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Abstract
Adoptive T cell therapy (ACT) for the treatment of established cancers is actively being pursued
in clinical trials. However, poor in vivo persistence and maintenance of anti-tumor activity of
transferred T cells remain major problems. Transforming growth factor beta (TGFβ) is a potent
immunosuppressive cytokine that is often expressed at high levels within the tumor
microenvironment, potentially limiting T cell mediated anti-tumor activity. Here, we used a model
of autochthonous murine prostate cancer to evaluate the effect of cell intrinsic abrogation of TGFβ
signaling in self/tumor specific CD8 T cells used in ACT to target the tumor in situ. We found that
persistence and anti-tumor activity of adoptively transferred effector T cells deficient in TGFβ
signaling was significantly improved in the cancerous prostate. However, over time, despite
persistence in peripheral lymphoid organs, the numbers of transferred cells in the prostate
decreased and the residual prostate infiltrating T cells were no longer functional. These findings
reveal that TGFβ negatively regulates the accumulation and effector function of transferred self/
tumor specific CD8 T cells and highlight that, when targeting a tumor antigen that is also
expressed as a self-protein, additional substantive obstacles are operative within the tumor
microenvironment, potentially hampering the success of ACT for solid tumors.

Introduction
The recent FDA approval of two cancer immunotherapies, a vaccine (Sipuleucel-T) for
treatment of prostate cancer (1), and an anti-CTLA-4 blocking antibody (ipilimumab) for
treatment of metastatic melanoma (2), has highlighted the ability to modulate the immune
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system to attack tumors. An alternative therapeutic strategy, which is being actively pursued
in multiple clinical settings, is adoptive T cell therapy (ACT), in which tumor-reactive T
cells are generated and/or expanded ex vivo from T cells isolated from the blood or tumor of
cancer patients and then infused back into the patient (3). Although efficacy has clearly been
demonstrated (4–6), difficulty sustaining adequate numbers and function of tumor-reactive T
cells following transfer into patients has hindered success (7). This in part reflects
immunosuppressive tumor microenvironments, which can inhibit rather than stimulate
potentially effective anti-tumor T cell responses (8). Tumor cells can express inhibitory
ligands for T cells and recruit inhibitory cells, and both can secrete immunosuppressive
cytokines that render tumor-infiltrating lymphocytes (TILs) unresponsive or dysfunctional
(8). Furthermore, T cells isolated directly from the patient for use in ACT are often of only
low avidity, since most of the identified tumor antigens are self-proteins and endogenous
self/tumor specific T cells that bear high affinity TCRs are deleted in the thymus (9, 10).
However, one potential advantage of ACT over in vivo augmentation of endogenous
responses is the ability to genetically engineer T cells to improve function prior to infusion,
such as by expressing high affinity tumor-specific TCRs, abrogating T cell intrinsic negative
regulators, or disrupting inhibitory signaling pathways that may be engaged in the tumor
microenvironment (9, 11).

Transforming growth factor beta (TGFβ) is a pleiotropic cytokine that plays important roles
in maintaining normal tissue homeostasis and inhibiting autoimmune responses, and
depending on the context can promote or suppress tumor growth (12–17). The bioactive
form of TGFβ binds to the TGFβ-type I and TGFβ-type II serine/threonine kinase receptor
complexes, resulting in receptor mediated phosphorylation of downstream transcription
factors Smad 2 and Smad 3 (17). TGFβ signaling is anti-proliferative, causing G1 cell cycle
arrest in a variety of cell types, including epithelial and T cells (18, 19). Many tumors evade
the cytostatic and anti-proliferative effects of TGFβ by acquiring mutations in the TGFβ
receptor and/or downstream Smad signaling proteins (17). Activated T cells however,
express higher levels of the TGFβ receptor and can produce TGFβ (20, 21). Molecular
analysis of naïve CD8 T cells in vitro has revealed that TGFβ suppresses key molecules
involved in the effector and cytolytic activities of T cells, including expression of IFNγ
(22). Inhibition of TGFβ signaling by mechanisms such as neutralizing antibodies or kinase
inhibitors is being pursued in clinical trials (23), but significant therapeutic benefits have not
yet been reported. This may partly reflect failure to achieve full blockade of TGFβ,
particularly in tumor tissues. Moreover, administering these agents at doses high enough to
sustain full blockade may be too toxic. In the context of ACT, it would be possible to
selectively abrogate the potentially profound immunosuppressive activity of TGFβ only in
the T cells being used to target the tumor.

