
Acetylcholine as a neuromodulator: cholinergic signaling
shapes nervous system function and behavior

Marina R. Picciotto1,2,3, Michael J. Higley2,3, and Yann S. Mineur1

1Dept. of Psychiatry, Neurodegeneration and Repair Yale University School of Medicine, New
Haven, CT 06511
2Dept. of Neurobiology, Neurodegeneration and Repair Yale University School of Medicine, New
Haven, CT 06511
3Program in Cellular Neuroscience, Neurodegeneration and Repair Yale University School of
Medicine, New Haven, CT 06511

Abstract
Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces
synaptic plasticity and coordinates the firing of groups of neurons. As a result, it changes the state
of neuronal networks throughout the brain and modifies their response to internal and external
inputs: the classical role of a neuromodulator. Here we identify actions of cholinergic signaling on
cellular and synaptic properties of neurons in several brain areas and discuss the consequences of
this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse
effects of acetylcholine depend on the site of release, the receptor subtypes, and the target
neuronal population, however, a common theme is that acetylcholine potentiates behaviors that are
adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require
immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in
many brain areas makes cholinergic modulation an essential mechanism underlying complex
behaviors.

INTRODUCTION
Acetylcholine (ACh) is a fast-acting, point-to-point neurotransmitter at the neuromuscular
junction and in the autonomic ganglia; however, there are fewer demonstrations of similar
actions in the brain (Changeux, 2010). Instead, central cholinergic neurotransmission
predominantly changes neuronal excitability, alters presynaptic release of neurotransmitters,
and coordinates the firing of groups of neurons (Kawai et al., 2007; Rice and Cragg, 2004;
Wonnacott, 1997; Zhang and Sulzer, 2004). As a result, ACh appears to act as a
neuromodulator in the brain, despite its role as the primary excitatory neurotransmitter in the
periphery.

The definition of a neuromodulator is flexible but has evolved to describe any kind of
neurotransmission that is not directly excitatory (mediated through ionotropic glutamate
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receptors) or inhibitory (mediated through ionotropic GABA receptors) (Ito and Schuman,
2008; Siggins, 1979). Neuromodulation can be thought of as a change in the state of a
neuron, or group of neurons, that alters its response to subsequent stimulation. A number of
models have been proposed to explain the actions of ACh in the central nervous system
(CNS). For example, ACh has been suggested to be critical for the response to uncertainty,
such that an increase in cholinergic tone predicts the unreliability of predictive cues in a
known context, and improves the signal-to-noise ratio in a learning environment (Yu and
Dayan, 2005). Another model has suggested that ACh reinforces neuronal loops and cortical
dynamics during learning by enhancing the influence of feed-forward afferent inputs to the
cortex carrying sensory information and decreasing excitatory feedback activity mediating
retrieval (Hasselmo, 2006). ACh can also alter firing of neurons on a rapid time scale, as in
fear-conditioning, when foot-shock results in direct cholinergic activation of interneurons in
the auditory cortex that contribute to learning (Letzkus et al., 2011). All these models are
consistent with a primary role of ACh as a neuromodulator that changes the state of an
ensemble of neurons in response to changing environmental conditions.

In this review, we will provide further support for the idea that cholinergic
neurotransmission in the brain is primarily neuromodulatory and is categorically distinct
from the actions of ACh at the neuromuscular junction. We propose that the role of ACh as
a neuromodulator in the brain is to increase neurotransmitter release in response to other
inputs, to promote burst firing and/or suppress tonic firing, depending upon the system and
the neuronal subtypes stimulated. Further, ACh contributes to synaptic plasticity in many
brain areas.

