initiation to elongation
was further substantiated by studies demonstrating that
CDK9 stimulates transcript elongation from the HIV-1
promoter (Herrmann and Rice 1995; Fujinaga et al. 1998).
The HIV transcriptional transactivator Tat binds to the
transactivation response element in the nascent RNA to
enhance elongation by recruiting P-TEFb to phosphory-
late the CTD (Zhou et al. 2000).

P-TEFb is also involved in regulating the activities of
two elongation factors, DRB sensitivity-inducing factor
(DSIF) and negative elongation factor (NELF). After tran-
scription initiation, the two factors associate with RNAP
II and pause the elongating RNAP II downstream from the
TSS (Yamaguchi et al. 1999; Wu et al. 2003). To overcome
this pausing, P-TEFb phosphorylates the two factors as
well as the CTD, and elongation proceeds after dissocia-
tion of phosphorylated NELF from the RNAP II complex
(Renner et al. 2001; Fujinaga et al. 2004; Cheng and Price
2007). Significantly, about one-third of genes in both fly
and human cells appear to contain a paused RNAP II
downstream from the TSS (Core et al. 2008; Nechaev
et al. 2010). Pausing is thought to constitute a mechanism
to obtain rapid and coordinated transcription during de-
velopment and in response to external stimuli (Muse et al.
2007; Zeitlinger et al. 2007). The detailed molecular mech-
anisms responsible for pausing remain under investiga-
tion (for review, see Chiba et al. 2010; Levine 2011).

Budding yeast has two CDKs, Bur1 and Ctk1, that func-
tion similarly to CDK9 of higher eukaryotes. CTDK-1
(composed of Ctk1, the cyclin Ctk2, and a regulatory
subunit, Ctk3), like pTEFb, is capable of stimulating
transcription elongation by phosphorylating the CTD as
shown by in vitro transcription assays (Sterner et al. 1995;
Lee and Greenleaf 1997), and CTK1 deletion abolishes
Ser2 phosphorylation in vivo (Cho et al. 2001). Bur1,
together with the Bur2 cyclin, can phosphorylate the CTD
in vitro (Yao et al. 2000; Murray et al. 2001). Both Ctk1
and Bur1 function in transcription elongation, but the
main function of Bur1 in vivo may not be as a CTD kinase
(Keogh et al. 2003). Instead, Bur1/Bur2 is involved in
establishing histone H2B monoubiquitinylation and H3K4
trimethylation at promoters by recruiting a ubiquitin
ligase and histone methyltransferase, and the bulk of Ser2
phosphorylation reflects the action of Ctk1 (Wood and
Shilatifard 2006; although see Bartkowiak et al. 2010).
Indeed, Bur kinase, recruited by the CTD phosphorylated
on Ser5 by Kin28, phosphorylates Ser2 at promoter re-
gions, and subsequent Ctk1 recruitment, stimulated by
Bur1, phosphorylates Ser2 further downstream in the
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coding region (Qiu et al. 2009). This model is supported by
a recent genome-wide analysis showing that Bur1 is re-
cruited to promoter regions prior to Ctk1 (Zhang et al.
2012). The promoter-proximal preference of Bur1 explains
why only a mild reduction of Ser2 phosphorylation was
observed in cells with impaired Bur kinase, since the
majority of Ser2 phosphorylation occurs more downstream
(Keogh et al. 2003; Qiu et al. 2009).

The existence of two CDK9-like kinases in yeast begs
the question: Is there a second Ser2 kinase in higher
eukaryotes? Recently, Greenleaf and colleagues (Bartkowiak
et al. 2010) reported that Drosophila CDK12, which is
conserved in humans, can phosphorylate the CTD on
Ser2 and proposed, based on phylogenetic relationships
(Guo and Stiller 2004), that the ortholog of Bur1 is CDK9,
whereas CDK12 is the counterpart of Ctk1. Furthermore,
depletion of CDK12 or the associated cyclin CycK in
human cells reduced both total Ser2 levels and expression
of select genes, including several DNA damage response
genes (Blazek et al. 2011). Global RNAP II transcription,
however, was not affected detectably in the CDK12/CycK-
depleted cells. Thus, the contribution of CDK12 to Ser2
phosphorylation and overall RNAP II transcription, while
intriguing, requires further study.

Ser2 and Ser5 are both followed by Pro residues, which
is characteristic of substrates of CDKs, such as CDK7 and
CDK9. But this structure has also raised the question of
whether the CTD might be phosphorylated by classical
CDKs that function in cell cycle control. Indeed, the first
CTD kinase identified was the mitotic regulator Cdc2
(Cisek and Corden 1989), although the significance of this
finding was unclear for some time. However, Xu et al.
(2003) subsequently showed that the CTD can be phos-
phorylated in M phase by Cdc2/cyclin B to generate a
hyperphosphorylated RNAP II isoform dubbed RNAP
IIOO. This hyperphosphorylation, which requires Pin1
(also known to be a mitotic regulator) (Lu et al. 1996),
inhibits RNAP II, contributing to mitotic gene silencing.
On the other hand, given the preference of CDKs for Ser/
Thr–Pro substrates, it is perhaps surprising that CDK7
and CDK9 appear to phosphorylate Ser7 and Thr4, respec-
tively, although in each case, precedents exist for targeting
non-S/T-P substrates (Larochelle et al. 2006; Baumli et al.
2008).

CTD phosphatases

The pattern of CTD phosphorylation during the tran-
scription cycle is highly dynamic and requires the activ-
ity of dedicated phosphatases as well as kinases. For
example, as discussed above, the CTD is hypophosphory-
lated in the PIC and becomes highly phosphorylated on
multiple residues during transcription. Thus, both to
ready RNAP II for new rounds of transcription and to
regulate the dynamic CTD phosphorylation status during
transcription, specific CTD residues must be dephosphory-
lated throughout the transcription cycle. This involves
the activities of two major phosphatases, Fcp1 and Ssu72,
conserved from yeast to humans, and others such as the
small CTD phosphatases (SCPs).

Fcp1 (TFIIF-associating CTD phosphatase 1) was ini-
tially described as an activity in HeLa cells (Chesnut et al.
1992) and in yeast (Archambault et al. 1997) that can
dephosphorylate the CTD. Human Fcp1 was found to
function on elongating RNAP II and to recycle RNAP II
for PIC assembly (Cho et al. 1999), and inactivation of
FCP1 results in impaired transcription and lethality in
yeast (Kobor et al. 1999). Fcp1 is capable of dephosphor-
ylating both Ser2-P and Ser5-P (Lin et al. 2002), although
it appears to prefer Ser2-P (Cho et al. 2001; Hausmann and
Shuman 2002; Ghosh et al. 2008). Consistent with this,
while Fcp1 is present on active genes at both 59 and 39

ends (Cho et al. 2001; Calvo and Manley 2005), in global
analyses, higher levels were found in promoter-distal
regions (Zhang et al. 2012), and mutations in FCP1 led
to increased levels of Ser2 phosphorylation (Bataille et al.
2012). Thus, Fcp1 is likely responsible for dephosphor-
ylating the CTD at the end of the transcription cycle but
may also function earlier in the transcription process.