Prostate cancer is currently being pursued as a target for expanding applicability of T cell
mediated immunotherapy. In large part this reflects identification of immunogenic prostate-
restricted antigens that are expressed in malignant and normal prostate tissues but not other
tissues that might be potential targets of toxicity, and that can elicit cytolytic T cell
responses (24). However, TGFβ is present and necessary for normal prostate homeostasis,
and is found in increased levels in the malignant prostate (25, 26), which can pose a
substantive obstacle to T cell therapy of this tumor. Expression of a dominant negative form
of TGFβRII (DNR-TGFβRII) or abrogation of TGFβ production exclusively in T cells of
mice that develop autochthonous prostate cancer can delay tumor growth (21, 27),
suggesting TGFβ interferes with the development and/or expression of an endogenous
response. Studies in transplantable tumor models also demonstrated that TGFβ signaling
blockade improves the therapeutic efficacy of tumor-reactive T cells (28–30).
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Many tumor therapy studies have been performed using transplantable tumor cell lines, and
such models, while advancing the discovery and testing of tumor therapies, have limitations.
Injection of a large number of tumor cells is often necessary for successful implantation,
with many cells dying rapidly after injection, which can induce an immune response prior to
establishment of the tumor (31). More importantly, these tumors do not develop in the same
organ-specific environment of tumors that develop and grow in situ. Autochthonous tumor
models, in which the tumor develops “spontaneously” usually from enforced expression of a
driver oncogene, also have some limitations, but do allow study of tumors derived from the
organ of origin that develop over months in the context of a normal host immune system.
Therefore, we used the Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP)
mouse, which expresses the SV40 T antigen under the prostate-specific probasin promoter,
resulting in spontaneously arising prostate adenocarcinoma (32). The pathogenesis of
prostate cancer in these mice has been well studied and models many aspects of human
prostate cancer, including development of prostate intraepithelial neoplasia by 12 weeks of
age and progression through distinct histological stages of adenocarcinoma (33, 34). We
crossed these mice with the Probasin Ovalbumin Expressing Transgenic (POET1) mice,
which express a membrane bound form of the model antigen ovalbumin (OVA) driven by
the prostate-specific ARR2PB rat probasin promoter (35). TRAMPxPOET1 mice, denoted
TRAMPOVA, express a targetable self/tumor antigen (OVA) in the context of a
spontaneously arising prostate cancer. The use of OVA as a model self/tumor antigen
allowed analysis of the efficacy in ACT of high affinity OVA-specific CD8 T cells, derived
from OTI TCR transgenic mice (36), and of targeting a prostatic self-antigen with T cells in
which TGFβ signaling has been abrogated to overcome a potentially substantive obstacle to
antitumor activity in the environment of a cancerous prostate gland.

Materials and Methods
Mice

TRAMP mice (32) and were obtained from N. Greenberg (Fred Hutchinson Cancer
Research Center (FHCRC), Seattle, WA). POET mice (35) and were obtained from T.
Ratliff (Purdue University, West Lafayette, IN). TGFβRIIFlx/Flx mice were provided by D.
Dichek (University of Washington (UW), Seattle, WA) with permission from S. Karlsson
(Lund University, Lund, Sweden) (12). Distal Lck-Cre (d-lckCre) mice (37), which express
Cre recombinase under control of the distal Lck promoter, were provided by P. Fink (UW,
Seattle, WA) with permission from N. Killeen (University of California, San Francisco,
CA). OTI TCR transgenic mice (36) containing CD8 T cells specific for the
immunodominant epitope (SIINFEKL) of ovalbumin (OVA), were a gift from M. Bevan
(UW, Seattle, WA). Ly5.1 mice were purchased from The Jackson Laboratory (Bar Harbor,
ME). To generate prostate cancer mice expressing a targetable self/tumor antigen,
TRAMP+/+ male mice were crossed to female POET1

+/− to generate to generate F1 mice
hemizygous for the SV40 transgene and OVA expression (TRAMPOVA), and littermates
expressing SV40 transgene only (TRAMP). All TRAMPOVA and TRAMP mice used were
between 25–27 weeks of age, at which time all mice have high grade neoplasia (34). To
generate OVA specific TGFβRII deficient mice (TGFβRII KO), mice expressing floxed
TGFβRII genes (TGFβRIIFlx/Flx) were first bred to d-lckCRE mice or OTILy5.1 mice. The
F1 offspring were bred together to produce mice harboring OTILy5.1 CD8 T cells with a
conditional deletion of TGFβRII in mature CD8 T cells (OTILy5.1×TGFβRIIFlx/Flx×d-
lckCRE). OTILy5.1×TGFβRIIFlx/Flx littermates were used as WT donors. All mice were
maintained under specific pathogen-free conditions at the UW under the guidelines of the
Institutional Animal Use and Care Committee.
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Peptide
SIINFEKL peptide was synthesized by the Immune Monitoring Lab at FHCRC (Seattle,
WA). Peptide was reconstituted in 100% DMSO at 10mg/ml and stored at −20°C.

Cell isolation
Mice were euthanized by cervical dislocation. Spleens were mechanically disrupted with the
back of a 3mL syringe, filtered through a 70 µm strainer and red blood cells lysed with
ammonium chloride potassium buffer. Cells were washed twice with complete RPMI media
(RPMI 1640 supplemented with 2 µM glutamine, 100U/ml penicillin/streptomycin and 10%
fetal calf serum). Prostate draining lymph nodes (peri-aortic; PDN) were dissociated with
microscope slides. Prostate lobes were microdissected and weighed. Individual lobes were
divided in half, with half used for histology and half digested with collagenase D (Roche)
and DNAse I (Fermenta) for 1 hour at 37°C. Digested tissue was mechanically disrupted
through a 40 µm strainer.

In vitro activation and adoptive transfer
Single cell suspensions were generated from spleens of OTILy5.1 WT and OTILy5.1

TGFβRII KO mice. CD4 and B cells were depleted using αCD4 and αB220 DynaBeads
(Invitrogen). Remaining cells were co-cultured with irradiated (3000 rads) congenic
splenocytes pulsed with SIINFEKL (10−1 µg/ml) at a 1:5 ratio and 25 U/mL human
recombinant interleukin 2 (IL2, National Institute of Allergy and Infectious Diseases) in
complete RPMI media. On day 5, OTI cells, which express the TCR chains Vα2 and Vβ5,
were quantitated based on cell count and percent of 7AAD−CD8+Vα2+Vβ5+ cells by flow
cytometry. Cells were washed twice with HBSS prior to injection of 5–7×106 OTI cells into
the lateral tail vein of mice at a volume of 0.2mL.