CHOLINERGIC NEURONS AND ACH RECEPTORS
The two primary sources of ACh in the brain include projection neurons that innervate distal
areas and local interneurons that are interspersed among their cellular targets. Cholinergic
projection neurons are found in nuclei throughout the brain, such as the pedunculopontine
and laterodorsal tegmental areas (PPtg and LDTg), the medial habenula (MHb) (Ren et al.,
2011), and the basal forebrain (BF) complex (Mesulam, 1995; Zaborszky, 2002; Zaborszky
et al., 2008), including the medial septum (MS). These cholinergic neurons project widely
and diffusely, innervating neurons throughout the CNS. Cholinergic interneurons are
typified by the tonically-active ACh neurons of the striatum and nucleus accumbens, and
there is some indication from anatomical studies that cholinergic interneurons are present in
the rodent and human neocortex, but not the non-human primate cortex (Benagiano et al.,
2003; Mesulam, 1995; von Engelhardt et al., 2007). The actions of ACh released from both
populations of cholinergic cells are mediated through pre- and postsynaptic receptors on a
large variety of neuronal subtypes throughout the brain, and it should be noted that
cholinergic inputs contribute to cortical and hippocampal function across phylogeny.

ACh signals through two classes of receptors: metabotropic muscarinic receptors (mAChRs)
and ionotropic nicotinic receptors (nAChRs) (reviewed in (Picciotto et al., 2000; Wess,
2003a)). Muscarinic receptors are coupled either to Gq proteins (M1, M3, and M5 subtypes)
that activate phospholipase C (PLC) or Gi/o proteins (M2 and M4 subtypes) that negatively
couple to adenylate cyclase (reviewed in (Wess, 2003a)), linking ACh activity to a variety of
biochemical signaling cascades. Moreover, mAChRs are located both pre- and post-
synaptically throughout the brain, producing diverse consequences for brain activity (Figure
1). As examples of the heterogeneous effects of mAChR stimulation, presynaptic M2/M4
mAChRs can act as inhibitory autoreceptors on cholinergic terminals (Douglas et al., 2002;
Raiteri et al., 1984) and reduce glutamate release from corticocortical and corticostriatal
synapses (Higley et al 2009, Gil et al 1997). In contrast, M1/M5 receptors can stimulate
dopamine (DA) release from striatal synaptosomes (Zhang et al., 2002) and postsynaptic
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M1/M5 receptors can increase excitability of cortical pyramidal neurons (Douglas et al.,
2002; McCormick and Prince, 1985).

Nicotinic receptors function as non-selective, excitatory cation channels (Changeux et al.,
1998; Picciotto et al., 2001) and occur as homomeric or heteromeric assemblies of a large
family of α- and β-subunits (α2-α7 and β2-β4; reviewed in (Picciotto et al., 2000)). While
neuromodulators are typically associated with metabotropic signaling, the role of the
ionotropic nAChRs in the brain appears to be largely modulatory as well (Picciotto, 2003).
For example, nAChRs are not clustered at postsynaptic membranes apposed to sites of ACh
release, but are rather dispersed along the surface (and intracellular compartments) of
neurons, including presynaptic terminals (McGehee et al., 1995; Vidal and Changeux,
1993), cell bodies and even axons (Arroyo-Jimenez et al., 1999; Hill Jr. et al., 1993; Kawai
et al., 2007). In addition, stimulation of nAChRs can increase the release of glutamate,
GABA, dopamine (DA), ACh, norepinephrine, and serotonin (McGehee et al., 1995;
Wonnacott, 1997) (Figure 1). Nicotinic modulation of neurotransmitter release is often
subtype-specific and this specificity can vary across brain areas, with distinct nAChRs
coupling to release of glutamate (α7) vs. GABA (α4β2*) (Mansvelder et al., 2002) or DA
(α4/α6β2*) vs. ACh (α3β4*) (Grady et al., 2001) in the VTA, while β2* nAChRs can
modulate the release of glutamate from thalamo-cortical projections (Parikh et al., 2010).
Presynaptic effects of nAChRs contribute to synaptic plasticity in the VTA (Mansvelder and
McGehee, 2000; Wooltorton et al., 2003), hippocampus (Ge and Dani, 2005; Ji et al., 2001;
Radcliffe and Dani, 1998), and prefrontal cortex (Couey et al., 2007). In addition, nAChRs
may also be important for synchronizing neuronal activity. For example, nicotine is reported
to coordinate firing of thalamocortical fibers through effects on nAChRs in white matter
(Bucher and Goaillard, 2011; Kawai et al., 2007). Despite the clear effects of presynaptic
nAChRs in electrophysiological studies, their relationship to the behavioral consequences of
nicotine administration is not completely understood. For example, although nicotine
stimulates the firing of DA neurons through actions in the ventral tegmental area (VTA) and
increases release of DA from the midbrain projections to the NAc through actions on
terminal nAChRs, local infusion of nicotine into the VTA has much greater effects on
locomotion and self-administration than local infusion into the NAc (Ferrari et al., 2002;
Ikemoto et al., 2006). Recent studies have, however, suggested that nAChRs in the NAc are
important for the motivational effects of nicotine (association between stimulus and drug
intake), rather than the primary reinforcing effects of the drug (desire for drug) (Brunzell et
al., 2010). Additionally, it is clear that cholinergic interneurons and their regulation of
muscarinic receptor signaling are also critical components in striatum-dependent decision
making (see, e.g. (Goldberg et al., 2012)).

