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Twenty years ago Poole et al. suggested that the anomalous properties of supercooled water may be caused
by a critical point that terminates a line of liquid–liquid separation of lower-density and higher-density
water. Here we present a thermodynamic model based on this hypothesis, which describes all available
experimental data for supercooled water with better quality and fewer adjustable parameters than any other
model. Liquid water at low temperatures is viewed as an ‘athermal solution’ of two molecular structures with
different entropies and densities. Alternatively to popular models for water, in which liquid–liquid
separation is driven by energy, the phase separation in the athermal two-state water is driven by entropy
upon increasing the pressure, while the critical temperature is defined by the ‘reaction’ equilibrium
constant. The model predicts the location of density maxima at the locus of a near-constant fraction of the
lower-density structure.

C
old and supercooled water have been the subject of intensive experimental, theoretical and computational
studies for the last several decades. Still, the famous statement of 1972 by Franks ‘of all known liquids,
water is probably the most studied and least understood’1 remains topical. This is especially true for

metastable supercooled water, which is now a focal point of debates. On the other hand, there is a growing
interest in the prediction of properties of supercooled water. In particular, in applied atmospheric science it is
commonly accepted that the uncertainties in numerical weather prediction and climate models are mainly caused
by poor understanding of properties of water in tropospheric and stratospheric clouds, where liquid water can
exist in a deeply supercooled state2,3. Reliable prediction of properties of supercooled water is also important for
cryobiology4.

A provocative, but thermodynamically consistent, view on the global phase behaviour of supercooled water was
expressed in 1992 by Poole et al.5. According to this view, deeply in the supercooled region, just below the line of
homogeneous ice nucleation, there could exist a critical point of liquid–liquid coexistence (LLCP) that would
terminate the line of first-order transitions between two liquid aqueous phases, low-density liquid (LDL) and
high-density liquid (HDL) (Fig. 1). The anomalies in the heat capacity, the compressibility, and the thermal-
expansion coefficient experimentally observed upon supercooling6–13 thus might be associated with this critical
point, even if it is inaccessible. The extension of the coexistence curve into the one-phase region is the Widom
line14. The definition of the Widom line as given in Ref. 14 is ambiguous. However, we define the Widom line in an
unambiguous way as the locus of stability minima and order-parameter fluctuation maxima15,16. This definition
uniquely locates the Widom line along the line of zero ordering field near the critical point. While the maxima of
different properties generally deviate from the Widom line upon departure from the critical point, the heat
capacity maxima line appears to be close to the Widom line specifically for the liquid-liquid transition in
supercooled water.

Intriguing liquid–liquid phase separation and the existence of the second critical point in water still remain a
plausible hypothesis which needs further verification. In view of the inaccessibility of the LLCP to direct experi-
ments, development of an equation of state, based on a solid physical concept and able to accurately describe all
available experimental data, might help in resolving the supercooled-water dilemma.

In this paper, we offer an approach to thermodynamics of phase separation in supercooled water alternative to
common views. Following Bertrand and Anisimov16, we assume that liquid water is a non-ideal athermal
‘solution’ of two supramolecular arrangements, which undergoes phase separation driven by non-ideal entropy
upon increase of the pressure. In the athermal two-state model, the non-ideality driven by entropy determines the
critical pressure, whereas the critical temperature follows from the condition of ‘chemical reaction’ equilibrium.
We have developed an explicit equation of state, which is based on the athermal two-state model and which
describes all available experimental data for supercooled water, both H2O and D2O, with better quality and with
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fewer adjustable parameters than any other model suggested so far.
We have also shown that the popular two-state ‘regular-solution’
scenario, in which phase separation is energy-driven, fails to describe
the experimental data on water.