Flow cytometry
All single cell suspensions were washed with staining buffer (PBS + 1% fetal calf serum)
prior to phenotypic and functional characterization. The following antibodies were
purchased from eBiosciences: CD8α, Ly5.1, IFNγ, TNFα, and PD-1. Surface staining was
done at 4°C in staining buffer. Ki-67 (BD Biosciences) and Bim (Cell Signaling) staining
was performed using the eBiocience fixation/permeabilization buffer kit per manufacturer’s
instructions. Briefly, following surface staining with CD8 and Ly5.1 antibodies, cells were
fixed, permeabilized and stained with antibody to Ki-67 and Bim. A secondary PE-anti-
rabbit Fab2 fragment (Invitrogen) was used to detect Bim. Intracellular cytokine staining
was performed using the Cyofix/Cytoperm Plus kit (BD Biosciences) per manufacturer’s
instructions. Briefly, single cell suspensions from spleen, lymph node, and prostate were
stimulated directly ex vivo for 5 hours with 10−1 µg/ml SIINFEKL peptide and congenic
(Ly5.2+) splenocytes in the presence of Brefeldin A. Following surface staining with CD8
and Ly5.1, cells were fixed, permeabilized and stained with antibodies to IFNγ and TNFα.
Flow cytometric analysis was performed using FACSCanto and LSRII at the Cell Analysis
Facility, Department of Immunology, UW. Flow data was analyzed with FlowJo8.8.7 (Tree
Star, Inc, Ashland, OR).

Prostate histology and immunohistochemistry
For hematoxylin and eosin (H&E) staining, microdissected prostate lobes were fixed in 4%
paraformaldehyde then stored in 70% ethanol until processed by the Experimental
Histopathology core at the FHCRC, Seattle, WA. Histologic sections were evaluated by a
comparative medicine pathologist blinded to group assignments. Images were captured
using a Nikon Eclipse 80i microscope with DS-Fi1 digital camera and NIS Elements
software.
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For immunofluorescence staining, microdissected prostate lobes were frozen in optimal
cutting temperature (Sakura). Seven µM frozen prostate sections were cut on a cryostat.
Sections were fixed with ice-cold acetone and blocked with PBS + 1% goat serum prior to
staining. Primary antibodies included: Ly5.1-PE (eBioscience), rat anti-mouse PD-L1
(eBioscience), MHC Class I-PE (eBioscience) and rat IgG2a isotype control (eBioscience).
When required, secondary goat anti-rat-alexa fluor 488 (Invitrogen) was used. All slides
were counterstained with DAPI (Invitrogen). Slides were analyzed on a Leica fluorescence
microscope, and photographic images captured with an Orca-ER digital camera and
assembled into RGB images with Image J and Adobe Photoshop.

Antibody blockade treatment
Monoclonal αPD-1 (29F.1A12) (38), αPD-L1 (10F.9G2) (39) and αPD-L2, (3.2) (40)
antibodies were provided by G. Freeman (Harvard Medical School, Boston, MA). To assure
adequate blockade, the timing and dose of administration of these antibodies established for
each individual antibody (41) was used. 200 µg of each blocking antibody was injected i.p.
into recipient mice starting on the day of T cell transfer and continued every 3 days until
mice were euthanized.

Statistical Analysis
Bar graphs are displayed as mean ± SEM. Statistical analyses were performed with Prism
version 5.0, GraphPad Software, using unpaired two-tailed Student t tests. A p value of
<0.05 was considered statistically significant.

Results
Abrogation of TGFβ signaling increases the accumulation of transferred prostate self/
tumor antigen-specific CD8 T cells

To investigate the T cell intrinsic role of TGFβ in the setting of ACT of prostate cancer, we
transferred 5–7×106 in vitro activated OTI WT and TGFβRII KO CD8 T cells into tumor
bearing 25–27 week old TRAMPOVA and TRAMP males. We first assessed if abrogating
TGFβ signaling affected expansion of the transferred cells and found a significantly
increased accumulation of TGFβRII KO cells compared to WT cells in the spleen, PDN and
prostate of TRAMPOVA mice 1 week post transfer (Fig. 1A). To account for potential
differences in prostate size, cells/gram of prostate tissue was also calculated, and a similar
increase of TGFβRII KO cells was observed. To determine if the preferential accumulation
of TGFβRII KO cells was antigen-specific, WT and TGFβRII KO cells were also
transferred into TRAMP hosts (which do not express OVA in the prostate). Significantly
less TGFβRII KO cells were detected in the PDN and prostate of TRAMP mice compared to
TRAMPOVA mice (Fig. 1A), and there was no significant difference between the numbers of
WT cells in TRAMPOVA compared to TRAMP mice or between the numbers of WT and
TGFβRII KO cells in any of the tissues examined in TRAMP mice. This data suggests cell
intrinsic TGFβ signaling negatively impacts the accumulation of prostate self/tumor antigen-
specific CD8 T cells in the context of responding to self-antigen.