While presynaptic effects of nAChRs have been the focus of a great deal of work, effects of
nicotinic stimulation are clearly not exclusively presynaptic (Figure 1). Exogenous
application of nicotine can induce significant inward currents in neurons in a number of
brain areas (Léna and Changeux, 1999; Picciotto et al., 1995; Picciotto et al., 1998), and
there have been several examples of direct post-synaptic effects of ACh in the brain
(Alkondon et al., 1998; Jones et al., 1999). Notably, recent studies using optogenetic
techniques demonstrated that ACh can mediate postsynaptic responses through nAChRs in
hippocampus (Bell et al., 2011; Gu and Yakel, 2011) and cortex (Arroyo et al., 2012).

MODES OF CHOLINERGIC NEUROMODULATION
Although there is considerable evidence for the actions of ACh on target neurons, the mode
of cholinergic transmission has remained controversial. The debate has focused on whether
cholinergic signaling occurs via traditional synapses (cellular specializations comprising
closely apposed pre- and postsynaptic membranes with associated release/receptor
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machinery) or via volume transmission (actions of a neurotransmitter that occur at a distance
from its site of release, mediated by diffusion through the extracellular space (Zoli et al.,
1999). Accumulating evidence indicates that ACh can act through volume transmission in
the brain. The relatively diffuse nature of brain cholinergic innervation further reinforces
this idea. There is an anatomical mismatch between the sites of ACh release (Houser, 1990;
Wainer et al., 1984a; Wainer et al., 1984b) and the location of cholinergic receptors
(Arroyo-Jimenez et al., 1999; Hill Jr. et al., 1993; Kawai et al., 2007). There is also evidence
that extracellular levels of ACh fluctuate in a manner that is not consistent with localized
clearance of a synaptic transmitter (Hajnal et al., 1998; Laplante et al., 2004; Mark et al.,
1996; Parikh et al., 2004; Reid et al., 1998). However, contrasting observations, including
the role of ACh in fast synaptic transmission at the neuromuscular junction and the high
level of expression of ACh esterase (a highly efficient degradative enzyme responsible for
clearing ACh from the extracellular space), have limited the acceptance of this idea.
Ultimately, it is difficult to know how far ACh can diffuse from its site of release and
whether volume transmission would allow for rapid transfer of information, suggesting that
this is not the only mechanism through which ACh influences neuronal function in the brain.
Anatomical studies have identified cortical cholinergic synapses that are structurally similar
to those of other point-to-point neurotransmitters, in both rats (Turrini et al., 2001) and
humans (Smiley et al., 1997). Effects of ACh on a rapid time-scale likely underlie its role in
stimulus-response tasks in which subsecond reactivity is required for appropriate behavioral
responses, as in prefrontal cortex-dependent cue detection (Parikh et al., 2007a) or auditory
discrimination (Letzkus et al., 2011). The data indicate that differences in sites of receptor
expression, affinity of ACh effects at both mAChRs and nAChRs, as well as rates of
synaptic clearance (mediated through AChE activity) and local concentration of ACh in and
outside the synapse, are critical for the control and specificity of cholinergic signaling.
Further, differences in the time-scale of release at the local microcircuit level further refine
the action of ACh in complex behaviors (reviewed in (Hasselmo and Giocomo, 2006; Sarter
et al., 2009; Yu and Dayan, 2005)).

