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Abstract
Universal principles underlying network science, and their ever-increasing applications in
biomedicine, underscore the unprecedented capacity of systems biology based strategies to
synthesize and resolve massive high throughput generated datasets. Enabling previously
unattainable comprehension of biological complexity, systems approaches have accelerated
progress in elucidating disease prediction, progression, and outcome. Applied to the spectrum of
states spanning health and disease, network proteomics establishes a collation, integration, and
prioritization algorithm to guide mapping and decoding of proteome landscapes from large-scale
raw data. Providing unparalleled deconvolution of protein lists into global interactomes,
integrative systems proteomics enables objective, multi-modal interpretation at molecular,
pathway, and network scales, merging individual molecular components, their plurality of
interactions, and functional contributions for systems comprehension. As such, network systems
approaches are increasingly exploited for objective interpretation of cardiovascular proteomics
studies. Here, we highlight network systems proteomic analysis pipelines for integration and
biological interpretation through protein cartography, ontological categorization, pathway and
functional enrichment and complex network analysis.
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Systems biology approaches are accelerating elucidation of disease prediction, progression,
and outcome, enabling previously unattainable comprehension of biological complexity.
Complex network analysis offers an integrative multi-modal approach by which to achieve
inclusivity and maximize systems comprehension of high throughput datasets at molecular,
pathway, and network scales, incorporating full complements of identified molecular
components together with their recognized interrelationships and functional contributions.
Here, we describe integration and biological interpretation of proteomic data, encompassing
protein cartography, ontology, pathway and network analysis, highlighting salient aspects in
recent cardiovascular applications.

Corresponding Author: Dr. D. Kent Arrell, Mayo Clinic, Stabile 5, 200 First Street SW, Rochester, MN 55905, Tel: +
1-507-284-9552, Fax: + 1-507-266-9936, arrell.kent@mayo.edu.

Conflict of Interest Disclosures: None

NIH Public Access
Author Manuscript
Circ Cardiovasc Genet. Author manuscript; available in PMC 2013 August 01.

Published in final edited form as:
Circ Cardiovasc Genet. 2012 August 1; 5(4): 478. doi:10.1161/CIRCGENETICS.110.958991.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Proteomic cartography
Proteomics encompasses diverse methods by which to study proteins, their abundance,
structure, post-translational modifications (PTMs), and physical or functional interacting
partners to map the proteome, the protein complement of a genome. While such methods
can be applied to individual proteins, proteomics facilitates large-scale analysis of complete
proteomes or targeted subproteomes (Table 1). Moreover, proteomics enables comparisons
between distinct conditions/states, from defined biological sources, across discrete timelines.
In general, a proteomic cartography pipeline involves sample acquisition, followed by
protein isolation, separation, resolution, and identification (Figure). Along this continuum,
each successive module harbors a multi-step process whereby proteomic methodologies can
be implemented.

Once proteins are isolated from the source of interest, two major separation strategies have
evolved to address proteome complexity.1,2 Traditional gel-based approaches, particularly
two-dimensional gel electrophoresis (2-DE) involving isoelectric focusing followed
orthogonally by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, were the
earliest methods adopted for protein separation and resolution, comparative assessment of
relative abundance, and initial reduction of protein complexity prior to mass spectrometry
(MS). Although 2-DE remains common, the advent of quantitative MS techniques has led to
increased application of various gel-based and gel-free alternatives, whereby protein and/or
peptide complexity is addressed by separation and resolution prior to or in conjunction with
MS, while quantitation is subsequently measured from MS precursor or fragment ion
spectra. Choice of separation strategy is influenced by study objectives and resources, often
guided by advantages and limitations to each approach. Quantitative MS methods tend to be
less time- and labor-intensive while offering greater potential throughput and data
acquisition, yet in instances where 2-DE approaches are applied in parallel, use of duplicate
approaches can provide independent confirmation3,4 or yield complementary, non-
overlapping information.5,6 Regardless of separation strategy, bottom-up or top-down MS
analysis7,8 facilitates protein assignment, generating extensive lists that, depending on
experimental design, typically include relative abundance between conditions or states
(Figure). A number of reviews provide greater technical detail on proteomic methodologies
and their broad-based application to cardiovascular research.1,2,9–11