The increased accumulation of TGFβRII KO cells could be a result of increased
proliferation, as TGFβ signaling can inhibit cellular proliferation (17). Intracellular staining
of WT and TGFβRII KO cells directly ex vivo for the proliferation marker, Ki-67 revealed
that significantly increased numbers of TGFβRII KO cells expressing Ki-67+ in the spleen,
PDN and prostate of TRAMPOVA mice (Fig. 1B). The enhanced proliferation was largely
antigen-specific, as Ki-67 expression was greatly reduced in all transferred cells isolated
from TRAMP mice, indicating that antigen exposure induced transferred cells to remain
cycling for at least 1 week (Fig. 1C). The increased percentage of Ki-67+ WT cells in
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TRAMPOVA mice compared to TRAMP mice despite the failure to accumulate suggested
that WT cells in TRAMPOVA mice may have a higher rate of apoptosis. TGFβ signaling
upregulates the BH-3 only pro-apoptotic protein Bcl-2-interacting mediator of cell death
(Bim) (42, 43), and a higher percentage of TGFβRII KO cells were Bimlow compared to WT
cells in all organs examined in TRAMPOVA mice, especially in the proliferating (Ki-67+)
population (Fig. 1D), whereas no differences between WT and TGFβRII KO cells were
observed in TRAMP mice. These results suggest abrogation of TGFβ signaling increases the
accumulation of prostate self/tumor antigen-specific CD8 T cells in part through increased
proliferation and in part through reduced apoptosis by decreasing expression of pro-
apoptotic proteins.

Abrogation of TGFβ signaling increases the effector function of transferred prostate
tumor/self antigen-specific CD8 T cells

The ability of tumor-specific CD8 T cells to produce effector cytokines is critical for tumor
regression (44, 45). Therefore, transferred T cells were harvested at 1 week post transfer,
stimulated for 5 hours ex vivo with SIINFEKL peptide, and analyzed for cytokine
production by intracellular staining. Abrogation of TGFβ signaling significantly increased
the percentage and number of transferred cells capable of co-producing IFNγ and TNFα in
the prostate and PDN (Fig. 2A–C). However, TGFβRII KO cells in the prostate of
TRAMPOVA mice exhibited attenuated cytokine production compared to TGFβRII KO cells
in the spleen, suggesting an additional TGFβ independent, organ-specific suppression of
cellular function in the prostate (p=0.0018).

This functional impairment in the prostate was antigen-specific, as there was no significant
difference in cytokine production between transferred WT and TGFβRII KO cells in any of
the organs examined in TRAMP mice. However, decreased percentages of WT and
TGFβRII KO cells from TRAMPOVA PDN compared to TRAMP produced cytokines (for
WT p=0.0018, for KO p=0.0020) and significantly decreased percentage of TGFβRII KO
cells from the prostate of TRAMPOVA compared to TRAMP mice co-produced IFNγ and
TNFα (p=0.006). These results indicate that at least a component of the functional defect in
cytokine production is antigen-specific, that abrogation of TGFβ signaling partially rescues
the defect, and that the observed dysfunction of prostate self/tumor antigen T cells is organ-
specific and rapidly induced.

T cells deficient in TGFβ signaling mediate increased cellular infiltration and focal
epithelial disruption in the prostates of TRAMPOVA mice

We examined tissue sections of the prostate to determine if the increased numbers and
effector function of TGFβRII KO cells compared to WT cells led to increased destruction/
damage to the prostate tumors. Mice were euthanized at 1 week post-transfer, and the
prostate lobes micro-dissected and either processed for H&E staining or frozen for
immunofluorescence staining. The prostates of TRAMPOVA mice that received WT cells
showed intact glandular and tumor epithelium with few apoptotic bodies and little evidence
of cellular infiltrates in the epithelium or the fibromuscular stroma (Fig. 2D). In contrast,
prostates from TRAMPOVA mice receiving TGFβRII KO cells had increased cellular
infiltrates in the fibromuscular stroma, including both the interstitium and smooth muscle
layer surrounding the glands, and evidence of epithelial disruption with areas of focal
necrosis within the gland (Fig. 2D). The infiltrates contained adoptively transferred T cells,
as immuno-histochemical staining of frozen prostate sections revealed increased Ly5.1+

cells in prostate glands of mice receiving TGFβRII KO cells compared to WT cells (Fig.
2E).
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Despite evidence of increased anti-tumor activity in TRAMPOVA mice treated with TGFβRII
KO cells, prostatic inflammation was not sustained

To determine if transfer of WT or TGFβRII KO cells affected tumor burden, prostates of
treated mice were harvested 3 weeks post T cell transfer and weighed, with prostate weight
used as a surrogate for tumor burden, as described (33). There was a small, but statistically
significant, decrease in the prostate weight of TRAMPOVA mice receiving TGFβRII KO
cells compared to mice receiving WT cells (Fig. 3A). However, histology specimens
obtained 3 weeks post transfer showed few cellular infiltrates in the interstitium, no
significant infiltration of mononuclear cells in the smooth muscle or gland, and no epithelial
destruction in TRAMPOVA mice receiving WT or TGFβRII KO cells (Fig. 3B). Despite the
decrease in prostate weight, neoplasia was still present in mice treated with TGFβRII KO
cells. Thus, the increased infiltration of TGFβRII KO cells and anti-tumor activity observed
at 1 week post-transfer in TRAMPOVA prostates was transient, and not sufficient for
persistent therapeutic efficacy.