Ssu72 was first found in a genetic screen as a suppressor
of a defect in the GTF TFIIB (Sun and Hampsey 1996).
Later, it was identified as a component of yeast cleavage
and polyadenylation factor (CPF) and shown to function
in 39 end formation of both polyadenylated and non-
polyadenylated RNA (Dichtl et al. 2002a; He et al. 2003;
Nedea et al. 2003). Essentially simultaneously, Ssu72 was
shown to be a CTD phosphatase with a preference for
Ser5-P (Ganem et al. 2003; Krishnamurthy et al. 2004).
Consistent with both these observations, the genome-
wide distribution of Ssu72 indicates that Ssu72 peaks at
both the promoter and 39 end of genes, with more present
in 39 end regions (Zhang et al. 2012), and depletion of
Ssu72 leads to increased levels of Ser5-P toward the 39 end
of genes (Bataille et al. 2012). The interaction with TFIIB
now appears to reflect the role of these factors in the
phenomenon of gene looping (Singh and Hampsey 2007).
The phosphatase activity of yeast Ssu72 is stimulated in
vivo by Pta1, a component of CPF (Ghazy et al. 2009).
This interaction is conserved in higher eukaryotes, as
human Ssu72 activity is stimulated in vitro by a direct
interaction with the human homolog of Pta1, Symplekin
(Xiang et al. 2010). Although the phosphatase activity of
Ssu72 is not required for its function in 39 processing in
yeast cell extracts (Ghazy et al. 2009), it is in HeLa
extracts, but only when the 39 processing reaction is
coupled to transcription (Xiang et al. 2010). This suggests
that Ser5 dephosphorylation is important for the role of
the CTD in coupling transcription and polyadenylation
(see below). An unexpected finding was that Ssu72 fa-
vors the CTD substrate with the Ser5–Pro6 peptide bond
in the cis configuration, which contrasts with all other
known CTD phosphatases (Xiang et al. 2010; Werner-
Allen et al. 2011). Consistent with the fact that the cis
configuration is energetically unfavored, dephosphoryla-
tion of the CTD by Ssu72 is enhanced by Pin1 (Xiang et al.
2010). In line with this, ESS1 and SSU72 interact genet-
ically, and mutations in Ess1 result in accumulation of
Ser5-P (Krishnamurthy et al. 2009; Bataille et al. 2012).
Recently, Ssu72 was suggested to dephosphorylate Ser7-P,
as depletion of Ssu72 and mutation in SSU72 also result
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in elevated levels of Ser7-P at the 39 end of genes, and
Ssu72 dephosphorylates both Ser5-P and Ser7-P on CTD
substrates in vitro (Bataille et al. 2012; Zhang et al. 2012).

In searching for human Fcp1 homologs, three related
proteins containing a region with homology with the Fcp1
phosphatase domain were identified (SCP1–3) and found
to dephosphorylate the CTD (Yeo et al. 2003; Kamenski
et al. 2004). SCPs preferentially dephosphorylate Ser5-P
(Yeo et al. 2003; Zhang et al. 2006) and were shown to be
recruited by the transcription factor REST/NRSF to sup-
press transcription of neural genes in nonneuronal cells
by removing Ser5 phosphorylation on promoter-proximal
RNAP II (Yeo et al. 2005). The SCPs, which are not
present in lower eukaryotes, thus appear to play a role in
tissue-specific transcriptional regulation.

Finally, yeast Rtr1 (regulator of transcription 1) has also
been reported to be a CTD phosphatase, functioning to
dephosphorylate Ser5-P in vitro and in vivo (Mosley et al.
2009). Rtr1 associates with RNAP II and localizes to the
59 ends of genes, and RTR1 deletion causes increased
levels of Ser5-P and reduced RNAP II occupancy on
a collection of genes (Mosley et al. 2009). Unlike Ssu72,
Rtr1 is required only for Ser5-P, not Ser7-P, dephosphor-
ylation (Kim et al. 2009). RPAP2, the human homolog of
Rtr1, has also been reported to possess Ser5-P phospha-
tase activity (Egloff et al. 2012). However, the structure of
Rtr1 was recently solved and did not reveal an apparent
active site, and enzymatic assays with purified Rtr1 or
RPAP2 and CTD substrates failed to detect activity (Xiang
et al. 2012). Thus, the role of Rtr1 in CTD dephosphor-
ylation is currently unclear.

Transcription elongation, chromatin, and the CTD

As alluded to above, the CTD undergoes dynamic changes
in phosphorylation during transcription elongation. Very
simply, the CTD is phosphorylated on Ser2 by CDK9,
while Ser5-P is removed by Ser5 phosphatases, and, toward
the end of genes, the CTD is dephosphorylated by Ser5
and Ser2 phosphatases. RNAP II with a hypophosphory-
lated CTD, RNAP IIA, can then be recycled for another
round of transcription. This view has been expanded by
inclusion of two additional phosphorylation sites, Ser7
and Thr4, requiring CDK7 and CDK9, respectively. Chro-
matin immunoprecipitation (ChIP) experiments in yeast
revealed a resemblance of Ser7-P distribution to Ser5-P on
select genes (Glover-Cutter et al. 2009; Kim et al. 2009),
suggesting that, in general, Ser5 and Ser7 are both phos-
phorylated at the beginning of transcription. Thr4-P func-
tions in facilitating histone mRNA 39 end processing, and
Thr4 phosphorylation requires CDK9, independent of its
role in Ser2 phosphorylation (Hsin et al. 2011), suggesting
that the Thr4-P pattern may be similar to Ser2-P, in-
creasing toward the 39 end of genes. Indeed, a recent study
in human cells found that the genome-wide profiles of
Thr4-P overlapped with, but shifted slightly 39 to, Ser2-P
(Hintermair et al. 2012). Therefore, a simple model of
CTD phosphorylation is that Ser5 and Ser7 are phosphor-
ylated at the beginning of transcription, and Ser2 and
Thr4 phosphorylation occurs during elongation (Fig. 2).

