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Abstract
The transcriptional co-activators PGC-1α and PGC-1β are master regulators of oxidative
phosphorylation and fatty acid oxidation gene expression. Pressure overload hypertrophy and
heart failure are associated with repressed PGC-1α and PGC-1β gene expression. Maintaining
expression of PGC-1α and β preserves contractile function in response to a pathological increase
in workload. Here we discuss the regulation of PGC-1 proteins under conditions of pressure
overload hypertrophy and heart failure.

PGC-1 Transcriptional Coactivators
The family of PGC-1 (peroxisome proliferator activated receptor γ (PPARγ) coactivator)
proteins plays a key role in the regulation of mitochondrial biogenesis and metabolism.
Three members of the PGC-1 family of transcriptional coactivators have been described:
PGC-1α was first identified in a yeast 2-hybrid screen as a PPARγ interaction protein
following cold exposure in brown adipose tissue (Puigserver et al. 1998). Two structural
homologues of PGC-1α were subsequently identified by sequence homology: PGC-1β (also
called PERC, PGC-1 related estrogen receptor coactivator), and PRC (PGC-1-related
coactivator 1) (Andersson and Scarpulla 2001; Kressler et al. 2002; Lin et al. 2002).
PGC-1α and PGC-1β are mainly expressed in tissues with high content of mitochondria and
high oxidative capacity such as the heart, brown adipose tissue, skeletal muscle, and kidney.
PGC-1α expression is induced by conditions that increase energy demand and mitochondrial
ATP-production such as fasting, exercise, and cold exposure (Kelly and Scarpulla 2004;
Lehman et al. 2000; Puigserver et al. 1998). PGC-1α expression in the heart is induced at
birth coincident with the increase in mitochondrial oxidative capacity (Lehman et al. 2000).

Coactivators are proteins that bind to transcription factors and amplify the activity of the
transcriptional machinery. Both, PGC-1α and PGC-1β, regulate the expression of genes
involved in oxidative phosphorylation via coactivation of the transcription factors NRF
(nuclear respiratory factor) 1 and 2, TFAm (mitochondrial transcription factor A), and ERR
(estrogen-related receptor)-α. NRF-1 and 2 regulate the expression of nuclear encoded
genes that are required for mitochondrial oxidative phosphorylation. They also bind to the
TFAm promoter thereby coordinating the transcription of the nuclear and mitochondrial
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genome (Kelly and Scarpulla 2004). TFAm binds to both strands of mitochondrial DNA
(mtDNA) to coordinate its transcription and replication. The mitochondrial genome contains
37 genes encoding 22 tRNAs, 2 rRNAs and 13 subunits involved in the electron transport
chain that are present in complexes I, III, IV and V (not II). This accounts for less than 2 %
of the > 1500 genes that encode mitochondrial proteins. Deletion of TFAm in cardiac tissue
resulted in decreased electron transport capacity, decreased mitochondrial DNA content,
cardiomyopathy, and heart failure (Larsson et al. 1998; Parisi et al. 1993) highlighting the
critical importance of these specific oxidative phosphorylation (OXPHOS) subunits that are
encoded by mtDNA. PGC-1α also regulates the expression of genes involved in fatty acid
metabolism by coactivating the nuclear receptors (NRs) PPARs and ERRs. PPARα and
PPARβ regulate fatty acid uptake and oxidation in the heart. PPARs form a heterodimeric
complex with the retinoid X receptor (RXR). This complex mediates transcriptional
activation of their target genes following recruitment of coactivators, such as PGC-1α, and
direct binding of ligands such as long chain fatty acids or their derivatives to their cognate
NRs (Lehman and Kelly 2002) (For summary see Figure 1).

