
The timeframe of reproductive potential in the
human female is marked by its beginning, termed
“menarche,” at approximately age 12, and continues
until “menopause,” at approximately age 51. This 39-
year timeframe is modulated individually by an
approximate 30-day hormonal cycle and normal
accretion of hormonal changes that occur over time
along with interaction with environment and
lifestyle. In addition, pregnancy, childbirth, and lac-
tation, to name only a few natural events, produce
significant impact beyond the normal aging process
itself. Limited quantitative analysis of this normal
progression, beyond measurement of serum hor-
mone levels as a woman approaches menopause, has
been carried out. An accurate quantitative model of
this process would be invaluable in assessing an indi-
vidual’s risk for breast cancer, ovarian cancer, cardio-

vascular disease, osteoporosis, and Alzheimer’s dis-
ease, in evaluating fertility and infertility issues, as
well as suitability for hormone replacement therapy,
and in providing insight into the interactions of these
endocrine effects on other endocrine-sensitive
processes, including diabetes, psychological
responses, and other responses to environment and
lifestyle. As data from the human genome project
become available, revealing presence of polymor-
phisms at an individual’s enzyme level, it is of par-
ticular interest to initiate methods for representation
and simulation of the underlying molecular
processes so that even rational qualitative reasoning
can be made available for use in diagnosing and eval-
uating the impact of aging of the female reproductive
system on general health issues. 

Background

The female reproductive aging is a continuous
process beginning early in a woman’s life and gradu-
ally leading to its final stage, menopause. The hall-
mark of menopause is a major decline in ovarian
function manifested by a marked decrease in estrogen
production. The onset of menopause follows gradual
changes in the menstrual cycle that define the so-
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Model Formulation ■

Modeling and Simulation of
Pathways in Menopause

A b s t r a c t The analytical representation and simulation of complex molecular pathways can
contribute to understanding and evaluating physiological as well as pathological processes. We are
interested in modeling the processes of menopause to stratify women in terms of the genotypic and
environmental components and their implications for development of individualized risk of post-
menopausal disorders, e.g., breast and ovarian cancer, cardiovascular disease, and osteoporosis. We
have initiated this study using the UltraSAN package to analyze the pathway associated with estro-
gen production. This model incorporates detailed information about the hormone factors affecting
estrogen production, and the simulations carried out are based on published experimental data cor-
responding to hormone levels during the course of the normal female reproductive cycle. The
agreement between the experimental data and the simulation is typically less than 2 ng/ml or 2
pg/ml respectively for progesterone and estradiol output.  This approach further permits inclusion
of information about an SNP observed in the gene coding for the enzyme aromatase as a model to
study the impact of reduced enzymatic activity on hormone levels.  
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called perimenopausal period, accompanied by
gonadotropin hormone changes (mainly an increase
in follicle-stimulating hormone [FSH]). The transition
from normal menstrual cycles to peri- and subse-
quently post-menopause lays the ground for disor-
ders (breast and ovarian cancer, heart disease, osteo-
porosis), according to genetic and environmental fac-
tors determining individual disease predisposition.
At the center of the pathogenetic mechanisms of post-
menopausal diseases lies estradiol, which predisposes
to certain conditions and protects from others.1,2

Understanding and modeling the hormonal changes
during the normal menstrual cycle and then extend-
ing the model to include peri- and post-menopause
are essential to accurately evaluate estrogen produc-
tion and assessing individual disease risks. 

Only a few published papers focus on modeling the
menstrual cycle.3-8 These studies use differential
equations to describe estradiol and progesterone con-
centrations changing upon FSH and luteinizing hor-
mone (LH) gonadotropin-dependent regulation.
These modeling approaches attempt to establish a
basis to quantitatively associate steroid hormone
levels to FSH and LH concentrations, without con-
sidering in detail the molecular pathways involved in
hormonal control, and without including the
enzymes responsible for steroid hormone production
into their models.