A decade ago, an initial survey of the cardiovascular proteomics domain emphasized that
successful incorporation of existing and new technologies would help to unravel intricacies
of proteome dynamics.1 Indeed, introduction of several enabling technologies has
accelerated this emerging field. The utility of 2-DE was enhanced by improved gel
reproducibility attained with immobilized pH gradient isoelectric focusing,12 and
fluorescent-based difference gel electrophoresis allowing co-resolution of paired samples.13

Numerous MS advances included algorithms for automatic spectral interpretation, and
quantitative MS strategies such as isotope-code affinity tag peptide labeling14 or stable
isotope labeling of amino acids.15 Subsequent instrumentation advances, such as
development of high resolution, high mass accuracy Fourier transform-ion cyclotron
resonance MS and introduction of Orbitrap MS technology for proteomic applications,16,17

expansion of quantitative MS techniques such as isobaric tag and label-free methods,18–20

development of selective PTM analysis strategies, e.g. phosphopeptide enrichment,21 plus
continued growth and extensive curation of protein databases for comparison and
identification of peptides and proteins from acquired MS data, all contributed to expansion
of proteomic studies.

An important corollary of these developments is the increasing magnitude of acquired
information. Individual proteomic datasets are not simply more numerous; they are growing
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ever larger. Regardless of whether gel-based or gel-free methodology is applied, if surveys
are quantitative comparisons or qualitative cataloguing, or if they provide coverage of single
or multiple time-point/phenotype dynamics, proteomic studies now regularly yield lists
comprising hundreds of identified proteins. Thus, a critical consideration for continued
maturation of proteomic research is defining appropriate measures by which to collate,
prioritize, and integrate expansive protein lists to maximize biologically meaningful data
extraction. When confronted with overwhelming protein numbers, where traditional
reductionist analysis of each no longer remains feasible, it becomes tempting to focus on a
particular subset. A fraction of proteins exhibiting greatest differential expression, those
with established links to the topic of interest, or another delimiter to focus interpretation and
narrow downstream analysis.22 As a consequence, mechanistically relevant proteins,
complexes, and/or functional modules may be inadvertently marginalized or ignored. In this
context, analysis of proteomic and other high throughput data acquired using objectively
defined statistical criteria23 should instead be inclusive.22

Systems algorithms for proteome comprehension
Network systems biology offers an integrative approach to achieve inclusivity and maximize
comprehension. Network platforms incorporate a complement of identified proteins together
with their interactions and, where available, input of other high throughput data, to better
comprehend the system in its entirety.22,24–29 Various network analysis approaches are
becoming increasingly prevalent in genomic,30–34 microRNA,35,36 proteomic,3,37–41 and
metabolomic42 cardiovascular research.43–45

Proteins function within intricate webs of interactions. Accordingly, derivation of biological
interaction networks provides a rational means of assembling proteomic data in functional
contexts. As an example, the minimal network required to incorporate all identified proteins
via established interactions yields an immediate focal point of proteomic measurement
within an experimental system, regardless of extent of dataset size or breadth of constituent
protein functional variability. Derived networks are amenable to compositional assessment,
based on function/ontology overrepresentation and enrichment analysis, and to structural
examination, such as architectural topology or positional relevance of components, e.g. hubs
or bridging nodes (Table 1).46,47 Moreover, network composition and structure may be
exploited for mechanistic interpretation, hypothesis generation, and functional validation,
enabling refinement of assembled networks.22,48 Network systems biology thus offers a
logical, inclusive approach by which to process, prioritize, and interpret complex systems
behavior from high throughput datasets of theoretically unlimited size.

Network biology approaches to proteomic data assessment and interpretation typically
involve data reduction, clustering or grouping acquired data through ontological
categorization, and a combination of pathway and complex network analysis
(Figure).29,37–40 Functional ontology classification provides initial biological context for
individual proteins, whereas pathway and network analysis integrate composition and
architecture of associated interrelationships from defined proteomic observations. Both
biological context and network architecture serve as tools to scrutinize acquired proteomes,
and to develop informed follow-up investigation and/or validation of insights predicted from
high throughput data.3,29,37–40

Ontological categorization
Proteomic studies are proficient at detecting changes, yet biological interpretation is often
limited by data complexity. When lists remain small, relevance can be anticipated and/or
functionally validated on a protein-by-protein basis. For large-scale studies, this approach is
untenable, and there is a need to define appropriate methodology for bioinformatic
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assessment of high throughput datasets. Data comprehension is facilitated through clustering
of proteins by biological processes, cellular components, or molecular functions
(Figure).29,37–40,49 Accurate categorization requires the ability to cross-reference protein
database information with complementary sources such as the Gene Ontology (GO) or
pathway analysis applications. Despite progress, lack of conformity in nomenclature and in
computational systems biology data and language formats can limit cross-platform
interoperability.