The above general model for the dynamics of CTD
phosphorylation was, for the most part, based on analysis
of a limited number of genes. This has more recently been
reanalyzed by several genome-wide ChIP studies in yeast
(Kim et al. 2010; Mayer et al. 2010; Tietjen et al. 2010;
Bataille et al. 2012; Zhang et al. 2012). Although some-
what different conclusions were reached, probably reflect-
ing use of different analytical methods and/or antibodies,
so far the general model holds for the majority of genes
(Bataille et al. 2012). In brief, these studies showed, with
exceptions, that Ser5-P is enriched at the 59 ends of genes
and peaks around TSSs. As RNAP II elongates toward the
39 end, Ser5-P is gradually removed, and Ser2-P increases,
beginning to saturate at ;600 nucleotides (nt) down-
stream from TSS, regardless of gene length, and sharply
decreases at 100 nt downstream from the poly(A) addition
site (Mayer et al. 2010). A crossover of Ser5-P to Ser2-P
was observed at ;450 nt downstream from the TSS.
Therefore, longer genes have phosphorylation patterns
more consistent with the model, and shorter genes have
higher levels of Ser5-P and lower levels of Ser2-P. Overall,
Ser7-P and Ser5-P patterns overlap to some extent, al-
though profiles of Ser7-P vary, with some genes having
discrete peaks at the 59 and/or 39 end (Kim et al. 2010). In
one study, uniform levels of Ser7-P were observed along
genes, although this may have reflected a technical limi-
tation of the ChIP assay (Bataille et al. 2012). In any event,
it is intriguing that long and short genes have different
patterns of CTD phosphorylation at their 39 ends. Given
the role of the CTD in processes such as mRNA 39 end
formation and transcription termination, the existence of
this pattern points to possible differences in the mecha-
nisms underlying these processes on different genes de-
pendent on length (see below).

Just as CTD phosphorylation patterns change along the
length of transcribed genes, so do histone modifications
in the chromatin of active genes. This raises the possi-

Figure 2. Dynamic modification of the CTD during the tran-
scription cycle. At transcription initiation, CDK7 phosphory-
lates Ser5 and Ser7 residues. Later, during elongation, CDK9
phosphorylates Ser2 and perhaps Thr4, while the phosphate
groups on Ser5 and Ser7 are gradually removed by phosphatases.
For example, Rtr1, likely indirectly with another phosphatase,
and Ssu72, with the aid of the prolyl isomerase Pin1, dephos-
phorylate Ser5-P early and late during elongation, respectively.
Ssu72 also dephosphorylates Ser7-P. CDK12 likely also contrib-
utes to Ser2 phosphorylation during elongation of at least some
genes. As RNAP II nears termination, Fcp1 dephosphorylates
Ser2-P, regenerating unphosphorylated RNAP II that can be
recycled for another round of transcription.
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bility that changes in the CTD phosphorylation array
may contribute to differential patterns of histone modi-
fication as transcription proceeds, and, indeed, consider-
able evidence suggests that this is the case (for review, see
Hirose and Ohkuma 2007; Egloff and Murphy 2008; Spain
and Govind 2011). For example, in yeast, the histone
methyltransferases Set1 and Set2 are recruited to actively
transcribed genes in a CTD-dependent manner. Set1 is
recruited to the 59 ends of genes by Ser5-P, together with
the Paf1 complex, and methylates histone H3 on Lys 4
(H3K4) (Krogan et al. 2003; Ng et al. 2003). Set1 estab-
lishes two distinct chromatin zones on genes, with trime-
thylated H3K4 at promoter regions and dimethylated
H3K4 downstream (Kim and Buratowski 2009). H3K4
dimethylation and CTD Ser5-P are then involved in re-
cruiting the Set3 complex, a histone deacetylase that
deactylates histones H3 and H4, leading to reduced histone
acetylation levels at the 59 ends of genes, which promotes
the association of RNAP II (Kim and Buratowski 2009;
Govind et al. 2010).

Set2 functions toward the 39 ends of genes. It binds to
phosphorylated CTD with a preference for Ser2/5-P (Kizer
et al. 2005) and methylates H3 on Lys 36 (H3K36) (Li et al.
2003; Xiao et al. 2003). After H3K36 methylation, the
histone deacetylase Rpd3S is recruited to deacetylate H3
and H4, which results in reduced transcription elongation
efficiency and prevents cryptic transcription in the cod-
ing region. The recruitment of Rpd3S is mediated by two
subunits: Eaf3 and Rco (Carrozza et al. 2005; Joshi and
Struhl 2005; Keogh et al. 2005). However, initial Rpd3S
recruitment is independent of H3K36 methylation and
occurs through direct binding to Ser2, Ser5 phosphory-
lated CTD (Govind et al. 2010). Rpd3S then transfers to
H3 by interaction of the Eaf3 and Rco subunits with
methylated H3K36, which is required for activation of
acetylation activity (Drouin et al. 2010; Govind et al.
2010). Although recruitment of Rpd3S to coding regions
and subsequent histone deacetylation to prevent cryptic
transcription in the wake of the elongating RNAP II are
well established, Rpd3S is not found on all transcribed
genes, suggesting the existence of other mechanisms to
prevent aberrant transcription (Drouin et al. 2010).

H3K4 and H3K36 methylation patterns similar to those
in yeast have been observed in higher eukaryotes (Bannister
et al. 2005; Barski et al. 2007; Edmunds et al. 2008).
Mammalian cells contain six Set1-like factors, of which
Set1A and Set1B are responsible for the bulk of H3K4
methylation (for review, see Shilatifard 2012). A com-
ponent of Set1A and Set1B, Wrd82, binds to the CTD
phosphorylated on Ser5 (Lee and Skalnik 2008), which
facilitates recruitment of these factors. Additionally, asso-
ciation of the mixed lineage leukemia (MLL) Set1-like
factors MLL1 and MLL2 with Ser5-P has been reported
(Hughes et al. 2004; Milne et al. 2005). MLL1/MLL2 are
required for proper Hox gene expression, and transloca-
tion mutations of MLL are associated with the pathogen-
esis of leukemia (for review, see Shilatifard 2012). A
human homolog of yeast Set2, Huntington-interacting
protein (HYPB, also known as Setd2), interacts with Ser2/
5 phosphorylated CTD through its C-terminal region (Li

et al. 2005) and methylates H3K36 (Sun et al. 2005). The
association of HYPB with phosphorylated CTD is enhanced
by an elongation factor, Iws1, that is cotranscriptionally
recruited by the histone chaperon and transcription elon-
gation factor Spt6 (Yoh et al. 2007, 2008). Spt6 directly
binds to the phosphorylated CTD via its SH2 domain with
a preference for Ser2-P (Yoh et al. 2007; Sun et al. 2010).
Interestingly, Spt6 has also been shown to be involved in
facilitating splicing and nuclear mRNA export (Yoh et al.
2007, 2008).