In this study we have applied stochastic activity nets9,10

as a means for representing the pathway and its com-

ponents and interactions, and simulating its response
in both normal cycling and abnormal cycling.

The Normal Menstrual Cycle

The normal menstrual cycle involves three succes-
sive phases: follicular, periovulatory, and luteal. The
estradiol and progesterone produced in the ovary in
each phase are tightly controlled by the
gonadotropin pituitary hormones FSH and LH, as
well as by local ovarian factors such as inhibin and
activin. Hypothalamus also plays a role through
gonado-tropin-releasing hormone (GnRH) release.
Together, the ovaries, pituitary and hypothalamus
constitute the so-called hypothalamic-pituitary-
ovarian axis (Figure 1), which specifies the function
of the menstrual cycle through a network of elabo-
rate feedback circuits.11 Menses coincides with the
beginning of the follicular phase. At the beginning of
the cycle, circulating levels of estrogen and proges-
terone are low, signaling the hypothalamus-pituitary
axis to release large amounts of FSH. FSH initiates
the process of follicular maturation, which produces
increasing amounts of estrogen. At the end of the fol-
licular phase, the primordial follicle has matured in
preparation for the release of the oocyte. During
periovulation, a surge in LH levels coincides with
the release of the oocyte. LH stimulates the residual
ovarian follicle, transforming it into the corpus
luteum. The luteal phase follows, with increased
progesterone secretion from the corpus luteum. If
fertilization of the oocyte does not occur, estrogen
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F i g u r e  1 The mature ovarian follicle
contains the two cell types responsible
for estradiol and progesterone produc-
tion. Theca cells produce progesterone
and androgens. Androstenedione is
retrieved by granulosa cells and con-
verted to estradiol. The enzymes
responsible for these processes are
shown inside ovals. Theca cells express
LH receptors (LH_R) and respond to
LH released by the pituitary gland.
Similarly, granulosa cells have recep-
tors (FSH_R) for the pituitary hormone
FSH. FSH and LH release is regulated
by the hypothalamic hormone GnRH.



and progesterone levels drop, the corpus luteum dis-
solves through controlled cell death (apoptosis)
mechanisms, and the cycle is re-entered. More than
95% of the circulating estradiol comes from the dom-
inant (mature) follicle and the corpus luteum. Most
of the remaining amount is derived from estrone
conversion in tissues other than ovarian.

The process of follicle maturation, oocyte release, and
consequent formation of corpus luteum gives rise to a
variety of structures and cell types. Two cell types,
granulosa and theca cells, play a central role in ovarian
steroidogenesis (Figure 1).12 The granulosa cells reside
in the stratum granulosum of the mature follicle, and
are equipped with an estradiol-producing enzymatic
machinery. They also express FSH receptors on their
plasma membrane, and they are therefore sensitive to
FSH stimulation. The theca cells are located in a zone
(theca) that surrounds the granulosa-rich area. These
cells respond to LH (they express the appropriate
receptors) and convert cholesterol to progesterone and
androgens. According to the two-gonadotropin two-
cell model of estrogen production, the LH-responsive
theca cells produce androstenedione and testosterone,
with the cholesterol-to-pregnenolone conversion
being the rate-limiting step of the whole process. This
conversion depends on the enzyme p450SCC, whose
expression is positively regulated by LH. The theca-
produced androgens serve as substrates for estradiol
and estrone production by the granulosa cells. The
conversion of androgens to estrogens in these cells
depends on the enzyme aromatase, whose expression
is positively regulated by FSH during follicle growth.
After ovulation, androgen, estrogen and progesterone
production is sustained by the cells in the corpus
luteum, which are responsive to LH and express all
enzymes necessary for the above processes.