Increased accumulation of TGFβRII KO prostate-specific T cells is sustained in the
peripheral lymphoid organs but not in the prostate

The limited efficacy suggested transferred T cells did not persist and/or became
dysfunctional, obstacles also encountered in human ACT (7). To determine if the enhanced
accumulation and function of TGFβRII KO cells evident at week 1 was maintained, mice
were examined at week 3 post-T cell transfer. No significant differences in accumulation,
proliferation or effector functions were observed between WT and TGFβRII KO cells in the
prostate (Fig. 4). In contrast, increased numbers of TGFβRII KO cells compared to WT cells
were still demonstrable in the spleen and PDN of TRAMPOVA mice (Fig. 4A), and there
was no significant change in the number of TGFβRII KO cells in the spleen and PDN of
TRAMPOVA mice at week 3 compared to week 1 (spleenwk 1: 5.4×105 cells, spleenwk 3:
2.8×106 cells, p = 0.1682; and PDNwk 1: 2×105 cells, PDNwk 3: 8.1×105 cells, p = 0.1765).
Analysis of proliferation by staining for Ki-67 revealed that only in the PDN did a higher
percentage of TGFβRII KO cells express Ki-67 compared to WT cells or to TGFβRII KO
cells in TRAMP hosts (Fig. 4B). Similar to week 1, a higher percentage of TGFβRII KO
cells were Ki-67+ Bimlow compared to WT cells in TRAMPOVA mice, but a higher fraction
of TGFβRII KO cells were now Bimhigh compared to week 1 (Fig. 4C). Thus, TGFβ
signaling prevents accumulation of prostate-specific cells in peripheral lymphoid organs, but
additional factors beyond TGFβ signaling appear to contribute to the lack of persistence of
prostate infiltrating cells.

By week 3 post transfer, prostate-infiltrating TGFβRII KO cells were also severely
attenuated in effector cytokine production and increased dual-cytokine producing TGFβRII
KO cells compared to WT cells were no longer detected in the prostate (Fig. 4D–F).
Increased numbers of IFNγ+TNFα+ TGFβRII KO cells were still present in the spleen and
PDN compared to WT cells (we were unable to recover sufficient numbers of WT cells from
the PDN of TRAMPOVA mice at 3 weeks to analyze cytokine production) (Fig. 4F). WT and
TGFβRII KO cells were also transferred into TRAMP mice and analyzed for cytokine
production, revealing 2 important findings. First, similar to week 1 post-transfer, the
majority of transferred cells recovered from TRAMP mice at week 3 post-transfer produced
both cytokines (Fig. 2B, Fig. 4E), suggesting the decreased cytokine production by
transferred cells in TRAMPOVA mice was due to persistent cognate antigen recognition.
Second, both TGFβRII KO cells and WT cells isolated from the prostate showed a
decreased ability to produce cytokines compared to transferred cells isolated from the spleen
(TGFβRII KO cells p = 0.1446; WT cells p = 0.0370), suggesting factors within the prostate
tumor microenvironment impacts the activity of these cells in an antigen-independent
manner. Thus, despite persistence of TGFβRII KO cells in the periphery of TRAMPOVA
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mice, by week 3 TGFβRII KO cells no longer accumulate in the prostate and are severely
attenuated in effector function.

TRAMPOVA prostate tumors express MHC Class I and maintain expression following
adoptive transfer

MHC Class I expression is necessary for target cell destruction, sustained infiltration, and
retention of CD8 lymphocytes in tissues (46), and tumor cells can down-regulate MHC
Class I expression as a form of immune evasion (47). Although MHC Class I expression is
not readily detectable on normal B6 prostate cells, it has been shown to be up-regulated in
TRAMP prostate tumors (48). To determine if TRAMP prostate tumors maintained MHC
Class I expression following cell transfer, we stained frozen prostate sections before and
after transfer of WT or TGFβRII KO cells with anti-MHC Class I antibody, and found
sustained Class I expression with no detectable change in TRAMPOVA prostates following
therapy (Supplementary Figure 1).

Persisting transferred TGFβRII KO T cells express PD-1 and TRAMPOVA prostates express
the ligand, PD-L1

The failure of prostate-infiltrating TGFβRII KO cells to mediate continued significant
prostate tumor damage, in addition to the decrease in proliferation and attenuation of
effector cytokine production observed by week 3, suggested the transferred T cells might
become functionally exhausted. Chronic antigen exposure can lead to T cell exhaustion (49,
50), which is characterized by a progressive hierarchical loss of CD8 T cell functions.
Generally, the ability to produce IL2, maintain a high proliferative capacity, and kill targets
ex vivo are lost first, followed by loss of TNFα production and partial loss of IFNγ
production, then complete loss of IFNγ production, and eventually cell death (51, 52).
Programmed death 1 (PD-1), an inhibitory co-receptor up-regulated in many settings of T
cell exhaustion, has been reported to be expressed on human prostate tumor infiltrating CD8
T cells (53). At 1 week post-transfer, WT cells expressed higher levels of PD-1 in the PDN
and prostate of TRAMPOVA mice than TRAMP mice (Fig. 5A). Abrogation of TGFβ
signaling resulted in lower PD-1 expression at 1 week on transferred cells in the prostate and
PDN of TRAMPOVA mice. However, at week 3 post-transfer, both TGFβRII KO and WT
cells expressed high levels of PD-1 in the PDN and prostate of TRAMPOVA mice. This
pattern of PD-1 expression correlated with the severity of the observed functional defect,
suggesting PD-1 signaling may be inhibiting anti-tumor activity in the prostate, and that the
defects in the prostate and PDN may reflect in part consequences of continued antigen
recognition. There are currently 2 known ligands for PD-1, PD-1 ligand 1 (PD-L1; B7-H1)
and PD-1 ligand 2 (PD-L2; B7-DC) (54). PD-L1 is up-regulated on many human tumors,
including prostate cancer (55), and high PD-L1 expression in some tumor tissues correlates
with a decrease in CD8 T cell infiltrates (54). Analysis of frozen TRAMPOVA prostates 3
weeks post-transfer of TGFβRII KO cells revealed PD-L1 was expressed on prostate
epithelium (Fig. 5B).