RNA processing and the CTD

The CTD is now known to function in essentially all of
the RNA processing reactions involved in maturation of
very likely all transcripts produced by RNAP II. This
includes not only mRNAs, but also small nuclear RNAs
(snRNAs), microRNAs (miRNAs), and other ncRNAs.
The CTD thus provides the basis for the coupling between
transcription and RNA processing that is important for
ensuring the efficiency and accuracy of the complex pro-
cessing reactions required for production of functional
RNAs. Here we concentrate on the role of the CTD in
mRNA processing events, both in the interests of space
and because these are illustrative of the function of the
CTD more generally. Reviews dealing with the function
of the CTD in other aspects of RNA processing and
metabolism have been published recently (Munoz et al.
2010; Pawlicki and Steitz 2010).

Most of the earliest studies linking the CTD to RNA
processing were performed in mammalian systems. Many
of these used a ‘‘pseudogenetic’’ analysis that takes advan-
tage of the RNAP II inhibitor a-amanitin. In this system,
first introduced by Corden and colleagues (Gerber et al.
1995), a-amanitin, which binds Rpb1, is added to the cell
culture to inhibit endogenous RNAP II after a plasmid
encoding an exogenous, a-amanitin-resistant Rpb1 is in-
troduced and expressed in the cells. Therefore, the only
functional RNAP II will contain an a-amanitin-resistant
Rpb1 subunit, and the effects of mutations, specifically
of the CTD, can be determined. Although not without
difficulties (see below), this system has provided a wealth
of information about the function of the CTD and of CTD
modifications. For example, Bentley and colleagues
(McCracken et al. 1997a,b) used this method to provide
the first direct evidence that the CTD indeed plays a role
in mRNA processing. They showed, unexpectedly, that
deletion of the CTD had no effects on transcription of
a reporter plasmid but was required for efficient 59 capping,
splicing, and 39 processing (McCracken et al. 1997a,b).
While initial studies suggested that the C-terminal half of
the CTD, rich in nonconsensus heptads, but not the more
conserved N-terminal half, could support all three pro-
cessing reactions (Fong and Bentley 2001), this was sub-
sequently shown to reflect the presence of the 10-amino-
acid nonconsensus motif following heptad 52: When the
N-terminal half was fused with this motif, it fully sup-
ported processing (Fong et al. 2003). Indeed, another study
indicated that only the number of heptads is important:
Twenty-two repeats from either the conserved or divergent
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half of the CTD were found to be sufficient to stimulate
splicing and 39 end cleavage (Rosonina and Blencowe
2004). As mentioned above, the 10-amino-acid motif
functions in Rpb1 stability (Chapman et al. 2004, 2005),
likely explaining its requirement in processing. Intrigu-
ingly, the c-abl tyrosine kinase interacts with the CTD
through this motif (Baskaran et al. 1999), although there
is no evidence indicating the involvement of Abl kinase
or Tyr1 phosphorylation in Rpb1 protein stability. More
recently, the a-amanitin system has been used to de-
termine the role of specific residues and their modifica-
tion in CTD function. For example, it was used to provide
evidence that Ser7 phosphorylation functions in the ex-
pression and 39 formation of snRNAs (Egloff et al. 2007).
Below, we discuss the role of the CTD and modifications
in capping splicing and 39 end formation and review the
factors (listed in Table 1) involved in RNA processing that
bind the CTD (Figs. 3, 4).

Capping

59 Capping, the first step of mRNA processing, occurs
very early in transcription, essentially as soon as the
newly synthesized RNA is extruded from RNAP II
(Coppola et al. 1983; Jove and Manley 1984). Only RNAP
II products are capped, and this specificity is due in large
part to the CTD, which, when phosphorylated, recruits
capping enzymes (Cho et al. 1997; McCracken et al.
1997a). In metazoans, a bifunctional capping enzyme
with RNA triphosphatase and RNA guanylyltransferase
activities binds to the phosphorylated CTD through the
guanylyltransferase domain. This domain has two bind-
ing sites for phosphorylated CTD: one specific for the

Ser2 phosphorylated CTD and the other, an allosteric
activator site, for the Ser5 phosphorylated CTD (Ho
and Shuman 1999), which stimulates formation of the
enzyme–GMP intermediate (Ho and Shuman 1999; Ghosh
et al. 2011). The interaction between guanylyltransferase
and Ser5-P also occurs in yeast (Candida albicans)
(Fabrega et al. 2003). Interestingly, the budding yeast
capping enzyme contains another binding site, for the
Rpb1 ‘‘foot domain,’’ which works synergistically with
the Ser5-P-binding site to enhance interaction with
RNAP II (Suh et al. 2010). Remarkably, it was recently
shown that recruitment of capping enzymes is the sole
essential function of Ser5, at least in fission yeast. As
mentioned above, substitution of all Ser5 residues with
Ala is lethal in S. pombe, but viability can be restored
simply by tethering capping enzymes to the CTD (Schwer
and Shuman 2011).

Splicing

Nearly all mammalian pre-mRNAs contain introns. In
humans, the average size of an intron is ;3 kb, but many
are considerably larger (Lander et al. 2001). Furthermore,
nearly all human genes produce transcripts in which
one or more introns are subject to alternative splicing
(for review, see Chen and Manley 2009). Given this
complexity, coupled with the remarkable complexity of
the spliceosome itself, it is perhaps not surprising that
splicing and transcription are coupled, as this provides
a mechanism to enhance the fidelity and efficiency of
splicing as well as its regulation, and while other factors
function in this coupling (e.g., Luco et al. 2011), it is also
not surprising that the CTD plays a central role.

Table 1. CTD-binding proteins

Factor
P-CTD-binding

preference Reference

Set1 (histone methylase) Ser5-P Krogan et al. 2003; Ng et al. 2003
Set1A/1B (histone methylase) Ser5-P Lee and Skalnik 2008
MLL1/2 (histone methylase) Ser5-P Hughes et al. 2004; Milne et al. 2005
Set2 (histone methylase) Ser2/5-P Li et al. 2003; Xiao et al. 2003; Kizer et al. 2005
HYPB (histone methylase) Ser2/5-P Li et al. 2005; Sun et al. 2005
Rpd3S (histone deacetylase) P-CTD Drouin et al. 2010; Govind et al. 2010
Spt6 Ser2-P Yoh et al. 2007; Sun et al. 2010
Guanylyltransferase (capping) Ser5-P Ho and Shuman 1999; Fabrega et al. 2003; Ghosh et al. 2011;

Schwer and Shuman 2011

Prp40 (U1 snRNP) P-CTD Morris and Greenleaf 2000
PSF/p54 (multifunctional) CTD, P-CTD Emili et al. 2002; Rosonina et al. 2005
U2AF65 (U2 snRNP) P-CTD David et al. 2011
CstF50 (CstF) CTD, P-CTD Fong and Bentley 2001

Yhh1 (CPSF) P-CTD Dichtl et al. 2002b

Ssu72 Ser5-P Ganem et al. 2003; Krishnamurthy et al. 2004; Xiang et al. 2010;
Werner-Allen et al. 2011