For spectral assignment during tandem MS (MS/MS) and initial protein characterization, the
UniProt Knowledge Base (UniProtKB) is an established reference. Alternatives include or
have included IPI (International Protein Index), PIR (Protein Information Resource),
NCBInr (National Center for Biotechnology Information, non-redundant), Swiss-Prot (from
the Swiss Institute of Bioinformatics), and TrEMBL (Translated European Molecular
Biology Laboratory Nucleotide Sequence Database, from the European Bioinformatics
Institute). The UniProt Consortium initially combined PIR, Swiss-Prot and TrEMBL into the
UniProtKB, and now also includes the IPI database. UniProtKB is curated and continuously
updated to incorporate new entries and minimize redundancies, while maintaining a history
of entry changes, such as consolidation, replacement, or protein/gene re-naming.

UniProtKB entries often include multiple identifiers, increasing the ability to acquire
complementary data from other repositories during subsequent analyses. They also contain a
wealth of related information, such as interacting partners and residency in protein
complexes or functional modules, GO information regarding associated molecular functions
or biological processes, and hyperlinks to additional function- and interaction-related
databases. Of the protein identifiers used in UniProtKB, the Human Genome Organization
(HUGO) gene symbol ID is prioritized and universally applied across databases. Therefore,
it serves as a pragmatic choice for cross-database and downstream querying of UniProtKB-
derived proteomic information. Protein complexity, however, still occasionally leads to
HUGO ID nomenclature issues during bioinformatic data assessment. This may occur when:
(i) a single ID represents multiple variants of one protein, all of which may be subsumed by
MS/MS data and thus indistinguishable from one another, e.g. TNNT2 represents 10 human
cardiac troponin T splice variants; (ii) other highly homologous proteins are subsumed by
spectral data, e.g. actin isoforms; (iii) MS/MS peptide matches are subsumed by protein
isoforms of identical sequence arising through gene duplication, e.g. calmodulins 1, 2 and 3;
and (iv) synonyms exist for a single protein, e.g. histone 4 has 14 human and 12 mouse
HUGO IDs. From each scenario, however, only one ID is assigned, in accordance with
accepted parsimony standards.50 While indistinguishable isoforms and ID redundancy might
be considered confounding issues during ontological classification and pathway/network
analysis, their impact is negligible since they are variants of the same protein and their
occurrence is infrequent in the context of hundreds of additional proteins.

Most cardiovascular proteomic studies now include ontological categorization, clustering
identified proteins by GO biological process, cellular component or molecular function
(Figure), with or without segregation into expression cohorts, i.e. upregulated,
downregulated, or unchanged. While providing initial biological context, assignment of a
single function to each protein is often an oversimplification, since many proteins participate
in multiple physiological processes. For instance, promiscuous enzymes influencing an array
of other proteins and their activity, e.g. oxidoreductases, kinases, and phosphatases, may
carry out one specific function, such as phosphate transfer, yet this may impact numerous
biological processes, confounding comprehensive protein categorization. In this regard,
proteins with multiple GO associations are more appropriately accommodated, and more
effectively accounted for, by calculating overrepresentation and/or enrichment significance
during subsequent pathway and network analysis.
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Pathway analysis algorithms
Pathway analysis maps high throughput data to, and assesses enrichment of, canonical
pathways. Pathway algorithms facilitate data annotation, containing detailed descriptions of
individual proteins and links to current knowledge. Pathway analysis software can also be
used to calculate functional enrichment, by assessment of algorithm-specific functional
terminology or GO molecular functions and biological processes. Some pathway algorithms
enable biologically-oriented network analysis, where subsets of proteins, represented as
nodes or vertices, are connected by edges via established relationships, generating networks
that may be further scrutinized for function or pathway over-representation. Thus, pathway
analysis extends functional categorization by evaluating collective consequences of
proteomic findings in the context of established pathways, functions, and interactions
(Figure).