Blockade of PD-1 signaling does not further improve anti-tumor activity of TGFβRII
deficient cells

PD-1 blockade has enhanced anti-tumor activity in transplantable tumor models (56, 57) and
recently phase I human clinical trials of PD-1 blockade in cancer patients have demonstrated
anti-tumor activity for certain cancers (58–61). However, in the TRAMP model, despite
increased PD-1 expression on prostate-specific CD8 T cells, breeding TRAMP mice onto a
PD-L1−/− background was reported to not prevent tolerization of prostate-specific CD8 T
cells (62). Since PD-1 may signal through interactions with other known ligands, such as
PD-L2, or unidentified ligands, we examined if blockade of PD-1 signaling in TGFβRII KO
cells with a combination of PD-1, PD-L1 and PD-L2 blocking antibodies could promote
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more persistent and effective anti-tumor activity. In vitro activated TGFβRII KO cells were
transferred into TRAMPOVA hosts, and cohorts of mice received either 200µg of each
blocking antibody or PBS i.p. every 3rd day, starting on the day of T cell transfer. Mice were
euthanized 3 weeks following treatment and assayed for T cell function and tumor burden.
No significant differences were found between the numbers or function, as reflected by
cytokine production, of TGFβRII KO cells in the spleen, PDN or prostate in mice that
received the blocking antibody cocktail or control PBS (Fig. 5C–D). Prostates were also
weighed and examined histologically, and no significant differences were detected (data not
shown). As this could reflect limitations to these Abs effectively penetrating in situ tumor
sites, we stained recovered TGFβRII KO cells with a secondary antibody to the IgG isotype
of the blocking PD-1 antibody, and detected Ab bound to transferred T cells in the PDN and
prostates of TRAMPOVA but not TRAMP mice (data not shown). These results suggest that,
despite expression of PD-1 on transferred TGFβRII KO cells, and expression of PD-L1 on
prostate tumor cells, antibody blockade of PD-1 signaling is not adequate to significantly
synergize with the enhancement initially achieved by blockade of TGFβ signaling, implying
additional inhibitory pathways are operative in the environment of prostate cancers.

Discussion
ACT is being actively pursued in clinical trials to treat malignancies, with successes
reported in some cancers (4–6), but, even for tumors with identifiable tumor target antigens,
substantive obstacles to broad applicability and the achievement of predictable and
reproducible benefits remain. In this study we investigated if cell intrinsic abrogation of
TGFβRII signaling in self/tumor antigen specific CD8 T cells could enhance the efficacy of
in vitro activated effector T cells in ACT of prostate cancer, using an autochthonous model
of murine prostate cancer that replicates many characteristics of human disease. The small
but significant decrease in the prostate weight of TRAMPOVA mice receiving TGFβRII KO
cells compared to mice receiving WT cells at 3 weeks post transfer was consistent with
enhanced anti-tumor activity. However, unlike some transplantable models in which TGFβR
blockade in tumor-reactive T cells resulted in complete elimination of the tumor (29, 30),
anti-tumor activity in the TRAMP model was not sustained, suggesting additional barriers
are present for targeting a tumor in situ.

Lack of persistence and failure to maintain in vivo anti-tumor activity following T cell
transfer are frequent problems in clinical ACT targeting established tumors (7). We
demonstrated that abrogation of TGFβ signaling was adequate to numerically sustain
transferred T cells in distal secondary lymphoid organs, but additional immunosuppressive
factors operative within the prostate and possibly PDN eventually rendered cells remaining
at these sites dysfunctional. Although transferred cells in the PDN and prostate upregulated
the inhibitory receptor, PD-1, antibody blockade of PD-1 signaling failed to significantly
synergize with abrogation of TGFβ signaling, with no evidence of maintenance or
restoration of anti-tumor activity detectable at 3 weeks post-T cell transfer. Analysis of the
successful PD-1 blockade studies performed in the setting of chronic lymphocytic
choriomeningitis virus (LCMV) infection revealed that PD-L1 blockade selectively restored
the function of PD-1int but not PD-1hi LCMV-specific CD8 T cells (63). It appears likely
that the transferred cells in our model resemble the PD-1hi LCMV-specific CD8 T cell
subset. The reason for lack of efficacy with this subset is not likely due to insufficient
blockade but rather that additional inhibitory receptors, such as CTLA-4 (64), LAG3 (65),
TIM-3 (56) and/or 2B4 (66), may be simultaneously expressed and limiting T cell function.
In fact, we found LAG3 expressed at increased levels at 3 weeks post-transfer on TGFβRII
KO cells in the prostate and PDN but not the spleen of TRAMPOVA mice compared to
TRAMP mice (data not shown). Temporary restoration of cytotoxicity of endogenous
prostate-specific CD8 T cells following αLAG3 treatment and vaccination has been reported
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(65). However, whether blockade can augment the benefits of TGFβR disruption and/or
synergize with other blocking reagents for treatment of in situ tumors remains unknown.