Ess1/Pin1 Ser5-P Yaffe et al. 1997; Verdecia et al. 2000

Pcf11 (CF II) Ser2-P Barilla et al. 2001; Licatalosi et al. 2002; Meinhart and Cramer 2004

Rtt103 (termination factor) Ser2-P Kim et al. 2004b; Lunde et al. 2010
Sen1 (termination factor) Ser2-P Ursic et al. 2004; Chinchilla et al. 2012
Nrd1 (termination factor) Ser5-P Conrad et al. 2000; Steinmetz et al. 2001; Vasiljeva et al. 2008

The CTD-binding preference of factors involved in transcription elongation, RNA processing, and termination. The multifunctional
protein complex PSF/p54 and CstF50 can bind to either unphosphorylated CTD or phosphorylated CTD (P-CTD). Pcf11, Rtt103, and
Nrd1 bind to the CTD phosphorylated on Ser2 or Ser5 through a conserved CID.
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The CTD interacts with several proteins that function
in splicing. Early on, RNAP IIO was found to associate
with splicing complexes (Mortillaro et al. 1996). In vitro
biochemical studies indicated that RNAP IIO, but not
RNAP IIA, can enhance splicing of an exogenously sup-
plied substrate by influencing an early step of spliceosome
assembly (Hirose et al. 1999). Splicing of pre-mRNAs
transcribed in vitro by RNAP II is accelerated compared
with those transcribed by T7 RNAP (Ghosh and Garcia-
Blanco 2000; Das et al. 2006), suggesting that the CTD
can enhance the rate of splicing, likely by facilitating
recruitment of splicing factors, and artificial tethering
of the phosphorylated CTD to a pre-mRNA can also
accelerate splicing in vitro (Millhouse and Manley 2005).
Additionally, splicing factor SRSF2 (SC35) was shown to
colocalize with nascent transcripts and associate with
RNAP IIO in HeLa cells, but this colocalization and as-
sociation were lost when the CTD was truncated (Misteli
and Spector 1999). Additional splicing factors, including
U1 snRNP-associated protein Prp40, involved in 59 splice
site recognition (Morris and Greenleaf 2000; Phatnani
et al. 2004); PSF, which binds sequences downstream
from the branch point (Emili et al. 2002; Rosonina et al.
2005); and U2AF, which helps define the 39splice site
(David et al. 2011), all appear to bind directly to the CTD
(Fig. 3B). Together, these factors could help recruit the
splicing machinery to both ends of the intron during
transcription. Indeed, the U2AF interaction with the CTD
recruits the Prp19 complex (PRP19C), an essential splic-
ing factor required for activation of the spliceosome
(David et al. 2011). An intriguing idea is that recruitment
of splicing factors to nascent transcripts by the CTD is
especially important for splicing of introns with weak
splicing signals (for review, see David and Manley 2011).

Recruitment of splicing factors and other RNA-binding
proteins to nascent transcripts can facilitate gene expres-
sion in additional ways. For example, in yeast, the cotran-
scriptional recruitment of PRP19C leads to corecruitment

of the TREX complex, which functions in mRNA trans-
port, thereby preparing a nascent transcript for transport
to the cytoplasm as it is synthesized (Chanarat et al.
2011). These investigators also provided evidence that

Figure 3. The CTD facilitates capping and splicing by recruit-
ment of RNA processing factors. (A) Capping enzyme (CE) is
recruited to the vicinity of nascent mRNA by the CTD phos-
phorylated on Ser5. (B) During transcription, the CTD is phos-
phorylated on Ser2, while the Ser5-P is dephosphorylated and is
involved in recruiting the indicated splicing factors, which de-
fines splice sites and facilitates assembly of the spliceosome.
In this and subsequent figures, green spheres above the CTD
represent relevant CTD-binding proteins, while assembled func-
tional complexes are indicated below.

Figure 4. The CTD functions in 39 processing of both polyade-
nylated and nonpolyadenylated RNAs. (A) At 39 ends of poly-
adenylated mRNA, Ser2-P serves to recruit Pcf11, a component
of CFII (human nomenclature is used for all factors). Other 39

end factors, such as CstF50 and AAUAAA-binding factor CPSF-
160 (Yhh1 in yeast), also bind the CTD, whereas Ssu72, with the
aid of Pin1 (Ess1), must dephosphorylate Ser5-P. The AAUAAA
element and G/U elements are bound by CPSF and CstF, re-
spectively. Loading of some factors, including CPSF and CstF,
may occur upstream, perhaps at the promoter (see the text). (B) The
39 end of histone pre-mRNA contains a stem–loop motif bound
by SLBP and a downstream element recognized by U7 snRNP.
A complex containing CPSF73, CPSF100, and Symplekin is
recruited for 39 cleavage. Thr4-P facilitates this process, likely
through a yet-to-be-identified factor. (C) The 39 end of snRNA
genes contains a 39 box that interacts with the Integrator complex.
RPAP2 binds to Ser7-P on the CTD and to recruit the Integrator,
and Int 11, an Integrator subunit, cleaves the RNA.
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PRP19C enhances RNAP II elongation, which provides
support for the view that splicing also communicates
back to modulate transcription (for review, see Manley
2002). For example, the presence of splice sites on nascent
transcripts can stimulate transcription, as reduced tran-
scription can be seen when splice sites are impaired
(Furger et al. 2002; Damgaard et al. 2008; Eberle et al.
2010); splicing factors, such as SKIP, Npl3, and SRSF2,
can enhance transcriptional elongation (Bres et al.
2005; Dermody et al. 2008; Lin et al. 2008); and incorrect
spliceosome recruitment and assembly can interfere with
transcription termination (Martins et al. 2011). Finally,
while histone modifications can help recruit splicing
factors to active genes (Luco et al. 2010; for review, see
Hnilicova and Stanek 2011), splicing can also influence
chromatin structure; for example, by facilitating recruit-
ment of HYPB and thereby increasing H3K36 methyla-
tion (de Almeida et al. 2011).

Cotranscriptional recruitment of RNA-binding pro-
teins has an additional important effect in cells, which
is to prevent genomic instability and DNA rearrange-
ments during transcription (for review, see Li and Manley
2006; Aguilera and Garcia-Muse 2012). If nascent tran-
scripts are not properly packaged or processed, they have
the potential, especially in G-rich regions, to rehybridize
with the template DNA strand, creating an R-loop struc-
ture in which the nontemplate strand is single-stranded.
Such structures can be the targets of DNA double-strand
breaks and rearrangements. The CTD plays an important
role in this process, as prevention of R loops by SRSF1 in
an in vitro reconstituted system was found to be depen-
dent on the CTD (Li and Manley 2005).