ROLE OF ACH IN SYNAPTIC PLASTICITY AND NEURONAL DEVELOPMENT
An important role for both nAChRs and mAChRs has been defined in hippocampal synaptic
plasticity (reviewed in (Giocomo and Hasselmo, 2007; McKay et al., 2007)) and these
effects are mediated through intracellular signaling pathways downstream of mAChRs and
nAChRs (reviewed in (Berg and Conroy, 2002; Cancela, 2001; Lanzafame et al., 2003;
Rathouz et al., 1996)). Recent studies suggest that the timing of ACh release and the subtype
of receptor is critical for the type of plasticity induced (Gu and Yakel, 2011); however, it is
clear that nAChRs and mAChRs on both GABAergic and glutamatergic neurons in the
hippocampus can alter the subsequent response to excitatory inputs (Drever et al., 2011).
Similarly, stimulation of nAChRs on glutamatergic terminals in the VTA can induce long-
term potentiation (LTP) of excitatory inputs onto DA neurons (Mansvelder and McGehee,
2000), whereas differential effects of nAChRs on glutamatergic and GABAergic terminals
in this area appears to be important for changes in dopaminergic firing following prolonged
exposure to nicotine (Mansvelder et al., 2002; Wooltorton et al., 2003).

The ability of ACh to influence synaptic plasticity and dynamics of local circuits can also
occur through astrocytic control of synaptic Ca2+ concentration following nAChR
stimulation (Takata et al., 2011). Astrocytic signaling can lead to LTP as a result of the
temporal coincidence of the postsynaptic activity and the astrocyte Ca2+ signal
simultaneously evoked by cholinergic stimulation (Navarrete et al., 2012).

In contrast to the ability of nAChR stimulation to promote LTP in a number of brain areas,
nAChR-mediated facilitation of GABA release reduces calcium levels in prefronto-cortical
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dendrites (Couey et al., 2007). In addition, activation of nAChRs can also decrease
subsequent stimulation of calcium entry into cortical neurons in response to glutamate
(Stevens et al., 2003). The decrease in glutamate-mediated calcium entry is mediated
through activation of high affinity nAChRs, subsequent activation of the protein
phosphatase calcineurin and inactivation of L-type calcium channels. If this mechanism is
also recruited as a result of ACh signaling in vivo, it would suggest that one consequence of
cholinergic activity in cortical neurons would be a significant decrease in subsequent
calcium-mediated glutamate responses.