Results
How a pure liquid can unmix. The only possible fluid–fluid phase
transition in simple one-component substances, such as argon or
methane, is separation into liquid and gas. This transition is driven
by attraction forces between molecules. The critical temperature of
the liquid–gas separation is uniquely proportional to the depth of the
intermolecular interaction potential, which is a superposition of
the attraction and repulsion potentials. The simplest model of the
liquid–gas transition is the lattice gas, which, despite its simplicity,
reflects the most important features of fluid phase behaviour23. A
central concept in physics of phase transitions is the notion of the
order parameter24. The order parameter in fluids is the difference
between the densities of liquid and vapour. Thus, in simple one-
component fluids only one liquid phase and only one critical point
are possible. To observe a liquid–liquid separation one needs a
mixture of two or more species. Remarkably, the same lattice-gas
model that describes the liquid–gas transition in pure substances
can also explain liquid–liquid demixing in weakly-compressible
binary solutions. In binary liquid solutions the order parameter is
the difference in concentrations of two liquid phases, while the
critical temperature is proportional to the difference in the depths
of the interaction energies between like and unlike molecules.

However, such a simple fluid-phase behaviour is not a law of
nature. As explained by Mishima and Stanley25, if the intermolecular
potential of a pure fluid could exhibit two minima, the interplay
between these minima may define the critical temperature Tc and
pressure Pc of liquid–liquid separation. Application of this picture to
water implies that the second, liquid–liquid, critical point is driven by
molecular interaction energy just like the liquid–gas critical point.
Another possibility is a double-step potential that depends on hydro-
gen-bond bending, as shown by Tu et al.26.

The hypothesized existence of two liquid states in pure water can
be globally viewed in the context of polyamorphism, a phenomenon
that has been experimentally observed or theoretically suggested in
silicon, liquid phosphorus, triphenyl phosphate, and in some other
molecular-network-forming substances27,28. Commonly, polyamor-
phism in such systems is described as energy-driven. However, there
is an ambiguity in terminology adopted in Refs. 27 and 28, where the
term ‘density, entropy-driven’ is used for an energy-driven phase
separation. There is an example of entropy-driven liquid polya-
morphism, isotropic Blue Phase III in chiral liquid crystals29.

The thermodynamic relation between the molar volume change
DV and the latent heat (enthalpy change) of phase transition, Q 5

TDS (where DS is the molar entropy change) is given by the
Clapeyron equation dP/dT 5 Q/TDV 5 DS/DV. Therefore, the rela-
tion between the volume/density (r 5 1/V) change and the latent
heat/entropy change is controlled by the slope of the transition line in
the P–T plane.

Two features make the second critical point in water phenomen-
ologically different from the well-known gas–liquid critical point.
The negative slope of the liquid–liquid phase transition line in the
P–T plane in supercooled water (Fig. 1) means, in accordance with
the Clapeyron equation, that the higher-density liquid water is the
phase with larger entropy. A large value of this slope at the critical
point (about 30 times greater than that for the gas–liquid transition at
the critical point) indicates the significance of the entropy change
with respect to the density change, and, correspondingly, the impor-
tance of the entropy fluctuations. Secondly, supercooled water tends
to separate upon pressurizing. The relative significance of the
entropy change, combined with a high degree of cooperativity of
hydrogen bonds30, suggest that the liquid–liquid phase separation
in water near the LLCP may be driven by entropy rather than by
energy.

The topology of the liquid–liquid transition line in supercooled
water is almost orthogonal to that of the liquid–vapour transition line
near the critical point. This radically changes the relation between
scaling fields and physical fields which theoretically describe the
criticality (see Supplementary Fig. S1). In particular, this topology
suggests that for supercooled water the ordering field is mostly asso-
ciated with the temperature and the thermal field with the pressure.
In turn, the order parameter is associated with the entropy, not with
the density, thus the phase transition is entropically driven.

The Clapeyron equation itself does not provide an answer whether
the liquid–liquid transition in pure substances is energy-driven or
entropy-driven. To answer this question one should examine the
source of non-ideality in the free energy. Bertrand and Anisimov16