39 End processing

The CTD also plays an important role in 39 end process-
ing of RNAP II-produced transcripts. This has been most
extensively studied in the case of polyadenylated mRNAs.
Polyadenylation, a relatively simple two-step reaction
consisting of an endonucleolytic cleavage followed by
poly(A) tail synthesis, involves a remarkably complex set
of protein factors (Shi et al. 2009), and the CTD functions
in recruitment and/or stabilization of this complex on
the pre-mRNA. The studies mentioned above using the
a-amanitin system to provide evidence that 39 end pro-
cessing is impaired when Rpb1 is truncated also revealed
that the CTD associates with two polyadenylation factors:
CPSF and CstF (McCracken et al. 1997b). Hirose and
Manley (1998) showed that the CTD is required for effi-
cient 39 end processing in vitro in the absence of transcrip-
tion and that this function can be fulfilled by the CTD
alone. Subsequent experiments revealed that 26 all-
consensus repeats were required for reconstitution of
CTD activity in vitro (Ryan et al. 2002), consistent with
results in vivo. The CTD requirement is conserved in
yeast, as CTD deletion was shown to cause defects in 39

processing (Licatalosi et al. 2002).
Several 39 processing factors interact with the CTD,

consistent with it playing a role as a scaffolding factor
(Fig. 4). For example, CstF-50, a component of CstF, and

Yhh1, the yeast counterpart of the mammalian AAUAAA-
binding CPSF-160, both interact with the CTD (Fong and
Bentley 2001; Dichtl et al. 2002b), providing an explana-
tion for the initial observations of McCracken et al.
(1997b). Pcf11, which contains an N-terminal CTD in-
teraction domain (CID) characteristic of several CTD-
binding proteins (for review, see Corden and Patturajan
1997), binds the CTD in a manner enhanced by Ser2
phosphorylation (Barilla et al. 2001; Licatalosi et al. 2002;
Meinhart and Cramer 2004). Indeed, Ser2-P plays an
important role in facilitating polyadenylation. For exam-
ple, impairment of Ser2 phosphorylation by deletion of
CTK1 in yeast (Skaar and Greenleaf 2002; Ahn et al. 2004)
or flavopiridol in metazoan cells (Ni et al. 2004) impairs
recruitment of processing factors at the 39 ends of genes
and subsequent polyadenylation. However, at least in
yeast, accumulation of these factors also requires an
intact polyadenylation signal, indicating, not surprisingly,
that interactions with the pre-mRNA are also important
(Kim et al. 2004a). Extending these findings, genome-wide
ChIP experiments showed that peaks of 39 processing
factors followed Ser2-P peaks, consistent with the view
that both the poly(A) site in the RNA and CTD Ser2-P
contribute to the recruitment/assembly of the polyade-
nylation complex (Kim et al. 2010; Mayer et al. 2010,
2012b). Together, these experiments point to an impor-
tant role for the CTD and Ser2-P in polyadenylation of
mRNA precursors.

The involvement of Ser2-P and the observed accumu-
lation of processing factors at the 39 ends of genes are
consistent with the simple view that polyadenylation
factors are recruited to genes near their site of action.
However, considerable evidence also exists that polyade-
nylation factors are in fact recruited to genes at the
promoter (for review, see Calvo and Manley 2003; see
also Glover-Cutter et al. 2008; Nagaike et al. 2011 and
references therein). Factors involved in this recruitment
include the GTFs TFIID (Dantonel et al. 1997) and TFIIB
(Sun and Hampsey 1996; Wang et al. 2010) and the PAF
complex (Rozenblatt-Rosen et al. 2009) as well as tran-
scriptional activators (for review, see Nagaike and Manley
2011). Indeed, as with splicing, these interactions may
affect transcription, as poly(A) site mutations reduce
transcription and reduce the levels of TFIIB and TFIID at
promoters (Mapendano et al. 2010). While some of these
interactions likely reflect gene looping (O’Sullivan et al.
2004; for review, see Hampsey et al. 2011), they highlight
the importance of coupling transcription and polyadeny-
lation via multiple mechanisms that extend beyond the
CTD.

The 39 ends of several types of RNAP II transcribed
RNAs, including snRNA and histone mRNA, are not
polyadenylated but also require the CTD. The CTD plays
a role in snRNA 39 end formation, and inhibition of Ser2
phosphorylation was shown to impair 39 processing
without affecting transcription (Jacobs et al. 2003; Medlin
et al. 2003). Proper snRNA 39 end formation is dependent
on both the promoter and a 39 box, located just down-
stream from the snRNA-encoding region (for review, see
Egloff et al. 2008). The 39 box is recognized by a multi-
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subunit RNA 39 end processing complex, the Integrator,
and snRNAs are cleaved by the Int11 subunit (Baillat
et al. 2005). The Integrator is recruited by interaction
with the CTD phosphorylated on Ser2 and Ser7 (Egloff
et al. 2010), consistent with earlier studies showing that
mutation of all Ser7 residues to Ala impairs 39 end
processing of snRNAs but not of polyadenylated mRNAs
(Egloff et al. 2007). Recently, it was shown that RPAP2,
which functions in Ser5-P dephosphorylation (see above),
binds to the CTD with Ser7-P and facilitates Integrator
recruitment (Egloff et al. 2012). These results support the
view that Ser5-P dephosphorylation is important for both
snRNA and mRNA (Xiang et al. 2010) 39 end formation.
It is also noteworthy that methylation of a specific Arg
residue in a nonconsensus heptad appears to dampen
expression of certain snRNAs and small nucleolar RNAs
(snoRNAs), as mutation of this residue to Ala resulted in
enhanced accumulation of these RNAs in the a-amanitin
assay (Sims et al. 2011). Although the mechanism re-
mains to be determined, an intriguing possibility is that
this modification in some way interferes with the posi-
tive effects of Ser2 and Ser7 phosphorylation.