Furthermore, PGC-1α modulates the activity of the transcriptional machinery by docking to
the Cdk7/Cyclin H/ménage-à-trois 1 (MAT1) heterotrimer. PGC-1α directly interacts with
MAT1/Cdk7 and Cdk7-mediated phosphorylation of RNA polymerase increases
transcriptional activity. Knockdown of MAT1 resulted in PGC-1 mediated metabolic defects
in isolated working heart perfusions and isolated mitochondria respirations (Sano et al.
2007a). PGC-1α interacts with the splicing machinery and the SRC-1 histone acetyl
transferases resulting in increased transcription. Also, PGC-1α assembles with the TRAP/
DRIP transcription initiation complex facilitating the interaction between RNA polymerase
II and the coactivator complex (Wallberg et al. 2003).

Transgenic Mouse Models for PGC-1 Proteins
Overexpression Models

The role of PGC-1 proteins in the heart has been extensively studied using transgenic mouse
models. PGC-1α induces cardiac mitochondrial biogenesis in vivo. Cardiomyocyte-specific
overexpression of PGC-1α using the αMHC (α-myosin heavy chain) promoter starting at
embryonic day 11.5 leads to uncontrolled mitochondrial biogenesis, ultimately causing loss
of sarcomeric structure and a dilated cardiomyopathy (Lehman et al. 2000). Mitochondria
occupy about 40 % of the volume in adult cardiomyocytes (cytosol only about 5 %). Thus,
any increase in mitochondrial volume might compromise the content of structures in the
already low cytosolic volume fraction, displacing the sarcomeric apparatus and impairing
contractile function. Inducing PGC-1α overexpression in adult mouse hearts resulted in a
more modest increase in mitochondrial number that ultimately precipitated a
cardiomyopathy, which completely resolved when PGC-1α transgene expression was turned
off (Russell et al. 2004). In vitro, both PGC-1α and PGC-1β have been shown to stimulate
mitochondrial biogenesis and O2 consumption (Lehman et al. 2000; St-Pierre et al. 2003).
However, no mouse-model has been described yet showing increased mitochondrial
biogenesis following PGC-1β overexpression.

Knockout Models
Two independently generated PGC-1α-KO models have been described (Arany et al. 2005;
Lehman et al. 2008; Leone et al. 2005). One model exhibited normal contractile function
under basal conditions and the other showed age-dependent contractile dysfunction.
PGC-1α deletion resulted in impaired expression of genes involved in oxidative
phosphorylation and fatty acid oxidation. Isolated working heart experiments demonstrated
lower cardiac power, reduced palmitate oxidation, and increased glucose oxidation. This
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was paralleled by impaired maximal mitochondrial oxygen consumption (VADP) with
palmitoyl-L-carnitine as substrate and increased pyruvate-mediated respirations.
Mitochondrial ATP-synthesis was impaired coincident with mitochondrial uncoupling.
PGC-1α-KO hearts exhibited impaired inotropic and chronotropic response both in vivo in
response to exercise and ex vivo following dobutamine challenge using Langendorff
preparations. Mitochondrial volume density was normal in either model. Together, these
studies highlight that PGC-1α expression is required for maintaining normal mitochondrial
function and its deficiency manifests as modest age-dependent contractile dysfunction in
non-stressed hearts. However, more substantial defects in contractile function became
apparent in the face of superimposed stressors both in vivo and ex vivo.

Four independently generated PGC-1β-KO models have been recently published (Lelliott et
al. 2006; Sonoda et al. 2007; Vianna et al. 2006). PGC-1β-KO hearts exhibit normal
contractile function under non-stressed conditions. Inotropic responses were relatively
preserved in PGC-1β-KO hearts in response to the selective β1α1-agonist dobutamine, but
similar to PGC-1α KO mice, the chronotropic responses were impaired (Lelliott et al. 2006).
Also, left ventricular contractility was persevered following exercise-induced stress response
in PGC-1β-KO mice of similar age (Lai et al. 2008). Absence of PGC-1β resulted in
repressed OXPHOS gene expression. In contrast to PGC-1α-KO hearts, fatty acid oxidation
(FAO) gene expression was relatively unchanged. Similarly, FAO was not impaired in
isolated working PGC-1β-KO hearts (Riehle et al. 2011). This suggests an isoform-specific
contribution of PGC-1 proteins to FAO gene expression and fatty acid metabolism.