Pathway analysis is an expanding field, with a diversity of bioinformatic applications
designed to address molecular pathways and interactions. A comprehensive list of
applications available at Pathguide51 outlines over 300 existing pathway and/or molecular
relationship resources. Collectively, they encompass 8 subcategories, including protein-
protein interactions, metabolic pathways, signaling pathways, pathway diagrams,
transcription factor/gene regulatory networks, protein-compound interactions, genetic
interaction networks, protein sequence focused databases, and 14 repositories related to
topics not covered by the 8 major categories. Pathguide provides information about each
resource, facilitating informed decisions regarding algorithm selection.

Deconvolution of broad-based proteomic data is most readily accomplished with pathway
resources that maximize information retrieval, such as Ingenuity Pathways Knowledge Base
(IPKB), archived in 5 Pathguide categories – protein-protein interactions, metabolic
pathways, signaling pathways, transcription factors and gene regulatory networks, and
protein-compound interactions. IPKB is comprised of data manually curated or
automatically extracted from the literature, and incorporates reviewed content from over 20
additional repositories. In turn, data is accessed and interrogated using the complementary
bioinformatics tool, Ingenuity Pathways Analysis (IPA). Since IPKB is a compilation of
existing data, it is important to emphasize that IPA analysis is a pathway-oriented
interpretation of current knowledge rather than inference of novel outcomes and
interactions. As data acquisition increases, gaps in knowledge and limitations in scope will
be reduced, expanding and refining pathway analysis interpretation. Together, IPA and
IPKB offer broad applicability and, as such, have become increasingly popular for
cardiovascular proteomic studies,3,5,37–40,52–66 as have various alternative applications for
ontology/enrichment analysis (e.g. Gene Set Enrichment Analysis,67 Ontologizer,68 and the
Database for Annotation, Visualization, and Integrated Discovery,68) and dedicated pathway
and network analysis (e.g. MetaCore’s GeneGo69).

Pertinent considerations for implementing pathway analysis can be garnered from an
overview of IPA search parameters. IPA accepts 21 different identifiers to process and
interpret high throughput datasets, from a number of gene/protein ID formats suitable for
proteomic data, several mRNA microarray platforms, plus additional formats to facilitate
microRNA or metabolomic studies, and more recently, RNA-Seq and NGS experiments.
Thus, pathway analysis can be carried out using proteomic data alone, or integrated with
other high throughput data. Protein IDs uploaded for individual or multiple observations
may include quantitative values such as fold change, p-value, or log ratio. Additional user-
specified variables include output dataset size (e.g. optional settings for maximum size and
number of generated networks), desired stringency and scope (e.g. species specific
information; consideration of direct and/or indirect relationships; inclusion of observed and/

Arrell and Terzic Page 5

Circ Cardiovasc Genet. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



or predicted interactions; inclusion/exclusion of endogenous chemicals together with genes/
proteins as network nodes), whether or not to focus on a subset in isolation (e.g. fold change
and/or p-value cutoffs to focus on up-, down-, or both up- and down-regulated proteins
simultaneously; inclusion/exclusion of unaltered proteins from assessment), and selection of
a baseline or standard reference set against which proteins of interest are compared for
pathway and function enrichment and/or overrepresentation. To cast as wide a net as
possible for detection of pathway and network interactions, both direct and indirect
relationships across a variety of tissues and species should be included,37–40 as this will
obviate annotation limitations. For instance, tissue specific limits may be confounded by
gene/protein annotation being based primarily on healthy tissues, which may not reflect
observed expression under conditions of stress or disease, e.g. fetal isoform expression in
adult tissue, whereas setting species limits may overlook relevant knowledge of a particular
protein that is more extensively documented in a species other than the one under
investigation. Search stringency for proteomic data is better attained by limiting
interpretation to include proteins only, by limiting interactions to those that are
experimentally observed, and by defining network generation parameters to minimize the
number of networked molecules required to incorporate all submitted proteins.37–40

As an evolving component of proteomic research, pathway analysis is best exploited as an
interpretation tool facilitating hypothesis generation for subsequent follow-up, rather than as
a confirmatory/validation step within the data analysis pipeline. The utility and potential of
pathway analysis software is tempered by the fact that documented relationships only
comprise partial biological information. Moreover, reliability of data supporting these
interactions is variable, and it is impractical to assess interactions for quality control on a
protein-by-protein basis when thousands of connections are generated. Finally, substantial
effects on pathway software have been demonstrated by annotation changes, updates,
additions, and errors, all of which impact prediction and significance outcomes.70 Thus,
pathway analysis searches run the risk of being incomplete or potentially misleading, and
are best validated by experimental follow-up.