The context in which a T cell encounters antigen influences function and differentiation state
(67). Thus, many additional events may be contributing to the failure of transferred effector
cells to maintain function while targeting a prostate tumor. First, since a self-antigen is being
targeted, transferred cells are likely encountering antigen not only on tumor cells but also
normal prostate cells and/or dendritic cells (DCs) presenting the peptide in a tolerogenic
context. Chronic antigen stimulation alone can induce T cell exhaustion (49, 50), and in
some settings this exhaustion is not rescued by PD-1 blockade (50), as may be occurring in
the prostate. Studies in the chronic LCMV infection model have also demonstrated that cell-
intrinsic TGFβ blockade can lead to increased numbers of LCMV-specific CD8 T cells and
promote clearance of chronic LCMV, but, in experimental conditions in which the viral
antigen is not cleared, the TGFβR-deficient T cells also become functionally exhausted (43).
Second, tumor associated DCs (TADCs) have been identified in TRAMP prostate tumors
and can directly suppress naïve prostate-specific CD8 T cells (68), therefore, it is possible
continuous encounters by transferred self/tumor-specific effector T cells with TADCs in the
prostate prevent sustained anti-tumor activity. DC vaccines may transiently augment and/or
restore the activity of prostate infiltrating T cells (69–71).

Additional cell extrinsic factors may also contribute to the immunosuppressive tumor
environment, including Foxp3+ regulatory T cells (Tregs). Similar to published studies (72),
we found increased numbers of CD4+Foxp3+ cells in 25 week-old TRAMPOVA prostates
compared to healthy age-matched male mice. To test if Foxp3+ Tregs play a dominant role
in suppressing adoptively transferred effectors, we bred TRAMPOVA mice to Foxp3DTR

mice (73). In preliminary studies utilizing the TRAMPOVA×Foxp3DTR mice, in which near
complete ablation of Foxp3+ T cells (>97%) can be achieved, no enhanced infiltration or
cytokine production by transferred TGFβRII KO cells in the prostates of TRAMPOVA mice
was observed (data not shown). Moreover, these Treg-depleted mice developed systemic
autoimmunity, as previously reported (73), affirming the inherent difficulties associated with
pursuing effective global depletion of Tregs as a therapeutic strategy for treating tumors.

Our findings have implications for human adoptive therapy. We found increased function of
both WT and TGFβRII KO cells in the spleen and PDN compared to the prostate. The
greater dysfunction at the site where the activity is actually required highlights the
importance of analyzing intra-tumoral T cells when assessing the function of T cells
targeting an established tumor. Evidence supporting this conclusion has also been provided
in studies of melanoma patients, in which tumor infiltrating lymphocytes in metastatic
lesions can exhibit an exhausted profile whereas T cells of the same specificity in the blood
are functional (74).

These studies are the first to assess the effect of cell-intrinsic abrogation of TGFβRII
signaling in self/tumor specific CD8 T cells in the context of ACT for a spontaneous solid
cancer. The initial increase in accumulation of TGFβRII KO prostate-specific T cells and
delay in loss of anti-tumor activity in the prostate does offer a window of opportunity for
additional interventional therapies that could potentially result in synergistic anti-tumor
activity before T cells become functionally impaired. Adjunctive therapies, such as radiation
or chemotherapy, can augment anti-tumor activity of prostate-specific T cells (71, 75, 76).
We recently demonstrated that lymphopenia-induced proliferation could transiently restore
the function of tolerant T cells (77). These data together suggest that lymphodepletion of
TRAMP mice may synergize with abrogation of TGFβRII to increase therapeutic efficacy.
Additionally, identifying and targeting tumor-specific antigens not expressed by normal
cells may circumvent or delay functional exhaustion by reducing the extent of persistent
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antigen stimulation. However, while some unique tumor-specific epitopes have been
discovered in select tumors, tumor-specific antigens are often unique to each patient and the
majority of antigens being targeted in clinical trials, including all known targetable prostate
cancer antigens, are self-antigens (24, 78–80).