Mouse models with single deletion of PGC-1α or PGC-1β suggest that contractile function
can be maintained under non-stressed conditions despite mitochondrial dysfunction, altered
gene expression and cardiac metabolism, as long as the other isoform is normally expressed.
These models therefore suggest redundant or overlapping roles for PGC-1 proteins in the
regulation of mitochondrial gene expression and biogenesis. The extensive redundancy was
demonstrated by generating mice lacking both PGC-1α and PGC-1β in the heart (Lai et al.
2008), which died shortly after birth because of heart failure. Analysis of electron
microscopy sections obtained from hearts with combined deficiency for PGC-1α and
PGC-1β revealed decreased mitochondrial number and size. This was associated with
ultrastructural abnormalities including impaired cristae density consistent with a defect in
mitochondrial biogenesis. Transcriptional analysis showed impaired fatty acid oxidation and
oxidative phosphorylation gene expression. Hexokinase 2 levels were increased and
pyruvate dehydrogenase kinase 4 (Pdk4) levels were decreased. This suggested increased
reliance on glucose metabolism and that the postnatal fuel shift towards fatty acid oxidation
was blocked. Expression of the fetal genes Nppa and Nppb was increased, whereas
expression of the adult sarcomeric isoform β-myosin heavy chain (Mhy6) was decreased
further supporting an arrest of the physiological maturation program. Table 1 summarizes
the cardiac characteristics of gain-of-function and loss-of-function models for PGC-1
proteins in non-stressed hearts.

PGC-1 Proteins in Pathological Cardiac Hypertrophy and Heart Failure
Cardiac hypertrophy is defined as an increase in ventricular mass and can be broadly
characterized as physiological or pathological hypertrophy. Physiological cardiac
hypertrophy is considered if the hypertrophic response does not impair contractile function
and the heart is able to adapt to the increased hemodynamic load (“athlete’s heart”). This is
characterized by increased mitochondrial biogenesis (Rimbaud et al. 2009; White et al.
1987), oxygen consumption, ATP synthesis and PGC-1α gene expression (Duncan et al.
2007; Finck and Kelly 2007; O'Neill et al. 2007) that compensates for the increased energy
demand. In contrast, pathological hypertrophy is characterized by an initial phase of
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compensation, which can progress to contractile dysfunction (decompensation) that
ultimately leads to heart failure. Common causes of pathological hypertrophy are aortic
valve stenosis or regurgitation and arterial hypertension (Abel and Doenst 2011). A common
model which is used to induce pathological hypertrophy in rodents is the induction of left
ventricular pressure overload (POH) by surgical constriction of the transverse aorta between
the brachiocephalic trunk and the left carotid artery (TAC) (Doenst et al. 2010; Zaha et al.
2003). POH and heart failure are associated with repressed gene expression of PGC-1α and
its transcriptional partner PPAR-α leading to decreased expression of genes involved in
fatty acid oxidation. This has been described for numerous rodent models of POH (Arany et
al. 2006; Garnier et al. 2003; Huss et al. 2007; Riehle et al. 2011). Down regulation of the
PGC-1α/PPARα complex has been suggested as a potential mechanism for the switch in
substrate utilization from mainly fatty acid oxidation toward glucose oxidation (Lehman and
Kelly 2002) resulting in more efficient ATP production (O2 consumed / ATP produced).
This substrate switch has been described both in patients with nonischemic cardiomyopathy
and in animal models of pressure overload and heart failure (Davila-Roman et al. 2002;
Razeghi et al. 2001; Sack et al. 1996). PGC-1β expression is also repressed in rodent models
of pressure overload hypertrophy (Riehle et al. 2011). PRC expression has been reported to
be unchanged following pressure overload (Arany et al. 2006). The key features of
physiological and pathological cardiac hypertrophy are summarized in Figure 2.