The estrogen production is not a simple linear
process starting from cholesterol and stopping to
estradiol. Instead, there are at least two positive and
one negative feedback responses. The negative feed-
back response comes from estradiol-dependent inhi-
bition of FSH actions, when estradiol levels are very
high. The two positive feedback loops involve estra-
diol (which promotes its own production as well as
progesterone’s production when present in low-to-
moderate amounts), and progesterone, which up-
regulates its own concentration.13

Perimenopausal Cycles and the Menopause

The number of ovarian premature follicles is fixed at
birth and gradually decreases each time follicles

mature and release oocytes. At perimenopause, the
follicular number has decreased substantially, and
those present respond poorly to FSH and LH, result-
ing in cycle irregularity and erratic ovulation.14 There
is gradual decrease in progesterone and estrogen, but
hormone fluctuations are common. This period can
last from 3-10 years before menopause. Irregular
menstrual cycles are the most common first sign of
perimenopause, along with increasing levels of FSH.
As the number of follicles keeps decreasing, estrogen
production continues to fall. At some point, the estro-
gen-based feedback mechanisms associated with LH
secretion are disrupted, leading to non-ovulatory
cycles. At the onset of menopause, when ovulation
ceases entirely, LH starts rising again.

Menopause is due mainly to declining ovarian func-
tion, as the pool of primordial follicles is exhausted.
The feedback control mechanisms of the hypothala-
mic-pituitary-ovarian axis are disrupted, leading to
increased levels of FSH, but with unchanged levels of
hypothalamic GnRH. Estradiol and progesterone
production is sharply reduced due to cessation of the
menstrual cycle and mature follicular development.15

The increased levels of FSH have no effect on estro-
gen production, because there is limited expression
of FSH receptors in the follicles, rendering them
insensitive to FSH. Ovarian steroidogenesis during
menopause is restricted to androgen production. It is
established that menopausal theca cells are respon-
sive to LH and produce androstenedione and testos-
terone. Most of the circulating androgens come from
the adrenal gland. During menopause, estrone is
exclusively produced at remote sites (mainly adipose
tissue) by the conversion of androstenedione. The
rate of this conversion correlates to body size
(amount of adipose tissue).

Introduction to Stochastic Activity Networks

Our interest in the quantitative evaluation of complex
biological processes such as the menstrual cycle
requires the need to develop flexible models that
enable accurate representation of the underlying bio-
logical pathways, through incorporation of only a lim-
ited amount of data. This ability is typically necessary
in dealing with biological pathways because of the
potential lack of complete information about all com-
ponents and their interactions, as well as limited
experimental observations, measured under a variety
of conditions and of varying potential quality.
Stochastic activity networks, a stochastic extension of
Petri nets, are appropriate for modeling such processes
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that can be viewed as discrete-event systems of proba-
bilistic nature. In this study, stochastic activity net-
works have been implemented using the UltraSAN
software environment, which allows for representa-
tion and modeling of biological pathways that can be
either simulated or solved analytically.16,17 The user’s
manual and information about how to retrieve the software
are available at www.crhc.uiuc.edu/UltraSAN.

We have previously evaluated the use and sensitivity
of this approach in studying the behavior of normal
and abnormal coagulation processes.10 UltraSAN was
originally developed as a tool for model-based per-
formance and dependability evaluation of computer
and communication systems, and was later used for
modeling purposes in biology and biomedical
research.9,10,18,19 The UltraSAN environment contains
five process elements: places, activities, gates, arcs
and tokens. Places appear graphically as circles and
represent the state of the modeled system. In terms of
biological pathway modeling, places correspond to
molecular species such as enzymes and hormones.
Places contain tokens that correspond to numbers of
molecules. The number of tokens defines the marking
of the place, which is always a discrete number.
Activities (hollow ovals) represent actions of the
modeled system that take a nondeterministic amount
of time to complete. The duration of the activities is
controlled by a probability distribution function,
which can depend on place markings. The activities
allow the flow of tokens from places that are con-
nected at their left side, to places connected to the
right. Gates (triangles) are distinguished in input and
output gates that include predicates and functions. In
specific, input predicates define the conditions upon
which the activities are enabled, and the functions of
both gate types determine the marking changes
occurring in places connected to activities, after these
activities complete. Arcs are used to connect the com-
ponents to one another in an orderly fashion.