introduced the concept of a ‘lattice liquid’, as opposed to a lattice gas,
an imaginary one-component liquid which exhibits liquid–liquid
separation upon pressurizing with a vertical liquid–liquid transition
line in the P–T plane, thus without the density change. The order
parameter in a lattice liquid is the entropy and the ‘ordering field’,
conjugate to the order parameter, is the temperature. The phase
transition in a lattice liquid is purely entropy-driven. The critical
temperature (the same as the temperature of the liquid–liquid trans-
ition line) is defined by thermodynamic equilibrium as zero ordering
field, but not by the interaction potential. In real water, as seen in
Fig. 1, the slope of the hypothesized LDL–HDL transition line in
supercooled water changes from very steep at higher temperatures
to relatively flat at lower temperatures. It is thus tempting to assume
that the liquid–liquid separation in water may represent a special
kind of liquid polyamorphism, intermediate between two limiting
cases: mostly entropy-driven phase separation (lattice liquid-like)
near the critical point and mostly energy-driven (lattice gas-like)
separation into two amorphous states observed in water at about
140 K31. We show in this paper that the actual behaviour of super-
cooled water appears to be much closer to the lattice-liquid beha-
viour than to the lattice-gas behaviour.
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Figure 1 | Hypothetical phase diagram of cold water. Supercooled water

exists between the melting temperature17 TM and the homogeneous ice

nucleation temperature18,19 TH. Below TH, there may exist a liquid–liquid

critical point, marked by ‘C’, which terminates a liquid–liquid coexistence

curve. The location of this critical point is shown as predicted by our

model. The adopted location of the liquid–liquid coexistence curve is close

to similar suggestions of Mishima13,20 and Kanno and Angell7. The

extension of the coexistence curve into the one-phase region is the line of

maximum fluctuations of the order parameter, the Widom line14–16. Thin

solid lines represent phase boundaries between the different ices21,22.
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The entropy-driven separation of a lattice liquid can be further
specified in terms of a two-state model16. The pure liquid is assumed
to be a mixture of two interconvertible states or structures of the same
molecules, whose ratio is controlled by thermodynamic equilibrium.
The existence of two states does not necessarily mean that they can
separate. If these states form an ideal ‘solution’, the liquid will remain
homogeneous at any temperature or pressure. However, if the solu-
tion is non-ideal, a positive excess Gibbs energy, GE 5 HE 2 TSE,
would cause phase separation. If the excess Gibbs energy is associated
with a heat of mixing HE, the separation is energy-driven. If the excess
Gibbs energy is associated with an excess entropy SE, the separation is
entropy-driven. The entropy-driven nature of such a separation
means that the two states would allow more possible statistical con-
figurations, and thus higher entropy, if they are unmixed.

Two-state models for liquid water have a long history, dating back
to the 19th century32,33. More recently, two-state models have become
popular to explain liquid polyamorphism27,28,34. Ponyatovsky et al.35

and Moynihan36 assumed that water could be considered as a ‘regular
binary solution’ of two states, which implies that the phase separation
is driven by energy. Ponyatovsky et al.35 and Moynihan36 made an
attempt to describe the thermodynamic anomalies with this model,
but the agreement with experimental data was only qualitative.

Virtual liquid–liquid criticality in supercooled water. There is no
direct experimental evidence of the LLCP in real water, but it is
indirectly supported by thermodynamic arguments based on den-
sity measurements13 and by critical-like anomalies of thermody-
namic response functions6–8. The known existence of two states of
glassy water31, as well as experiments on nano-confined water, which
does not crystallize37,38, are also consistent with the possibility of a
‘virtual’ liquid–liquid separation. This possibility is also supported by
simulations of some water-like models, such as ST239–41. The exact
location of the liquid–liquid critical point in these models is
uncertain30. Moreover, for the mW model42 it has been recently
shown that spontaneous crystallization occurs before a possible
liquid–liquid separation could equilibrate43,44. However, the anoma-
lies observed in the metastable region of the mW model42–45 might
still be associated with the existence of a virtual LLCP in the unstable
region.

The first attempt to develop an equation of state for supercooled
water, based on the assumption that the LLCP exists, and on the
asymptotic theory of critical phenomena46,47, was made by Fuente-
villa and Anisimov15 and further elaborated and clarified by Bertrand
and Anisimov16. In particular, both works estimated the LLCP cri-
tical pressure below 30 MPa, much lower than most of simulated
water-like models predicted. Holten et al.48 used the same asymptotic
equation of state, also in a mean-field approximation49, but intro-
duced the noncritical backgrounds of thermodynamic properties in a
thermodynamically consistent way. The resulting correlation repre-
sents all available experimental data for supercooled water, H2O and
D2O, within experimental accuracy, thus establishing a benchmark
for further developments in this field. However, there is a concern
regarding the application of the asymptotic theory to a broad range of
temperatures and pressures including the region far away from the
assumed critical point. Such an extension makes the description of
experimental data inevitably semi-empirical since all non-asymp-
totic physical features are absorbed by the adjustable backgrounds
of thermodynamic properties. This fact underlines the need to
develop a closed-form theoretically-based equation of state which
would satisfy the asymptotic critical anomalies and, at the same time,
describe regular behaviour far away from the critical region.