Overrepresentation of normal and adverse biological functions assessed in IPA can be useful
in guiding follow-up. In a model of imposed stress in the context of ATP-sensitive K+

(KATP) channel deficiency, IPA analysis of proteomic data exclusively predicted cardiac
adverse effects, which were subsequently validated by in vivo assessment in the KATP
channel deficient cohort.38 Adverse effect screening was also employed in a study
examining proteomic consequences of cardiomyopathy and structure/function remodeling
mediated by stem cell therapy.40 In this regard, cardiomyopathic proteome changes
predicted several cardiac adverse effects and over-representation of cardiac disease, which
were diminished or no longer evident when assessing proteomic remodeling of stem cell-
treated cardiomyopathic hearts. Validation of the predicted spectrum of structural and
functional benefits by stem cell therapy was demonstrated by multi-modal imaging,
indicating restoration of pre-stress cardiac functional levels and normalization of heart
structure.40 Thus, proteome-specified functional targets can be identified by pathway
analysis for experimental follow-up and validation.

Networks generated during pathway analysis also yield biologically relevant contexts for
functional prioritization, hypothesis generation, and experimental validation (Figure). IPA
networks are ranked by calculated over-representation of the proportion of input proteins
within each network relative to expected numbers if proteins were instead randomly selected
from a background reference set. Included with these prioritized networks is predicted intra-
network functional enrichment, which can further guide hypothesis generation. For example,
the top prioritized network generated from proteomic analysis of endoderm secretome-
mediated cardiopoiesis was associated with cardiovascular growth and development.37
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Validation was carried out in silico by removal of the most highly connected network node
from the list of input proteins in a parallel IPA assessment, which demoted cardiovascular
development prioritization. Validation was independently conducted in vitro by targeted
pharmacological inhibition, which abolished the potentiation of cardiac differentiation,
thereby confirming network contributions to cardiopoiesis.37

Default IPA constraints typically double the number of proteins from initial upload to
network output,3,37–40 thereby increasing complexity, but this also provides additional
targets for hypothesis generation by incorporating potentially relevant proteins not detected
during initial proteomic screening that can be targeted, assessed and validated.37 Another
case in point is an IPA-derived network assessing crosstalk between endothelial and
vascular smooth muscle cells in response to differential shear stress.64 Here, the primary
proteomic network included a number of secretory proteins involved in cellular
communication and function modulation. Some of these proteins were not detected during
proteomic analysis, yet their presence in the network suggested criticality for intercellular
crosstalk underlying observed vascular remodeling, which was subsequently assessed and
validated.64 Thus, pathway analysis provides actionable predictions for validation via
network functional prioritization, including addition of target proteins networked with, but
not initially observed among, acquired proteomic data.

Pathway algorithms are advantageous for enrichment analysis or function and ontology
representation, but lack tools necessary to characterize network architectural topology and
positional relevance of network components. Pathway analysis networks emphasize
biological relationships over structure, and are designed to be sufficiently large to provide
biological interactions, yet small enough for rapid network inference and construction, and
to readily visualize all nodes simultaneously. IPA network settings, for instance, range from
35–140 nodes, and although multiple networks can be combined, merges may comprise no
more than 500 nodes at a time. Moreover, no provisions are included to assess functional
enrichment within merged composite interactomes. To fully comprehend network structure
and composition for inclusive systems interpretation of proteomic data, particularly as
datasets continue increasing in magnitude, it is necessary to move beyond pathway software
to applications dedicated to network visualization and interpretation.