In contrast to previous reports, a recent study reported no decrease of PGC-1α mRNA levels
following pressure overload hypertrophy in rodents (Hu et al. 2008). Differences in the
duration of pressure overload and the degree of left ventricular dysfunction might account
for the discrepancy between these results and those of previous reports. Similarly, recent
studies showed no decrease in PGC-1α protein levels in samples from human failing heart
(Hu et al. 2011; Karamanlidis et al. 2010). This was associated with down regulation of
ERRα and defects in mitochondrial DNA replication and maintenance. Thus mechanisms
that are independent of PGC-1 may exist that result in impaired mitochondrial DNA content.
Differences between studies in rodents and humans might could also be influenced by
pharmacological treatment of human subjects compared to untreated animals. For instance,
phosphodiesterase inhibitors and catecholamines, common drugs for the treatment of end-
stage heart failure, might stimulate PGC-1α expression via cAMP-mediated mechanisms
(Puigserver et al. 1998). Differences in age when comparing samples from patients with
heart failure with control subjects might also confound results, as PGC-1α levels decrease
with aging (Ling et al. 2004).

Hearts with Deletion of PGC-1α or PGC-1β are More Susceptible to Heart
Failure in Response to Pressure Overload

Both, PGC-1α and PGC-1β deficient hearts showed accelerated heart failure in response to
TAC (Arany et al. 2006; Lu et al. 2010; Riehle et al. 2011). The underlying mechanisms are
complex and other mechanisms besides energetic starvation might exist. Accelerated heart
failure in PGC-1α-KO hearts was associated with further repression of OXPHOS and fatty
acid oxidation gene expression (Arany et al. 2006). Importantly, PGC-1β expression was
maintained, suggesting PGC-1 independent mechanisms exist that regulate OXPHOS and
FAO gene expression. This also suggests a threshold of mitochondrial capacity exists, which
cannot be sustained by PGC-1β in the absence of PGC-1α under conditions of pressure
overload. A number of defects became apparent in PGC-1β-KO hearts following TAC that
ultimately resulted in heart failure. This includes failure to increase glycolysis and glucose
oxidation, reduced cardiac efficiency and further impairment of mitochondrial function.
Both, PGC-1α (Lu et al. 2010) and PGC-1β deficient hearts (Riehle et al. 2011) exhibited
increased oxidative stress following TAC indicating an overlapping role for the PGC-1
proteins in regulating antioxidant mechanisms. Together, these studies suggest multiple
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levels of redundancy in the functions of PGC-1α and PGC-1β. A threshold for PGC-1
proteins might be required to sustain mitochondrial and contractile function. This hypothesis
is supported by the study of hearts with combined deletion of PGC-1α and PGC-1β that died
from early onset heart failure (Lai et al. 2008). Table 2 summarizes the characteristics of
PGC-1α and PGC-1β-KO hearts following pressure overload induced by TAC.