Water as an athermal solution of two states. We assume pure liquid
water to be a mixture of two interconvertible states or structures A
(HDL) and B (LDL). The fraction of molecules in state B is denoted
by x, and is controlled by the ‘reaction’

A'B: ð1Þ

The states A and B could correspond to different arrangements of the
hydrogen-bonded network50. The Gibbs energy per molecule G is the
sum of the contributions from both states,

G~ 1{xð ÞmAzxmB~mAzxmBA:

where mA and mB are the chemical potentials of A and B in the
mixture. The variable x is conjugate to mBA:mB{mA. If A and B
form an athermal non-ideal solution, the Gibbs energy of the mixture
is

G
kBT

~
GA

kBT
zx

GBA

kBT
zx ln xz 1{xð Þ ln 1{xð Þzvx 1{xð Þ, ð2Þ

and the chemical-potential difference is then

mBA~GBAzkBT ln
x

1{x
zv 1{2xð Þ

h i
,

where GBA:GB{GA is the difference in Gibbs energy per molecule
between pure configurations A and B, kB is Boltzmann’s constant,
and v 5 v(P) is the interaction parameter, which depends on
pressure but not on temperature.

Considering x, the fraction of B, as the ‘reaction coordinate’ or
‘extent of reaction’51, the condition of chemical reaction equilibrium,

LG
Lx

� �
T,P

~mBA~0,

yields the equilibrium constant K 5 K(T,P) of reaction (1) as

ln K~
GBA

kBT
:

and defines the equilibrium fraction xe through

ln Kz ln
xe

1{xe
zv 1{2xeð Þ~0: ð3Þ

The expression (2) combined with the equilibrium condition x 5 xe

is our equation of state for the two-state supercooled water. The non-
ideality of the two-state mixture is entirely associated with the excess
entropy of mixing SE 5 2vx(1 2 x), while the heat (enthalpy) of
mixing is zero. The parameter v determines the critical pressure
through its pressure dependence, which we approximate as

v~2zv0DP̂,

where DP̂~ P{Pcð Þ=rckBTc with a subscript ‘c’ denoting critical
parameters. An alternative, regular-solution model would have a
factor w/kBT in place of v in equation (2), where the interaction
parameter w would determine the critical temperature. For a regular
solution, the excess entropy is zero, while the heat of mixing is HE 5

wx(1 2 x), thus making phase separation purely energy driven.
The conditions for the critical point of liquid–liquid equilibrium,

L2G
Lx2

e

� �
T,P

~0,
L3G
Lx3

e

� �
T,P

~0,

yield in the case of the athermal-solution model the critical para-
meters xc 5 1/2 and v(Pc) 5 2. At pressures below the critical
pressure, v , 2 and the Gibbs energy versus fraction x 5 xe shows
a single minimum. Above the critical pressure, v . 2 and there are
one or two minima in the Gibbs energy, depending on the value of
the equilibrium constant K(T,P). If there are two minima, the min-
imum with the lowest Gibbs energy represents stable equilibrium,
and the other minimum corresponds to a metastable state. When
lnK(T,P) 5 0, both minima have the same Gibbs energy, represent-
ing two-phase equilibrium. The critical temperature Tc and the loca-
tion of the liquid–liquid transition (LLT) curve in the P–T plane are
thus determined by the dependence of the equilibrium constant K on
temperature and pressure. Since the LLT curve is defined as an
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analytical function of temperature and pressure lnK(T,P) 5 0, this
function is to be obtained from the experimental data. In
Supplementary Section 1 we explain how we match the LLT curve
of the two-state model to the experimentally expected shape and
location. The resulting expression for lnK is

ln K~l DT̂zaDP̂zbDT̂DP̂
� �

,

where DT̂~ T{Tcð Þ=Tc. The parameter a 5 2rckBdT/dP is the
slope of the LLT curve at the critical point, and b determines the
curvature. The parameter l is proportional to the heat of reaction (1),
while the product u 5 l a is proportional to the volume change of the
reaction. Since l/u 5 DS/rckBDV 5 Q/TDV, the heat of reaction is
asymptotically related to the latent heat of phase separation through
lDx 5 Q/kBTc, while Dx 5 DS/kBl 5 Q/lkBTc serves as the order
parameter along the LLT.