Metazoan replication-dependent histone mRNAs are
the only protein-coding transcripts that are not polyade-
nylated. The 39 end of histone mRNA contains two cis-
elements: a stem–loop structure that is recognized by
stem–loop-binding protein (SLBP) and a downstream se-
quence bound by U7 snRNP. Together, SLBP and U7
snRNP recruit a cleavage complex containing polyade-
nylation factors CPSF73 (the endonuclease), CPSF100,
and Symplekin to process histone mRNA 39 ends (for
review, see Marzluff et al. 2008). As with other RNAP II
transcripts, the CTD also participates in histone 39 end
processing. This was first suggested by the finding that
CDK9 is required for proper histone mRNA 39 processing
and SLBP recruitment (Pirngruber et al. 2009). Recently,
using the DT40 system (see above), evidence was pro-
vided that Thr4-P is required for histone mRNA 39 end
processing (Hsin et al. 2011). Specifically, cells expressing
Rpb1 with a mutant CTD in which all Thr4 residues were
replaced by Val were found to be defective in histone
mRNA 39 end processing and recruitment of SLBP and
CPSF100, while 39 end formation of polyadenylated RNAs
and overall transcription rates were essentially unaf-
fected. Inhibition of CDK9 prevented Thr4 phosphory-
lation and inhibited histone 39 processing, consistent
with the results of Pirngruber et al. (2009). Hintermair
et al. (2012) analyzed a related Thr4 mutant Rpb1 using
the a-amanitin system. These investigators did not mon-
itor 39 processing but detected by RNAP II ChIP a global
defect in elongation, characterized by promoter-proximal
accumulation of initiated RNAP II. While Hsin et al.
(2011) also observed some increase in promoter-proximal
RNAP II on several genes, the effects were likely smaller
than detected by Hintermair et al. (2012), as measure-
ments of transcription rate and polyadenylated mRNA
levels revealed at most modest effects.

The basis for the possible differences in the effects of
Thr4 mutation is unclear, but one possibility may reflect
features of the a-amanitin system. Although, as illus-

trated in the above discussion, a great deal has been
learned about the functions of the CTD using this assay,
there are several potential drawbacks. One of these is that
transiently transfected reporter genes are often used to
observe phenotypes of mutant CTDs because endogenous
RNAs are stabilized by a-amanitin (Meininghaus et al.
2000; Chapman et al. 2004). Such reporter genes are not
properly packaged into chromatin, which may affect re-
sults. Another drawback reflects the toxicity of a-amanitin.
Thus, while stably transformed cells expressing a-amanitin-
resistant Rpb1 avoid the problems of transient transfec-
tion, such cells initially grow slowly with reduced viability
in the presence of a-amanitin (Meininghaus et al. 2000;
Chapman et al. 2004, 2005), indicating that they must
undergo certain changes to survive. Indeed, 24-h a-amanitin
treatment was recently shown to bring about accelerated
degradation of several proteins, including the transcription
elongation factor DSIF, and this may complicate interpre-
tation of experimental results (Tsao et al. 2012).

The CTD and transcription termination

Stopping RNAP II is much more difficult than any other
RNAP. This undoubtedly reflects not only the need to
transcribe successfully immensely long genes, which can
extend >1 Mb in vertebrates, but also the diversity of
sequence landscapes presented by the thousands of genes
that RNAP II must negotiate, which can pose a variety of
challenges to the elongating polymerase. Consistent with
this, the mechanisms leading to RNAP II termination are
complex and remain incompletely understood. While
considerable progress has been made in deciphering these
mechanisms in recent years (for review, see Richard and
Manley 2009; Kuehner et al. 2011), here we discuss RNAP
II termination from the perspective of the CTD and its
role in the process (Fig. 5; Table 1).

One of the earliest insights into the mechanism of
RNAP II termination was the discovery in mammalian
systems that a functional polyadenylation signal is re-
quired for subsequent termination (for review, see
Proudfoot 1989). This suggested that 39 processing of the
mRNA precursor is required for termination, and sub-
sequent experiments, principally in yeast and using
transcriptional run on and/or RNAP II ChIP to measure
termination, revealed that a number of 39 cleavage fac-
tors are also necessary for termination (Birse et al. 1998;
Dichtl et al. 2002b; Ganem et al. 2003; Nedea et al. 2003;
Kim et al. 2010; Zhang et al. 2012). Given the require-
ment of the CTD for 39 processing, it is not surprising that
the CTD is also required for termination (McCracken et al.
1997b), with the N-terminal half being sufficient (Park
et al. 2004), as determined using the a-amanitin system.
One CTD-binding cleavage factor, Pcf11, may play a par-
ticularly important role in termination. A mutant yeast
Pcf11 that retains 39 cleavage activity but is defective in
CTD binding was found to be defective in termination
(Sadowski et al. 2003). In vitro studies suggested that both
yeast and fly Pcf11 can disassociate RNAP II and the
transcribed RNA from the DNA by bridging the CTD to
RNA (Zhang et al. 2005; Zhang and Gilmour 2006).
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However, the dissociation activity is not specific to Pcf11
(Zhang et al. 2004), and Pcf11 cleavage activity, but not
CTD-binding ability, was subsequently found to be impor-
tant for termination of protein-coding genes (Kim et al.
2006), leaving the precise role of Pcf11 in termination
unclear.

The discovery that 39 cleavage is necessary for termi-
nation led to a model in which a 59-to-39 exoribonuclease
degrades the downstream nascent RNA and in some way
signals termination to the elongating RNAP II (Connelly
and Manley 1988). Eventually, confirmation of this model
came from the discovery that termination indeed re-
quires such a nuclease: Rat1 in yeast (Kim et al. 2004b),
and Xrn2 in humans (West et al. 2004). The CTD plays
a role in Rat1/Xrn2 recruitment. Pcf11 is required in yeast
for Rat1 association with active genes (Luo et al. 2006)
and in HeLa cells for efficient degradation of the down-
stream RNA (West and Proudfoot 2008). In line with this,
the genome-wide profile of yeast Pcf11 closely overlaps
that of Rat1 (Kim et al. 2010). Rat1 recruitment to the
CTD also requires the associated protein Rtt103, which
specifically interacts with CTD Ser2-P (Kim et al. 2004b).
Rtt103 and Pcf11 both achieve high affinity for the CTD
phosphorylated on Ser2 by cooperatively binding to neigh-
boring Ser2-P residues (Lunde et al. 2010). In humans, Xrn2
associates with p54/PSF (Kaneko et al. 2007), a multifunc-
tional protein dimer that binds to the CTD (Emili et al.
2002; Rosonina et al. 2005) and was identified as a com-
ponent of the 39 processing complex (Shi et al. 2009). p54/
PSF may facilitate termination by recruiting Xrn2, as
accumulation of the downstream cleaved RNA and termi-
nation defects were observed in vitro and in vivo after p54
was depleted from HeLa cells (Kaneko et al. 2007).

The RNA–DNA helicase Sen1—well established to
function in termination of snoRNAs in yeast (see
below)—also appears to function in the termination of
some mRNA genes. Sen1 binds to the CTD phosphory-
lated on Ser2 (Ursic et al. 2004; Chinchilla et al. 2012),
which likely facilitates its recruitment to multiple coding
as well as noncoding genes, where it tends to accumulate
toward the 39 end (Chinchilla et al. 2012). However, in
cells expressing a catalytically inactive mutant, Sen1, only
a small set of protein-coding genes, usually short in length,
are defective in termination, as shown by a genome-wide
Rpb1 ChIP analysis (Steinmetz et al. 2006). The human
homolog of Sen1, Senataxin, has also been implicated
in termination (Suraweera et al. 2009), perhaps by re-
solving RNA–DNA hybrids (R loops) formed at pause
sites downstream from the polyadenylation signal, al-
lowing degradation of the cleaved RNA by Xrn2 (Skourti-
Stathaki et al. 2011).