Complex network analysis
Complex network analysis enables integrative proteome study across the spectrum of
properties inherent within assembled protein-protein interrelationships. These mathematical
representations comprise individual protein constituents, termed nodes or vertices in a
derived network, held together by physical or regulatory interconnections, defined as edges
(Table 1). Nodes and edges can be assessed for architectural connectivity, superimposed
with qualitative or quantitative information, and, for some network algorithms, linked to
external annotation or ontological information sources. Networks can also be modified or
updated in an iterative fashion. While popular for proteomic and other systems
interpretation, network approaches are limited with respect to input data quality, output
variability from differing algorithms, and lack of flexibility,22,71 with limited capacity to
account for post-translational or spatiotemporal dynamics, or when networking data
acquired from multiple high throughput sources. Metabolic networks, for example, may
comprise protein nodes with metabolite edges, metabolite nodes with protein edges, or both
proteins and metabolites as nodes connected by various interrelationships. Applied
judiciously in light of such caveats, networks remain versatile platforms upon which to
integrate proteomic and other high throughput data for systems comprehension.22
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Current understanding of the non-stochastic nature of networks arose from the
demonstration that supposedly random networks from a variety of sources instead possess
non-random connectivity.72 In these networks, the vast majority of nodes possess one or
very few edges, whereas an exceedingly small proportion are more highly connected. Node
connectivity is defined as degree, the number of edges a node possesses, i.e. how many other
nodes it connects to in the network. Rather than exhibiting Gaussian node degree
distributions, expected if randomly connected, networks approximate power law
distributions which form characteristic scale-free topologies. Debate continues regarding
whether network structures are scale-free, exponential or adhere to more esoteric
mathematical constraints, yet it is clear that their organization is not random. Non-
stochasticity of network architecture is now known to be universally applicable, and this
imparts emergent structural properties of biological relevance, such as network motifs,
modularity, and functional robustness (Table 1).46,47 Proteome networks, too, follow
principles of non-stochasticity, reflecting non-random, ordered structure, consistently
observed regardless of network scale, which may be exploited on the basis of these
properties in a variety of ways not apparent when viewed simply as a list of protein
identities.

To assess such properties for proteomic experiments, interaction networks are typically
derived by impartial assembly from pathway analysis resources or by manual screening of
the literature, and can be generated de novo by assessing protein-protein interaction data.
Alternative criteria may be used to delineate network connectivity, such as statistically on
the basis of co-expression matrices and Pearson correlation thresholds,33 or by ab initio
reverse engineering network models from gene expression dynamics.73 Statistical
approaches may yield novel relationships based on gene co-regulation, but require
confirmation to determine whether or not connections are functionally meaningful.74

Moreover, extensive expression profiling over numerous perturbations or time points is
necessary to provide sufficient data for reliable network modeling. Until such time as
proteomic data is produced in quantities or at scales similar to transcript profiling, proteomic
network generation will rely primarily upon current biological knowledge to establish node
connectivity.

Just as Pathguide serves as a portal into pathway analysis, Graph Visualization Software
References (GVSR) provides an online resource detailing over 80 network analysis
algorithms to enlighten and guide selection of network software, including additional links
to other sites and resources.75 As with pathway analysis, those interested in network
generation may avail themselves of specialized or generalized algorithms through GVSR. A
comprehensive GVSR-listed application is Cytoscape, an open source platform for
visualization of proteomic molecular interaction networks and their integration with other
state data.76 At the core of Cytoscape is a network visualization tool, for which both
developers and users alike can create and exploit specific peripheral tools, termed plug-ins,
to facilitate network interpretation, including network and molecular analyses, additional
layout options and file format support, and connections to external databases and annotation.

Network generation in Cytoscape requires no specialized knowledge of network theory or
computer programming. In their simplest form, networks consist of a collection of pairwise
interactions. Thus, Cytoscape generates networks from spreadsheets or simple interaction
files (.sif extension) for which each row expresses an interaction and the nature of that
interaction, e.g. undirected, uni-directional, or bi-directional. Once pairwise interactions are
compiled, e.g. from pathway analysis sources, and uploaded, additional files containing
expression attributes may be included and applied to network layouts and node or edge
attributes for network visualization. For instance, node and edge shape, size, and color can
be used to convey direction and extent of expression, node functional category, edge
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confidence, and so on, and layouts can be used to emphasize or highlight particular
attributes, such as the most highly connected or functionally related nodes.37–40 For
instance, network information can be accentuated by clustering nodes of common function
via layout co-localization,38–40 or by presenting common elements of adjacent networks by
locating them in the same relative location for both networks.40 Unlike standard pathway
analysis network settings that limit network size and scope, dedicated complex network
analysis software can generate networks comprising hundreds of thousands of nodes,
accommodating the largest proteomic interactomes.