As a stochastic activity network executes, it under-
goes state (marking) changes according to a marking
change algorithm. The steps for implementing this
algorithm are:

1. The predicates of the input gates and the mark-
ings of the places are examined.

2. Activities are enabled if the predicates of the con-
nected input gates are true, and only when there
is at least one token to each of the incoming con-
nected places. These conditions should be true
throughout the duration of the activity time for

the activity to complete. The order of priority
with which the activities are enabled and exe-
cuted, depends on their probability distribution
functions.

3. After activity completion, the connected input
places have their marking decremented.

4. All the input gate functions are executed.

5. All the connected output places have their mark-
ing incremented.

6. The functions of the connected output gates are
executed.

In the UltraSAN environment, the user monitors cer-
tain important parameters of the modeled system
(such as hormone concentrations or enzymatic activ-
ity) by declaring reward variables, which can relate
to place markings or activity durations. During ana-
lytical solution or simulation of the network,
UltraSAN estimates and provides the mean and vari-
ance for each reward variable over a period of time.

Modeling the Menstrual Cycle in Young,
Perimenopausal and Menopausal Women
The first step in modeling the menstrual cycle is to
represent the enzymatic pathway leading to proges-
terone and estrogen production. We performed a
thorough search of the literature in order to get accu-
rate information about the substrates and enzymes
involved in this pathway. We also used information
available at the KEGG pathway database <www.
genome.ad.jp/ kegg/pathway/map/map00150.html>.

After gathering the information, the initial objective
was to represent the estradiol and progesterone pro-
duction pathway in terms of stochastic activity net
methodology, and incorporate the information about
the FSH and LH contributions to the control of enzy-
matic activity (Figure 2). The enzymes and hormones
are represented as places (circles). Activities enable
the flow of tokens from substrate to product for each
reaction. They are enabled only when the input
places have more than zero tokens.

The default behavior in UltraSAN is to reduce the
tokens in the input places. Since this is not a desirable
behavior for enzymes (their concentration should not
be consumed), there is a gate next to each enzyme
place, ensuring non-consumption. For simplicity
purposes, pregnenolone and 17 alpha-hydroxylase
are not introduced as places in the model: they are
used to name activities instead. 
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All activities are chosen to have exponential proba-
bility distribution functions, with rates depending on
each occasion. The activities that control conversion
from one hormone to another have rates proportional
to the input enzyme levels.

According to the two-cell two-gonadotropin theory,
the rate-limiting step of the cholesterol-to-proges-
terone conversion is controlled by LH, and the con-
version of androstenedione to estradiol depends on
FSH. These control mechanisms are modeled by
introducing the place “LH” connected to p450SCC,
and the place “FSH” connected to aromatase. 

Normal Menstrual Cycle—Results

From what is known about the normal menstrual
cycle, it is evident that it is a discontinuous process. It
can be considered as a discrete event-driven system,
where the events determining the transitions from
state to state reflect ovarian processes such as follicle
growth, ovulation, luteal growth, and apoptosis. In
specific, the development of progesterone and estro-
gen production during the menstrual cycle can be
divided into four distinct periods of time correspon-
ding to the ovarian events mentioned above.

Stochastic activity network modeling allows the

introduction of input gates that control the transition
from one state to another through the use of predi-
cates. These predicates include statements referring
to specific time periods, and enable initiation and
completion of the appropriate activities, when their
conditions are satisfied. It is also necessary to con-
sider time as a separate “place” in the model, in order
to “inform” the input gates about what time point is
visited each time the stochastic activity net executes.
It is also helpful to introduce the activities named
“one,” “two,” and “three,” to ensure smooth transi-
tion from a time period to another by informing the
model which was the resulting state of the previously
visited time period.