Finally, in addition to the ability of ACh to modulate neuronal activity acutely in adulthood,
ACh can also alter a number of processes in neuronal development, and the molecular basis
for a number of these developmental effects of ACh signaling have been elucidated recently.
For example, one fundamental role for ACh signaling through nAChRs is to regulate the
timing of expression of the chloride transporter that is necessary for the ability of GABA to
hyperpolarize, and therefore inhibit, central neurons (Liu et al., 2006). Disrupting nAChR
signaling delays the switch from GABA-mediated excitation to inhibition. Recent studies
have also shown that nAChRs contribute to the maturation of GABAergic (Kawai et al.,
2002; Zago et al., 2006) and glutamatergic (Lozada et al., 2012a, b) synapses, highlighting
an important role for ACh signaling in synaptic development, as well as neuronal
pathfinding and target selection (reviewed in (Role and Berg, 1996). In addition, signaling
through nAChRs is also important for establishing critical periods for activity-dependent
shaping of visual cortical function (Morishita et al., 2010) and maturation of thalamocortical
(Aramakis and Metherate, 1998; Aramakis et al., 2000; Hsieh et al., 2002) and
corticothalamic (Heath et al., 2010; Horst et al., 2012; King et al., 2003; Picciotto et al.,
1995) glutamatergic synapses. It appears likely that ACh release, potentially in response to
salient stimuli, potentiates glutamatergic synapses during development through an LTP-like
mechanism (Aramakis and Metherate, 1998), highlighting another important role for
cholinergic signaling in synaptic plasticity. Several neurotrophic factors are also involved in
the development and maturation cholinergic neurons, but the dependence on neurotrophins
is not homogenous throughout the CNS (for reviews, see (Angelucci et al., 2005;
Schindowski et al., 2008)). Although a comprehensive review of the developmental effects
of ACh is beyond the scope of this article, it is important to note that various developmental
processes can be affected by ACh signaling (for more comprehensive reviews, see (Heath
and Picciotto, 2009; Liu et al., 2007; Metherate and Hsieh, 2003; Role and Berg, 1996)).

BRAIN SYSTEMS MODULATED BY ACH SIGNALING
Mesolimbic DA system, addiction and reward

A great deal of research has focused on the effects of cholinergic agents on the mesolimbic
DA system and its short- and long-term modulation (for reviews see (Fagen et al., 2003;
Mansvelder et al., 2003), particularly because the addictive effects of nicotine are mediated
primarily through stimulation of nAChRs in the VTA (Drenan et al., 2008; Maskos et al.,
2005; McGranahan et al., 2011; Picciotto et al., 1998). Cholinergic input from the PPTg and
LDTg acting through both mAChRs and nAChRs is critical for modulating the function of
the VTA. Stimulation of nAChR and M5-type mAChRs increases the tonic excitability of
these DA neurons (Corrigall et al., 2002; Miller and Blaha, 2005; Yeomans and Baptista,
1997). ACh released in the VTA is likely to potentiate glutamatergic synaptic transmission
onto DA neurons through α7 nAChRs, and may therefore increase the likelihood of burst
firing of these neurons (Grenhoff et al., 1986; Maskos, 2008; McGehee et al., 1995).

Extracellular ACh levels are increased in the VTA during drug self-administration (You et
al., 2008), that could result from an increase in ACh release from PPTg and LDTg afferents
(Futami et al., 1995; Omelchenko and Sesack, 2006). Cholinergic neurons within PPTg
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neurons do not exhibit burst firing, and they are more active during wakefulness and REM
sleep versus slow wave sleep, but show more activity during REM sleep than slow wave
sleep (Datta and Siwek, 2002); however, there is currently no evidence that VTA DA
neurons show circadian variations in activity, suggesting that the diurnally regulated neurons
may not project to VTA. In addition, PPTg neurons change their firing rate in response to
both locomotion and acquisition of reward (Datta and Siwek, 2002). These observations
have led to the idea that the PPtg acts as a gate for salient sensory information associated
with reward and/or requiring movement (Norton et al., 2011).