Modulation of PGC-1α Activity
PGC-1α is induced by exercise, cold exposure and fasting, which are conditions that
promote oxidative metabolism. Signaling pathways associated with those stimuli include
NO, AMPK, p38 MAPK, β-adrenergic receptor signaling / cAMP, and calcium-calmodulin
kinase, which all increase PGC-1α expression or transactivation. These mechanisms are the
subject of previous reviews (Huss and Kelly 2005; Rowe et al. 2010; Schilling and Kelly
2011; Ventura-Clapier et al. 2008) and are summarized in Figure 1. The mechanisms for
impaired PGC-1α expression and PGC-1α downstream targets under conditions of pressure
overload and heart failure are incompletely understood. Previous studies suggested roles for
cyclin-dependent kinase-9 (Cdk9) (Sano and Schneider 2004) and Akt (Cook et al. 2002):
Akt directly phosphorylates PGC-1 α and prevents the recruitment of PGC-1α to its cognate
promoter regions in hepatocytes (Li et al. 2007). Cdk9 phosphorylates RNA-Polymerase II
(RNAPII). This blocks the recruitment of RNAPII and the general transcription factor
TATA-binding protein (TBP) to the endogenous PGC-1 promoter and decreases the
assembly of the PGC-1 pre-initiation complex. Also, mice with disrupted KATP activity
(SUR1-transgenic mice) or Kir 6.2 knockdown (Kir6.2 KO) showed decreased PGC-1α
levels. Using rat neonatal cardiomyocytes, disruption of KATP activity decreased the
promoter activity and expression of PGC-1α in response to hypoxia (Hu et al. 2008). Thus
various upstream signaling mechanisms likely regulate PGC-1α levels under stress
conditions.

A recent study has identified Mitochondrial Endonuclease G (ENDOG) as a direct target of
ERRα and PGC-1α (McDermott-Roe et al. 2011). ENDOG is a nuclear-encoded member of
family of DNA/RNA nucleases (Schafer et al. 2004). The best-characterized function of
ENDOG is its contribution in nucleosome degradation during programmed cell death.
ENDOG-KO mice exhibit increased ROS production and cardiac hypertrophy. Therefore, it
will be of interest to determine the contribution of ENDOG in PGC-1 deficient hearts under
conditions of pressure overload in the context of increased oxidative stress and accelerated
transition to heart failure.

PGC-1 Proteins and Angiogenesis
Angiogenesis occurs both under physiological conditions such as exercise, embryogenesis,
and pregnancy as well as under pathological conditions i.e. tumor growth. Cardiac tissue is
highly vascularized based on its high energy and oxygen demand. Recent studies suggested
microvascular rarefaction as a cause for accelerated heart failure in response to pressure
overload (Izumiya et al. 2006; Sano et al. 2007b). Both, PGC-1α and PGC-1β regulate
angiogenesis as shown in skeletal muscle (Arany et al. 2008; Rowe et al. 2011). This is
facilitated via PGC-1 / ERRα-mediated induction of vascular endothelial growth factor
(VEGF) and is independent of hypoxia inducible factor (HIF) signaling. It will be of great
interest to determine the impact of PGC-1α and PGC-1β mediated angiogenesis on the
development of heart failure under conditions of pathologically increased workload,
however a recent report provided strong evidence that PGC-1α mediated angiogenesis is
essential for the cardiac adaptation to pregnancy and its absence leads to peripartum
cardiomyopathy (Patten et al. 2012).
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Summary and Clinical Perspective
Absence of PGC-1 proteins accelerated the transition to heart failure following pressure
overload. Even though definitive proof is missing, the positive effect of exercise training in
patients with heart failure might involve induction of PGC-1α expression. It would be of
interest to determine if overexpression of PGC-1α or PGC-1β in the physiological range has
beneficial effects under conditions of pressure overload. If true, then pharmacological
modulation of PGC-1 protein activity might be a promising future target for retarding the
transition from compensated pressure overload hypertrophy to heart failure.
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Figure 1.
Multiple stimuli increase (indicated by +) or decrease (indicated by −) PGC-1α expression.
PGC-1α coactivates PPAR and ERR transcription factors and thereby regulates the
expression of genes involved in mitochondrial fatty acid import and oxidation. In addition,
PGC-1α regulates the expression of nuclear encoded oxidative phosphorylation (OXPHOS)
subunits via coactivation of ERRs, NRF-1 and NRF-2. NRF-1 and NRF-2 also bind to the
promoter of the mitochondrial transcription factor A (TFAm) and coordinates the
transcription of the nuclear and mitochondrial genome.
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Figure 2.
Key features of myocardial energy metabolism in response to physiological and pathological
hypertrophy.
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