The input gates in this model are defined with
respect to the four distinct time periods of the cycle.
The first time period extends from day 1 to day 12 of
the cycle, and involves progressive growth of the
maturing follicle in an FSH-dependent manner. This
growth results in the exponential increase of the
number of granulosa cells in the follicle, which pro-
duce aromatase, responsible for the conversion of
androgens to estradiol. This is reflected in the model,
by selecting an exponential probability distribution
function for the activity “up2,” with rate of the form:
N* (2^t) where N = number and t = time (Table 1).
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F i g u r e  2 Stochastic activity
network representation of the
estradiol and progesterone pro-
duction.



This activity controls the increase of aromatase con-
centration in response to FSH. 

During ovulation, the structure of the follicle is dis-
rupted and the oocyte is released. During this
process, the estradiol levels fall abruptly (day 13 to
day 15). The activity “down3” controls the down-reg-
ulation of aromatase during these cycle days, with
rate proportional to time (Table 1). 

After day 15, the residual follicular body is trans-
formed to the corpus luteum. The corpus luteum cells
start to produce increasing amounts of the enzyme
p450SCC as well as aromatase, resulting in a limited
increase in estradiol and a major increase in proges-
terone levels. Progesterone production depends on
LH, and is controlled by activity “up1” at an expo-
nential rate. Estradiol levels increase moderately and
soon achieve plateau levels. This behavior is accu-
rately modeled by introducing the activity “up3”
with rate of the form 2-N*exp(-t) where N = number
and t = time (Table 1).

At this time period another feature, involving feed-
back loops, is  added to the model. In particular, there

is a positive self-regulation mechanism involving
estradiol, and another one for progesterone. These
interactions are modeled by introducing feedback
circuits. These feedback interactions are modeled by
connecting estradiol and progesterone places directly
to enzymatic activities, and not indirectly, through
interaction with FSH and LH sub-circuits.

After day 20, the enzymatic activities of the corpus
luteum gradually dissipate, resulting in down-regu-
lation of both progesterone and estradiol levels. The
biological reason for this behavior is the triggering of
controlled death mechanisms (apoptosis) that lead to
gradual degradation of the corpus luteum structure
and function. The reduced enzymatic levels are mod-
eled by the routes “activity (down1)—place (apopto-
sis1)” for p450SCC, and “activity (down2)—place
(apoptosis2)” for aromatase.

The model has been initialized with 100 tokens in the
cholesterol place, in order to represent 100 percent of
the available cholesterol molecules in the system. The
model also starts with initial marking values for SCC
and aromatase enzymes, which represent basal levels
of enzymatic activity. Simulations were performed
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Table 1 ■

Modeling Parameters for the Stochastic Activity Network in Figure 2

Place Names Initial Markings Input Gates Predicates

androstenedione 0 it11 MARK(time)>12 && <19
aromatase 5 it12 MARK(time)>=19
apoptosis1,2 0 it21 MARK(time)<13
cholesterol 100 it22 MARK(time)>15 && <20
estradiol 0 it23 MARK(time)>=20
estrone 0 it24 MARK(time)>12 && <=15
FSH 100 feed1,2 MARK(time)>13
LH 100
progesterone 0
s_a,b,c 1
SCC 40
time GLOBAL_S(cycle_days)

Activity Names Rates

a_e 0.04* MARK(aromatase)
HSD 4
pregnenolone 0.2* MARK(SCC)
up1 0.5* pow(2, MARK(time) – 12)
up2 0.1* pow(2, 0.5* MARK(time))
up3 2 – 0.5* exp(–MARK(time) + 14)
down1 pow(2, 0.7* (MARK(time) – 18))
down2 0.1* pow(2, 0.7* (MARK(time) – 20))
down3 0.1* (MARK(time) – 12)
other1,2 0.2
one, two, three 1000



with the terminating simulator provided by
UltraSAN. Figures 3 and 4 (bottom panels) show the
estimated mean values of hormone levels for each
time point (cycle day). The results were validated by
comparison with data from hormone measurement
studies (Figures 3 and 4, upper panels). The plots of
the experimental data (hormone measurements)
were compiled by incorporating data points from
three different major studies.20-22

Data from the studies are given as pg/ml for estra-
diol and ng/ml for progesterone. Since the model
counts tokens that correspond to number of mole-

cules, values are considered in pmol/l and nmol/l in
order to compare the simulated against the experi-
mental data. In addition, the modeled data do not
provide any units such as pmol, so that the evalua-
tion of the data depends on relative changes between
time points.