In contrast to the increased firing rate of cholinergic neurons in the PPTg in response to
contextual information related to reward, tonically active cholinergic interneurons in the
striatum pause their firing following exposure to cues associated with reward (Goldberg and
Reynolds, 2011). The pause is thought to be mediated by interactions between the cells’
intrinsic membrane properties and strong feed-forward excitation from the thalamus (Ding et
al., 2010). These cholinergic interneurons can regulate the duration, magnitude, and spatial
pattern of activity of striatal neurons, potentially creating an attentional gate that facilitates
movement toward salient stimuli (Oldenburg and Ding, 2011). Function of striatal
cholinergic interneurons is also impaired in patients with movement disorders that are
dependent on function of the dopaminergic system such as Parkinson’s and Huntington’s
disease and in animal models of these diseases (Ding et al., 2011). Cholinergic signaling in
striatum and NAc is also thought to be critical for mediating the association between drugs
of abuse and cues in the environment that drive drug craving and relapse to drug use after
abstinence (Exley and Cragg, 2008). The effects of striatal ACh are mediated in part through
activation of nAChRs on dopaminergic terminals, leading to tonic, low level DA release
when cholinergic interneurons are firing. The pause results in decreased tonic DA release
but maintained phasic DA release (Exley and Cragg, 2008). In contrast, mAChRs reduce the
probability of glutamate release from excitatory afferents to the striatum, negatively
regulating the ability of these inputs to drive striatal activity (Barral et al., 1999; Higley et
al., 2009; Pakhotin and Bracci, 2007). Reduced concentration of glutamate in the synaptic
cleft results in diminished activation of voltage-dependent NMDA-type glutamate receptors,
shortening excitatory response duration and limiting temporal integration of inputs (Higley
2009). Thus, the pause in cholinergic interneuron firing would be predicted to enhance the
efficacy and summation of glutamatergic inputs arriving during this period.

These findings suggest that salient sensory stimuli in the environment, such as those
associated with rewards or drugs of abuse, would increase activity of PPTg cholinergic
neurons, leading to increased phasic firing of DA neurons in the VTA (Maskos, 2008), while
at the same time, decreasing the firing of tonically active cholinergic neurons in the NAc
and striatum leading to a larger differential in DA release in response to phasic firing as
compared to tonic firing (Exley and Cragg, 2008) (Figure 2). At the behavioral level, this
conclusion is consistent with the finding that disruption of PPTg activity decreases the
rewarding and locomotor effects of drugs of abuse such as cocaine and nicotine
(Champtiaux et al., 2006; Corrigall et al., 1994; Corrigall et al., 2002), while lesion of NAc
cholinergic neurons increases cocaine self-administration, as might be expected if a pause in
cholinergic interneuron firing in NAc signals salience (Smith et al., 2004).

The behavioral role of individual ACh receptor subtypes in NAc is more complex, however.
Consistent with a role for the pause in NAc cholinergic neurons in behaviors related to drug
reward, antagonism of α7-type nAChRs in NAc increases motivation to lever press for
nicotine (Brunzell and McIntosh, 2012). Less intuitively, blockade of mAChRs using
scopolamine decreases reinstatement of cocaine seeking (Yee et al., 2011), but this may be
due to increased ACh release through blockade of inhibitory autoreceptors (Douglas et al.,
2001). Since neuromodulation can be complex, it has also been shown that antagonism of
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the α6/β2 class of nAChRs expressed on DA terminals in NAc decreases the breakpoint for
progressive ratio responding in rats self-administering nicotine, suggesting that there is also
a role for ACh signaling through this class of receptors for mediating the motivational value
of nicotine (Brunzell et al., 2010).

A number of studies have focused on the ability of the habenula, particularly the MHb to
oppose the behavioral processes mediated through the VTA (for reviews, see (Fowler and
Kenny, 2012; Hikosaka, 2010)). The MHb-interpeduncular pathway is cholinergic, and it
has been proposed that its effects on VTA neuron firing are mediated indirectly through
inhibition of the PPTg (Maskos, 2008). Decreasing the expression of nAChRs containing the
α5 subunit in the MHb results in increased nicotine self-administration (Fowler et al., 2011),
suggesting that this cholinergic system normally acts as a brake on drug reward.

Taken together, these studies suggest that point-to-point ACh signaling could have opposing
behavioral consequences, depending on the receptor subtypes, neuronal populations and
brain areas stimulated, and that effects of ACh mediated through volume transmission could
be distinct from those mediated locally.