The Gibbs energy GA of the pure structure A defines the back-
ground properties and is approximated as

GA~
X
m,n

cmn DT̂
� �m

DP̂
� �n

, ð4Þ

where m (0 to 3) and n (0 to 5) are integers and cmn are adjustable
coefficients. Expressions for thermodynamic properties which follow
from our model are given in Supplementary Section 2.

Effects of critical fluctuations. Thermodynamics predicts the
divergence of fluctuations at the critical point. Entropy fluctuations
are proportional to the isobaric heat capacity CP, volume/density
fluctuations are proportional to the isothermal compressibility kT ,
and cross entropy–volume fluctuations are proportional to the
thermal expansion coefficient aP

24. The two-state model described
above is essentially mean-field, not affected by fluctuations. Being
expanded near the critical point in powers of x 2 xc, equation (2)
takes the form of a Landau expansion24. The procedure to include the
effects of critical fluctuations is well developed and known as
crossover theory47. This procedure is fully described in Supplemen-
tary Section 3. The variables x 2 xc and P 2 Pc are renormalized
such that the behaviour close to the critical point agrees with the

asymptotic critical behaviour48, and crosses over to mean-field
behaviour given by the equation of state, (2) and (3), far away
from the critical point.

Description of experimental data. We have fitted both the mean-
field and the crossover formulation of our two-state model to
experimental data, as described in Supplementary Section 4. We
adopt the location of the liquid–liquid coexistence parallel to the
homogeneous nucleation curve, which appears to be close to a
suggestion of Mishima13,20 based on the shape of metastable melt-
ing curves of different ices, and a ‘singularity line’ of Kanno and
Angell7 based on the extrapolation of the compressibility anoma-
lies. The optimum locations of the critical point form a narrow
band in the P–T diagram. The best fit for the critical point is obtain-
ed at about 227 K and 13 MPa, with l 5 2.3 and v0 5 0.35. The LLT
curve was chosen to intersect the band of LLCP locations at the
optimal value of the critical pressure (Fig. 2) where it has a dimen-
sionless slope of 1/a 5 15.3. This location of the critical point is about
10% of rckBTc higher than that optimized by the mean-field
approximation (see Supplementary Section 4A). This shift is
induced by critical fluctuations, as follows from crossover theory.

Figure 2 | Optimization of the LLCP location. The coloured map shows

the reduced sum of squared residuals. The solid red line is the hypothesized

LLT curve. The dashed curve shows the temperature of homogeneous ice

nucleation19 TH. The blue dotted curve is the LLT suggestion by Mishima13

and the green dotted curve is the ‘singularity’ line suggested by Kanno and

Angell7.
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Figure 3 | Density of cold and supercooled water as a function of
temperature and pressure. Black curves are the predictions of the

crossover two-state model. TM (dark red) indicates the melting

temperature and TH indicates the homogeneous nucleation temperature.

The thick blue line is the liquid–liquid equilibrium curve, with the critical

point C. The red line is the line of maximum density, and the green line is

the line of a constant LDL fraction of about 0.12. Symbols represent

experimental data12,13,52. Mishima’s data13 have been shifted by at most

0.3% to bring them into agreement with data for stable water, as described

in Ref. 48.
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The description of the density and the response functions are
shown in Figs. 3 and 4. A significant improvement compared to
the previous works16,48,49 is that our equation of state does not show
any sign of additional thermodynamic instability beyond the liquid–
liquid separation. We now believe that the mechanical and thermal
instability below the LLT, reported previously16,48,49, were associated
with the asymptotic nature of the equation of state, which caused
negative backgrounds of the compressibility. The number of adjus-
table background coefficients in equation (4) is now 14, to be com-
pared with 1648,49 (see Supplementary Table S1). Another improve-
ment is the agreement of the coexistence densities, shown in Fig. 5,
with the experimental densities of lowdensity and high-density
amorphous water. We also fitted our model to all available experi-
mental data for supercooled D2O with the same quality as for H2O