To complement network assembly, Cytoscape users can presently select from 155 plug-ins
to suit particular needs, including analysis of existing networks, import of networks and
network attributes, network inference, functional enrichment, communication and scripting
applications, and a miscellany of additional applications. Download statistics indicate that
the most popular Cytoscape plug-in is BiNGO, for Biological Network Gene Ontology.77

BiNGO assesses biological network overrepresentation for various gene ontology categories
– biological process, cellular component, and molecular function – by comparison to a
species specific reference, similar to enrichment analysis tools in pathway algorithms. Other
top downloads include plug-ins for assessment of network structural attributes, such as
highly clustered or activated network modules (MCODE and jActive Modules,
respectively), and those facilitating access to other databases (NCBI Entrez Gene User
Interface and NCBI Client) and manuscript searches (Agilent Literature Search) for network
annotation (Table 2). Another popular plug-in is Network Analyzer,78 a useful tool for
assessing network topology, the benefits of which become more apparent as network size
increases. This application computes and displays a wide array of topological parameters for
both directed and undirected networks. These include number of nodes, edges, connected
components, network diameter, degree distribution, clustering coefficient, and shortest path
lengths, among others (Tables 1, 2).78 Due to the versatility of Cytoscape, this network
visualization and interpretation tool has become increasingly useful for complex network
analysis in cardiovascular proteomic studies.3,37–40,67

Complex network analysis ontological overrepresentation extends observations available
during pathway analysis by providing enrichment assessment for entire network
neighborhoods rather than partial subnetworks. Although functional enrichment analysis of
merged composite networks is not available within IPA proper, they can be assembled and
scrutinized elsewhere, such as within Cytoscape. For example, widespread metabolic
remodeling in response to KATP channel deficiency was apparent by IPA functional
ontology classification, but was reinforced and expanded by BiNGO analysis of the derived
composite network with Cytoscape.39 BiNGO assesses protein or gene networks for
ontological representation, generating a hierarchical network of GO terms as nodes to
visualize overrepresented functions, with connecting edges comprising nested connections
within the GO hierarchy (Table 2). Specifically, BiNGO analysis extended the KATP
channel-dependent metaboproteome (Table 1) by generating an ontology network from the
proteomic network, demonstrating that from all 962 network-associated biological
processes, the 55 that were overrepresented were all metabolic processes, associated with
protein catabolism, glycolysis, the tricarboxylic acid cycle, fatty acid, and other substrate
metabolism.39 Enrichment Map offers an alternative plug-in for Cytoscape functional
interpretation.79 This tool creates an ontological network with nodes again comprising
overrepresented functions, but with connecting edges showing a weighted intensity based on
extent of proteomic dataset overlap between nodes, and an automated layout situating
connected nodes closer to one another to facilitate comprehension of closely related
enrichment terms (Table 2).79 By including all detected protein changes rather than a portion
of those most differentially expressed, Enrichment Map was combined with Gene Set
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Enrichment Analysis to expand biological consequences evident from cardiomyopathy
proteomic profiling.67

Network topological analysis provides yet another advantage of moving beyond pathway
analysis enrichment, facilitating actionable prognostication of emergent structural properties
(Figure). Since most nodes in scale-free networks possess only one or at most a few
connections, and a very small number are highly connected hubs, non-stochastic networks
are functionally robust.80 Thus, random node removal would result in a high probability of
targeting low connectivity nodes and a small likelihood of radically disrupting network
connectivity and functionality by removing a critical network hub.80 Therefore, assessing
functional integrity in the context of specific hub inhibition could provide understanding of
network biological relevance. This approach was used to confirm the potentiating effect of
an endodermal secretome network on cardiac differentiation by targeted inhibition of either
the primary or secondary hub of the derived network.37 Thus, understanding network
mathematical architecture enables interrogation of constituent node positional relevance.
Together, these examples demonstrate how network-oriented analysis algorithms extend
pathway analysis data interpretation, apply alternative sources of network assembly to
comprehend function (i.e. GO terms rather than proteins as nodes), make use of all protein
IDs rather than a small proportion of the most extensively observed differences for data
interpretation (i.e. inclusivity), and extract testable hypotheses from emergent structural
properties of complex networks.