To quantitatively compare the output of the simula-
tion to that of the experimental data, a root-mean-
squared deviation (rms) was computed after appro-
priate scaling was determined to account for the con-
version from “tokens” to ng/ml or pg/ml as appro-
priate. The resulting values are rms for the compari-
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F i g u r e  3 a Upper panel: Estradiol production during the
normal menstrual cycle derived by hormone measure-
ments. Bottom panel: Simulation of estradiol production
during the normal menstrual cycle using the stochastic
activity model. The scale differs from that of the experi-
mental data, because values are given in tokens. The rms
for the calculation is 1.78 ng/ml.

F i g u r e  3 b Upper panel: Progesterone production during
the normal menstrual cycle derived by hormone measure-
ments. Bottom panel: Simulation of progesterone production
during the normal menstrual cycle using the stochastic
activity model. The scale differs from that of the experi-
mental data, because values are given in tokens. The rms
for the calculation is 1.8 pg/ml.



son in Figure 3A is 1.78, for Figure 3B rms = 1.8, for
Figure 4A rms = 1.62, and for Figure 4B, 1.82. Given
all the above, we concluded that the simulated model
provides an accurate representation of the real data. 

Perimenopause and Menopause

Having the model of the normal menstrual cycle as a
starting point, we proceeded with the modeling and
simulation of the menstrual cycle during peri-
menopause (Figure 4). During perimenopause, both
estradiol and progesterone levels decrease. To

achieve these lower hormone levels, the rates of the
activities controlling the flow of tokens from the FSH
and LH places to aromatase and SCC respectively,
were lowered. Again, the simulation results closely
resemble the experimentally observed hormone
measurements of women in perimenopause.

In menopause, estradiol levels drop dramatically,
below basal levels, and stay there throughout the
cycle. The estradiol peaks around ovulation and
during the second half of the cycle do not exist, being
consistent with the lack of ovulation and the follicu-
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F i g u r e  4 b Upper panel: Progesterone production during
the perimenopausal menstrual cycle derived by hormone
measurements. Bottom panel: Simulation of progesterone
production during the perimenopausal menstrual cycle
using the stochastic activity model. The scale differs from
that of the experimental data, because values are given in
tokens. The rms for the calculation is 1.82 pg/ml.

F i g u r e  4 a Upper panel: Estradiol production during the
perimenopausal menstrual cycle derived by hormone
measurements. Bottom panel: Simulation of estradiol pro-
duction during the perimenopausal menstrual cycle using
the stochastic activity model. The scale differs from that of
the experimental data, because values are given in tokens.
The rms for the calculation is 1.62 ng/ml.



lar death in the menopausal ovaries (Figure 5, upper
panel). These observations are accurately modeled
here by drastically lowering the activity rates that
control aromatase and SCC up-regulation. 

Modeling Abnormal Physiological States

Our interest in modeling normal physiological
responses such as the menstrual cycle is to enable the
interpretation and analysis of pathophysiological
states such as changes that accompany menopause,
alterations in enzyme activities because of naturally
occurring polymorphisms, changes in gene expres-
sion or protein expression levels, or drug interactions
that present partial inhibition to specific enzymes in
the fundamental pathways. To test the suitability of
this approach, as had been previously done with
coagulation,10 we applied experimental observations
based on single nucleotide polymorphism data to
validate that the system would be sensitive to the
changes and produce an accurate representation of
the resulting physiological condition.