Termination of transcription on genes encoding small
ncRNAs shares some features in common with mRNA-
encoding genes but also displays differences. The require-
ment of Pcf11 in termination extends to yeast snoRNA
genes. However, here the CTD-binding activity of Pcf11
is necessary for termination, while the 39 cleavage func-
tion is dispensable (Kim et al. 2006). Termination on
snoRNA genes requires a protein complex, the Nrd1
complex (Nrd1c), which consists of Nrd1, Nab3, and
Sen1 (Steinmetz and Brow 1996; Conrad et al. 2000;
Steinmetz et al. 2001; Kim et al. 2006). Nrd1 and Nab3 are
RNA-binding proteins, and their interaction with nascent
RNAs helps recruit Nrd1c to target genes (Steinmetz and
Brow 1998; Conrad et al. 2000; Steinmetz et al. 2001).
However, Nrd1, like Sen1, binds the CTD, except dis-
playing a preference for Ser5-P (Conrad et al. 2000;
Steinmetz et al. 2001; Vasiljeva et al. 2008). This serves to
help target Nrd1c to short genes, such as snoRNA genes,
and genes encoding CUTs (cryptic unstable transcripts).
CUTs are short noncoding RNAP II-produced nonpolya-
denylated transcripts found in yeast that are rapidly de-
graded by the nuclear exosome (for review, see Colin et al.
2011). Consistent with the requirement of Nrd1c, CUT
termination is critically dependent on CTD phosphory-
lation status, requiring high levels of Ser5-P and low
Ser2-P (Gudipati et al. 2008). However, the Ser5-P must be
removed, as Ssu72 and Ess1 are required for snoRNA/
CUT termination (Kim et al. 2006; Singh et al. 2009;
Zhang et al. 2012). Precisely how Nrd1c brings about
termination is not well understood and may vary among
different genes (for review, see Richard and Manley 2009;
Kuehner et al. 2011).

Nrd1c also associates with mRNA-encoding genes
(Nedea et al. 2003; Kim et al. 2006). Genome-wide ChIP
of Nrd1 revealed frequent colocalization with Pcf11 and,
unexpectedly, Ser7-P at the 39 ends of genes (Kim et al.
2010). However, termination of a collection of protein-
coding genes is not affected by mutations in Nrd1 (Kim et al.
2006). Perhaps the function of Nrd1c on such genes is to
provide an alternative pathway to terminate aberrant tran-
scription (Rondon et al. 2009) and/or a quality control point
to degrade erroneous transcripts (Honorine et al. 2011).

Figure 5. The CTD facilitates different termination mecha-
nisms for protein-coding and noncoding genes. (A) Poly(A)-
dependent termination pathway. RNA is cleaved by 39 end
processing factors at the polyadenylation site. The CTD with
Ser2-P is involved in recruiting factors, including Pcf11, Rtt103,
p54/PSF, and Sen1, to facilitate termination of long polyadeny-
lated transcripts. Pcf11 and Rtt103 are required for the recruit-
ment of exoribonuclease Rat1 in yeast, while Xrn2 is recruited by
p54/PSF in humans. Sen1 (Senataxin in humans) may function on
some of these genes by resolving RNA–DNA hybrids. (B) Nrd1c-
dependent termination pathway. The Nrd1 complex (Nrd1–
Nab3–Sen1) interacts via Nrd1 with the CTD phosphorylated
on Ser5, which is present at the 39 ends of short genes, such as
snoRNAs and CUTs. Ssu72 and Ess1 are also required to de-
phosphorylate Ser5-P, although the exact mechanism of Nrd1c-
dependent termination awaits further studies.
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An interesting question is whether a Nrd1c-like path-
way for termination exists in higher eukaryotes. Although,
as mentioned above, a homolog of Sen1, Senataxin, exists
in human cells, functional homologs of Nrd1 and Nab3
have not been identified, and there is no evidence for the
existence of a Nrd1c-like complex. SCAF8, which shares
sequence similarity with Nrd1, was in fact the first CID
protein identified (Yuryev et al. 1996; Patturajan et al.
1998). While SCAF8 CTD binding has been extensively
characterized (Becker et al. 2008), its function is un-
known but does not appear to involve termination. The
absence of Nrd1c in metazoans is consistent with the
facts that snoRNAs tend to be produced by a different
mechanism (i.e., cleavage from introns) (Richard and
Kiss 2006), and while RNAP II transcribed ncRNAs are
ubiquitous (for review, see Jacquier 2009), it is not clear
whether CUT RNAs are indeed produced in higher eu-
karyotes. In the future, it will be interesting to determine
whether additional mechanisms of termination exist in
metazoans and, if so, how the CTD might participate.

Perspectives

A great deal has been learned over the course of the past
two decades about the structure and function of the CTD,
the nature and role of CTD modifications in gene expres-
sion, and how the CTD mediates the interplay between
transcription and RNA processing. However, the goal of
completely understanding the functions and importance
of this deceptively simple domain remains a challenge.
We mention here just a few examples. What is the func-
tion of Tyr1 phosphorylation, and how do other modifica-
tions, such as methylation, acetylation, and ubiquitination,
affect CTD function and gene expression? Intriguingly,
evidence that Tyr1-P occurs in budding yeast and may
play a general role in facilitating elongation by blocking
premature 39 end formation was recently presented (Mayer
et al. 2012a). These findings suggest an important, per-
haps general, role for Tyr1-P in elongation. This is perhaps
surprising given that Tyr phosphorylation is rare in yeast
(e.g., Gnad et al. 2009), and further characterization of
Tyr1-P in yeast and mammalian systems will therefore be
informative. Although a general model outlines changes
in CTD phosphorylation along the length of transcribed
genes, how common is regulated CTD modification in
control of specific genes, and how is this achieved? A
well-documented example is recruitment of P-TEFb by
the oncogenic transcription factor c-Myc (Eberhardy and
Farnham 2002; Kanazawa et al. 2003; Rahl et al. 2010),
but is this a common mechanism. Are other CTD modi-
fiers targets for gene-specific recruitment? How many
more CTD modifiers remain to be discovered, and might
they work in gene- or cell-specific ways? For example, the
Cdc14 cell cycle phosphatase (Clemente-Blanco et al. 2011)
and the bromodomain transcriptional regulator Brd4,
apparently functioning as an atypical protein kinase
(Devaiah et al. 2012), have both been reported to target
the CTD. Future studies will continue to unravel the com-
plex workings of the CTD and, we suspect, consolidate its
role as the conductor of the gene expression symphony.
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