Future prospects
As the science of proteomics advances, network-based systems analysis is becoming
increasingly integral to high throughput protein deconvolution with the ultimate purpose of
furthering fundamental knowledge and translational ramifications. Rigor in proteomic
experimental design and stringency in protein-protein interaction studies will be paramount
for confidence in data interpretation and network protein interaction quality. Network
systems medicine approaches offer unprecedented opportunity for integration of proteomic
data with other high throughput sources to better comprehend function in health and disease.
Accurate systems interpretation ultimately requires assessment of function or activity, such
as biochemical rate constants or metabolic flux analysis, to facilitate prognostic modeling of
prioritized pathways and cellular functions, requiring proteomic studies to transition from
static state analyses examining change in protein abundance toward dynamical systems
analysis. This necessitates incorporation of modalities facilitating state space comprehension
to track both deterministic and stochastic effectors influencing complex cellular outcomes.
The established capacity of network based systems templates to account for and incorporate
a diversity of input data is well suited for this evolutionary transition at the forefront of
emerging fields of translational network medicine.
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Figure 1.
Network systems proteomic pipeline. Strategy extending proteomic profiling from mapping
and quantitation of protein identities to ontological categorization, pathway analysis and
network generation for inclusive systems interpretation.
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Table 1

Systems proteomics lexicon

Subproteome Proteome subset, corresponding to particular intra- or extra-cellular compartments, involvement in specific
functions, or modulated by or dependent upon particular biological contexts

Metaboproteome Subproteome involved in and supporting cellular metabolic function

Systems biology Analytical approach to investigate and model relationships among system components to understand and/or
predict emergent properties

Network/Interactome Mathematical representation of pairwise collections of proteins connected by interdependent interactions and/or
relationships, the structure of which conveys emergent properties

Network medicine/biology Analysis of molecular (e.g., protein, gene, metabolite) interaction networks through complex network theory,
comprising topological features characterizing symmetric or asymmetric relationships amongst discrete network
objects and their known or established interactions to guide medical or biological interpretation

Node/Vertex Fundamental unit of a network, in network biology including one or more of the following: genes, proteins,
metabolites, drugs, and endogenous small molecules

Edge In network biology, a relationship between two nodes or node self-interaction, involving physical, regulatory, or
genetic interactions which may be undirected or directed (uni- or bi-directional). Edges can include information
regarding relationship confidence (e.g., node weighting) or function (e.g., interaction/pathway kinetics)

Degree distribution Node degree defines number of connections between a network node and other nodes, with degree distribution
being the probability distribution of the degrees of all nodes

Clustering coefficient Node clustering coefficient is determined by proportion of nodes connected to it that also connect to one another,
providing an indication of neighborhood relatedness, the degree to which nodes within a network cluster together

Scale-free topology Biological networks are postulated to exhibit power law distributions of node connectivity, which influences
emergent network properties, such as robustness

Path length Shortest distance required to connect two nodes. Scale-free networks have extremely small average path lengths

Network diameter Maximum path length necessary to connect any two network nodes

Network motif Patterns of interconnections in complex networks occurring at significantly higher rates than expected in
randomly assembled networks

Network module Collection of nodes with high internal connectivity but few connections with remainder of the network, typically
comprising nodes sharing a particular function (e.g., complex, signaling cascade)

Hub Node or small number of nodes much more highly connected to other network constituents than expected
randomly

Bridging node Node bridging the shortest path between two other nodes or modules in a network, which can be critical
bottlenecks in network functionality
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Table 2

Examples of popular and useful network support applications

Application Network function addressed

Network Analyzer Calculates an extensive array of network topological parameters to facilitate identification of nodes of
interest and relevant network structural characteristics

MCODE Detects and prioritizes highly interconnected regions within a network

jActive Modules Identifies expression activated subnetworks, connected network regions that exhibit significant changes in
expression

ReOrient Plugin Facilitates visual comparison of adjacent networks by locating common nodes in the same relative location

BiNGO Determines GO category statistical over- or under-representation from a set of genes/proteins within a
network or subnetwork of interest, visualized as a GO hierarchy network to map significant themes by
biological process, cellular component, or molecular function

Enrichment Map Visualizes networks of gene set enrichment analysis results, where nodes represent gene sets and edges their
mutual overlap (rather than connecting nodes by nested GO classification, as done in BiNGO), clustering
highly redundant gene sets to improve enrichment analysis navigation and interpretation

NCBI Entrez Gene User
Interface/NCBI Client

Imports gene/protein interactions, annotations, and attributes from NCBI Entrez Gene for network derivation

Agilent Literature Search Queries multiple text-based search engines to obviate the need for manual search and extraction of gene/
protein interactions for network generation
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