Single Nucleotide Polymorphisms

The stochastic activity network model of the men-
strual cycle described in this study allows introduc-
tion of information about reduced or increased enzy-
matic activity as result of single nucleotide polymor-
phisms found in the genes that encode for these
enzymes. The aromatase gene (CYP19) is extensively
studied and contains many SNPs, some of which are
related to pathogenesis of diseases. Most of the stud-
ies about SNPs in the CYP19 gene that are registered
in the OMIM database (<www.ncbi.nlm.nih.
gov/entrez/>, CYP19 accession number in OMIM:
107910), are related to disrupted function of the
enzyme.23,24 We performed simulation of estradiol
production by introducing perturbation to the model
equivalent to 75% loss of aromatase function (this
number is derived from studies measuring the activ-
ity of the mutated forms of the enzyme). The results
show major down-regulation of estradiol levels
(Figure 5, bottom panel). The peaks that are present
in the normal cycle do not occur, and the pattern
during the cycle is erratic, revealing non-ovulation
and impaired ovarian function. This is consistent
with studies using genetically engineered mice
having deleterious mutations in the aromatase gene,
and human subjects with hereditary diseases caused
by function-disrupting single mutations.23–25

Discussion

We have developed a staged approach to the repre-
sentation of key components of the female reproduc-
tive system for the purposes of establishing a base-
line model of the menstrual cycle. This approach uti-
lized stochastic activity network methodology based
on the UltraSan system and has established our abil-
ity to represent both normal system functions,
including typical menstrual cycle behavior both pre-
menopause and post-menopause. Key components
of the normal cycle include hormone level changes,
coincidence of hormone cycling, etc., which are fun-
damental to the physiological processes leading to
ovulation and pregnancy. These elements have been
shown to be consistent from experimental data to the
model presented above. In addition, we have shown
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F i g u r e  5 Upper panel: Simulation results for estradiol
levels in menopause over the period of one month. Bottom
panel: Simulation of estradiol levels corresponding to a
reduction of 75% of aromatase activity.



that the system is sensitive to changes that accom-
pany differences in the population, i.e., single
nucleotide polymorphisms, which present alterations
in the overall pathway behavior as well as differences
in response to environmental and lifestyle issues. We
are focused on identifying a number of key physio-
logical landmarks that can be incorporated into this
analysis26 as part of our ongoing study of the effects
of normal aging in the female reproductive system
and its association with risk for pre- and post-
menopausal disease. In particular, we will be using
this model to extend its interactions with additional
hormonal factors, e.g., inhibin, to further define the
detailed sensitivities of this system, an individual-
ized risk assessment for use in evaluating hormone
replacement therapy decisions and its association
with breast and ovarian cancer.

In this study we have used stochastic activity net-
works to represent and simulate the pathways under
study. We recognize that there are other methods for
accomplishing these computations, but have selected
this approach because of our observation that it is
robust in dealing with problems of the following clas-
sification: (1) limited experimental data about the
system response; (2) potential for incomplete infor-
mation about the full set of reactions within the path-
way; (3) lack of consistent experimental data on com-
ponent reactions by the same investigator and in the
same environment; (4) need to evaluate hypothesis
based on partial pathway information for compari-
son with observed pathway behavior and use in
rational design of experiments for clarification
and/or verification of prediction; and (5) ability to
construct pathway subgraphs and assemble into
larger composite pathways, e.g., coagulation plus
complement. Our experience in modeling coagula-
tion and now in modeling menopause suggest that
this method is appropriate but we have not yet tested
its limits. We will continue to survey alternative
methods as the systems we model become more com-
plex or exhibit other constraints that this approach
may reveal to be limiting toward its extension from
macroscopic modeling to a microscopic system such
as a biological pathway or process. We believe that
the integrated approach of systems-based modeling
with experimental observations and then validation
will be the key to the future integration of informat-
ics and genomics into the practice of medicine.
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