Cortex and attention
Numerous studies indicate that ACh plays an important and diverse role in the regulation of
cortical activity over multiple timescales. The precise function of ACh on any given circuit
also greatly depends on the specific expression patterns of nAChRs and mAChRs, as well as
the temporal dynamics of ACh concentration in the extracellular space. Neocortical ACh
function has been linked to control of circuits underlying attention, cue detection, and
memory (Hasselmo and Sarter, 2011). The primary cholinergic input to the cerebral cortex
comes from the BF complex, and particularly from substantia innominata of the the nucleus
basalis of Meynert (Mesulam, 1995) though the latter remains debated (Zaborszky et al.,
1999). Cholinergic terminals are distributed throughout the cortex, with more dense
projections in superficial layers (Mesulam, 1995).

The cellular mechanisms underlying the effects of ACh on cortical circuits have been
investigated at many levels. Seminal studies revealed that ACh can produce biphasic
changes in the activity of pyramidal neurons, the principal excitatory cells in the neocortex,
comprising fast inhibition followed by a slow depolarization (McCormick and Prince, 1985,
1986). The fast inhibition is at least partially mediated by the actions of both nAChRs and
mAChRs that increase the excitability and firing rates of dendrite-targeting GABAergic
interneurons (Arroyo et al., 2012; Couey et al., 2007; Fanselow et al., 2008; Ferezou et al.,
2002; Gulledge et al., 2007; Kawaguchi and Kubota, 1997). The slow depolarization is
mediated by M1 mAChR-mediated closure of M-type (KCNQ) potassium channels in
pyramidal neurons (Delmas and Brown, 2005) enhancing their excitability and reducing
their spike frequency adaptation (Gulledge et al., 2007; Hasselmo and Giocomo, 2006). In
addition, nAChRs expressed in deep layer pyramidal neurons may contribute to direct
excitation of these cells (Bailey et al., 2010; Kassam et al., 2008; Poorthuis et al., 2012).

ACh also modulates synaptic transmission in cortical circuits (Figure 3). Activation of α4β2
nAChRs on thalamocortical terminals enhances glutamate release in both sensory and
association cortex (Gil et al., 1997; Lambe et al., 2003; Oldford and Castro-Alamancos,
2003), whereas activation of mAChRs on terminals of parvalbumin-expressing interneurons
decreases the probability of GABA release onto the perisynaptic compartment of pyramidal
neurons, and therefore reduces post-synaptic inhibition of pyramidal neurons (Kruglikov and
Rudy, 2008). These interneurons normally decrease the response of cortical neurons to feed-
forward excitation (Gabernet et al., 2005; Higley and Contreras, 2006), and the reduction of
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GABA release from these interneurons by ACh therefore enhances the ability of
thalamocortical inputs to stimulate pyramidal neuron firing (Kruglikov and Rudy, 2008).

In contrast, mAChRs located on pyramidal cell axon terminals suppress cortico-cortical
transmission (Gil et al., 1997; Hsieh et al., 2000; Kimura and Baughman, 1997; Oldford and
Castro-Alamancos, 2003). Moreover, the ACh-mediated increased excitability of dendrite-
targeting interneurons described above likely contributes to reduced efficacy of intra-cortical
communication. The simultaneous enhancement of feed-forward inputs from the thalamus
through cholinergic actions on parvalbumin-positive interneurons, and suppression of intra-
cortical feed-back inputs through effects on dendrite-targeting interneurons, may increase
the “signal-to-noise” ratio in cortical networks, making neurons more sensitive to external
stimuli. In keeping with this view, mAChR activation strongly suppresses the spread of
intra-cortical activity, leaving responses to thalamic inputs relatively intact (Kimura et al.,
1999). Intriguingly, in the prefrontal cortex, the expression of nicotinic receptors in deep
pyramidal cells may produce layer-specific cholinergic modulation, selectively enhancing
activity of output neurons (Poorthuis et al., 2012).