(see Supplementary Section 4B). As an alternative, we also tried to
apply the two-state regular-solution model as previously suggested
by Ponyatovsky et al.35 and Moynihan36. With the same number
of adjustable parameters, a regular-solution two-state model fails
(about ten times higher root-mean-square error) to describe experi-
mental data on supercooled water.

In Fig. 6, we compare the LDL fraction x predicted by our equation
of state and that obtained in simulations of the mW model by Moore
and Molinero45. Remarkably, both results show a similar temperature
dependence. In contrast, this fraction for an ideal LDL/HDL solution
would be almost a linear function of temperature. The experimental
maximum density line is located approximately along the line of
constant LDL fraction x 5 0.12 as shown in Fig. 3.

Discussion
We confirm the previous finding15,16 of a critical pressure that is
much lower than found in simulations39–41. We believe that the low
critical pressure reflects the entropy-driven nature of liquid–liquid
criticality in supercooled water. As shown by Stokely et al.30, the

Figure 4 | Response functions as a function of temperature. (a) Isothermal compressibility7,13,53. (b) Heat capacity at constant pressure CP (open circles:

data from Archer and Carter10, closed circles: data from Angell et al.6) and at constant volume CV (calculated) at 0.1 MPa. See Supplementary Section 5 for

more details. (c) Thermal expansivity11,12,54. In a, b, and c, the curves are the prediction of the crossover two-state model, and the symbols represent

experimental data.

Figure 5 | Density along the liquid–liquid transition curve. The dashed

line represents the mean-field two-state model; the solid line represents the

crossover two-state model. The open circles are the densities of the low-

density amorphous (LDA) and high-density amorphous (HDA) phases of

water at 200 MPa31. One can notice that the crossover LLT curve is flatter

than the LLT curve in the mean-field approximation and that the actual

position of the critical point is shifted to a lower temperature by critical

fluctuations.

Figure 6 | Fraction of molecules in the low-density state. The fraction x is

shown for the two-state model at 0.1 MPa, in the case of an athermal

solution (solid) and an ideal solution (dotted). The dashed curve is the

fraction of four-coordinated water molecules, i.e., the fraction of water

molecules with four neighbours, for mW water simulations performed by

Moore and Molinero45 (see Supplementary Section 6). The temperature is

scaled by the temperature of maximum density TMD (250 K for the mW

model and 277 K for real water).
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LLCP critical pressure is determined by the ratio of hydrogen-bond
cooperativity and hydrogen-bond covalent strength. The higher the
ratio, the lower the critical pressure.

The necessity to develop a microscopic model for water, which
would be consistent with its athermal two-state character, and which
would clarify the microscopic nature of the order parameter, (x 2

xc)/xc, is evident. Strong non-ideality caused by negative entropy of
mixing is well known for some binary aqueous solutions of non-
electrolytes where solute molecules form hydrogen bonds with water
molecules55. Our equation of state, being purely phenomenological,
does not provide information on the microscopic structure of
molecular packing or structure. However, we may speculate that
two different structures of water with different arrangements of
hydrogen bonds could exhibit more configurations after being
unmixed as a result of pressurizing.

Finally, the problem of the influence of the hypothesized liquid–
liquid separation on homogeneous ice nucleation remains unre-
solved. The fact that the LLT curve is located just below the homo-
geneous nucleation curve and imitates its shape suggests that
homogeneous ice nucleation may be caused by the entropy/structure
fluctuations associated with the liquid–liquid transition. A connec-
tion between the change in the structure of liquid water and the
crystallization rate of ice was shown for the mW model44. Whether
the LLCP of simulated water-like models is in the metastable region
or just projected to be in the unstable region, the liquid–liquid cri-
ticality still may be responsible for the observed anomalies in the
accessible domain.
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