In conclusion, our results highlight some of the obstacles to ACT for solid tumors, and
emphasize the need for testing potential ACT strategies in preclinical models that emulate
the development and environment of tumors to identify and address potential pitfalls. The
nature and relative importance of particular immunosuppressive mechanisms may vary with
different tumor types, and a more complete analysis of the individual obstacles will likely be
invaluable for designing combinatorial strategies to target selected tumors with T cells.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Increased accumulation of TGFβRII deficient prostate self/tumor antigen specific CD8
effector T cells in TRAMPOVA mice
(A) 5–7×106 effector WT or TGFβRII KO cells were transferred i.v. into 25–27 week old
TRAMPOVA and TRAMP hosts. Mice were euthanized 1 week post transfer and spleen,
PDN and prostates were analyzed. (A) Cell numbers were quantitated based on total cell
counts and percent of CD8+Ly5.1+ cells from flow cytometric analysis. For the prostate,
numbers of transferred cells/gram of tissue is also shown. No significant differences were
detected between WT and TGFβRII KO cells from each organ in TRAMP mice. (B)
Numbers of CD8+Ly5.1+Ki-67+ WT and TGFβRII KO cells isolated from various organs in
TRAMPOVA mice (C). Percent of transferred T cells expressing Ki-67 in the spleen, PDN
and prostate of TRAMPOVA and TRAMP mice. No significant differences were detected
between WT and TGFβRII KO cells from each organ in TRAMP mice. (A–C) Data
represents pooled results from at least 3 independent experiments (n=2–3 mice/group/
experiment for TRAMPOVA hosts and n=1–2 mice/group/experiment for TRAMP hosts).
Bar graphs include mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 (unpaired Student’s t
test). (D) Representative flow plots of Ki-67 and Bim expression by transferred cells
isolated from TRAMPOVA and TRAMP mice. Plots are gated on CD8+Ly5.1+ cells. Results
from 2 independent experiments.
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Figure 2. Transferred TGFβRII KO CD8 effector T cells exhibit enhanced effector function,
show increased cellular infiltration and mediate epithelial damage in the prostate
Mice were euthanized 1 week post adoptive T cell transfer (same experimental protocol as
Figure 1). (A–C) Intracellular IFNγ and TNFα expression by transferred WT and TGFβRII
KO cells from spleen, PDN and prostate of TRAMPOVA mice following 5 hour ex vivo
stimulation with SIINFEKL peptide. Plots are gated on CD8+Ly5.1+ cells. (A)
Representative flow plots of cytokine production by transferred WT and TGFβRII KO cells.
Numbers represent percent of gated cells in each quadrant. (B) Percentage of transferred WT
and TGFβRII KO cells exhibiting the ability to co-produce both TNFα and IFNγ. No
significant differences between WT and TGFβRII KO cells from each organ in TRAMP
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mice. (C) Numbers of cytokine producing WT and TGFβRII KO cells in TRAMPOVA mice.
(A–C) Data represents pooled results from at least 3 independent experiments (n=2–3 mice/
group for TRAMPOVA hosts and n=1–2 mice/group for TRAMP hosts). Bar graphs include
mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 (unpaired Student’s t test). (D–E) Prostate
lobes from TRAMPOVA mice receiving either WT or TGFβRII KO cells were micro-
dissected and processed for histological analysis. (D) TRAMPOVA prostate lobes were
processed and stained with hematoxylin & eosin. Two magnifications are shown, 10× and
20× objectives. The presence of neoplasia in the glands (G), cellular infiltrates in the
surrounding fibromuscular stroma (S) and interstitium (I) of TRAMPOVA mice receiving
TGFβRII KO cells is evident at 10×. Black arrowheads point to apoptotic cells and yellow
arrows point to lymphoid cells at 20×. (E) Frozen sections of TRAMPOVA prostate lobes
were stained with DAPI (blue) and Ly5.1 (red); 20×. (D–E) Histology slides show one
representative mouse from each experimental group (n=3–5 mice/group) from at least 2
independent experiments.
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Figure 3. Cellular infiltration in the prostates of TRAMPOVA mice receiving TGFβRII KO cells
was not sustained
Prostates were microdissected and analyzed 3 weeks post transfer of WT and TGFβRII KO
T cells. (A) Prostate weights at 3 weeks post T cell transfer. Dashed line marks prostate
weight of age-matched healthy C57BL/6 prostate. Symbols represent individual mice and
bar shows mean weight. (unpaired Student’s t test). (B) H&E staining of TRAMPOVA
prostates at 3 weeks post T cell transfer show absence of cellular infiltrates and epithelial
damage. Black arrowheads point to single, rare apoptotic cells.
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Figure 4. TGFβRII KO cells persist up to 3 weeks in the peripheral lymphoid organs but lose
function and no longer accumulate in the prostate of TRAMPOVA mice
Mice were euthanized and analyzed 3 weeks post adoptive transfer (same experimental
protocol as Figure 1) (A) Numbers of adoptively transferred WT and TGFβRII KO cells
were quantitated in the spleen and PDN of TRAMPOVA mice. Total WT and TGFβRII KO
cells in the prostate are also expressed as cells per gram of prostate. (B) Ki-67 expression in
transferred cells at week 3 post transfer. No significant differences were detected between
WT and TGFβRII KO cells from each organ in TRAMP mice. (C) Representative flow plots
of Ki-67 and Bim expression by transferred cells isolated from TRAMPOVA and TRAMP
mice. Flow plots are gated on CD8+Ly5.1+ cells. Results from 2 independent experiments.
(D) Representative flow plots of cytokine production by WT and TGFβRII KO cells (gated
on CD8+Ly5.1+ cells). Numbers represent percent of gated cells in each quadrant. (E)
Percentage of transferred WT and TGFβRII KO cells that co-produce TNFα and IFNγ 5
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hour ex vivo peptide stimulation. No significant differences were detected between WT and
TGFβRII KO cells from each organ in TRAMP mice. (F) Number of transferred TGFβRII
KO cells in each tissue that produce TNFα and IFNγ. (A–B, D–F) Results represent pooled
data from at least 3 independent experiments (n=1–3 mice/group/experiment). Bar graphs
show mean ± SEM. *P<0.05, **P<0.01, ***P<0.001 (unpaired Student’s t test).
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Figure 5. PD-1 and PD-L1 are expressed respectively by persisting transferred T cells and the
prostate tumor in treated TRAMPOVA mice, but blockade of PD-1 signaling does not further
increase accumulation or effector function of TGFβRII KO cells at 3 weeks post transfer
(A) PD-1 expression on WT and TGFβRII KO cells at week 1 and week 3 post transfer.
Histograms are gated on CD8+Ly5.1+ cells. The WT or TGFβRII KO cells transferred into
TRAMPOVA hosts shown with a black line, and cells transferred into TRAMP hosts in
shaded grey. (B) PD-L1 expression of TGFβRII KO cell treated TRAMPOVA prostates 3
weeks post transfer. For PD-1 blocking experiments, blocking antibodies or PBS were
administered i.p. every 3 days starting on the day of T cell transfer until mice were
euthanized at 3 weeks post transfer. (C) Numbers of persisting transferred cells in
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TRAMPOVA mice treated with antibody or PBS. (D) Percentage of transferred TGFβRII KO
cells co-producing TNFα and IFNγ following 5 hour ex vivo peptide stimulation. All results
represent pooled data from 3 independent experiments (n=2–3 mice/group/experiment for
mice treated with blocking antibodies and n=1–2 mice/group/experiment for control PBS
treated). No significant differences between treated and untreated mice were detected
(unpaired Student’s t test).

Chou et al. Page 24

J Immunol. Author manuscript; available in PMC 2013 October 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