Although the cellular and synaptic effects of ACh described above provide a potential
mechanism for the ability of ACh to increase signal detection and modulate sensory
attention, a number of observations suggest that this simple model is incomplete. ACh
directly inhibits spiny stellate cells in somatosensory cortex receiving thalamic input via M4
mAChRs (Eggermann and Feldmeyer, 2009). Furthermore, activation of M1 mAChRs
hyperpolarizes pyramidal neurons via a mechanism dependent on fully-loaded internal
calcium stores that occurs more quickly than the closure of M-type potassium channels
(Gulledge et al., 2007; Gulledge and Stuart, 2005). Thus, the effect of ACh on the activity of
cortical neurons clearly depends critically on the state of the neuron and the timing of ACh
release. Neurons with depleted calcium stores would be more susceptible to ACh-induced
depolarization via M4 mAChRs, whereas rapid inhibitory effects of ACh through M1
mAChRs would dominate in neurons with fully-replenished stores. Furthermore, studies
showing that mAChR activation reduces cortico-cortical transmission have relied on
electrical stimulation to evoke glutamate release, leaving the identity of the activated
presynaptic terminals ambiguous. It is possible that distinct populations of intra-cortical
synapses, such as those comprising local recurrent networks versus long-range intra-areal
projections, might be differentially modulated by ACh. Indeed, in the CA1 region of the
hippocampus, long-range perforant inputs from the entorhinal cortex are less inhibited by
ACh than the Schaeffer collaterals arising from CA3 (Hasselmo and Schnell, 1994). The
advent of optogenetic tools for selectively targeted difference populations of excitatory
inputs (Gradinaru et al., 2007) will be a key development for elucidating the precise role of
ACh on various circuit elements.

ACh also modulates cortical circuits over longer time scales by influencing the plasticity of
cortical circuits. In the auditory cortex, pairing sensory stimulation with stimulation of the
basal forebrain results in a long-term reorganization of cortical receptive field structure,
including a persistent shift in the receptive field towards the paired stimulus (Froemke et al.,
2007). In the visual system, ACh facilitates ocular dominance plasticity in kittens via M1
mAChRs (Gu and Singer, 1993) and in rodents, the protein Lynx1 suppresses nicotinic
signaling in primary visual cortex, and its removal promotes ocular dominance plasticity in
older animals (Morishita et al., 2010).

At the cellular level, cholinergic agonists enhance LTP of glutamatergic association fibers in
the piriform cortex and Schaeffer collaterals in the CA1 region of the hippocampus (Huerta
and Lisman, 1993). In contrast, M3 mAChRs facilitate long term depression (LTD) of
synapses in the monocular area of superficial visual cortex (Kirkwood et al., 1999; McCoy
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and McMahon, 2007). Surprisingly, the same authors observed enhanced LTP in binocular
cortex (McCoy et al., 2008). These regional differences indicate that cell-specific expression
of different receptor subtypes is critical for the varied actions of ACh.

The pleiotropic effects of ACh on cortical circuits described above are likely to underlie its
ability to modulate cognitive behaviors. In rodents, lesions of cholinergic inputs to the
cortex impair tests of sustained attention, particularly across sensory modalities (McGaughy
et al., 2002; McGaughy et al., 1996; Turchi and Sarter, 1997). In addition, stimulation of
α4β2 nicotinic receptors in the medial prefrontal cortex enhances performance in a visual
attention task (Howe et al., 2010), while genetic deletion of these receptors in the mPFC
impairs visual attention (Guillem et al., 2011) and auditory discrimination (Horst et al.,
2012). Notably, transient rises in prefrontal ACh are significantly correlated with cue
detection, suggesting that the temporal dynamics of cholinergic signaling are also critical for
normal behavior (Parikh et al., 2007b). In primates, locally applied ACh enhances the
attentional modulation of neuronal activity in the primary visual cortex, while the
muscarinic antagonist scopolamine reduces the effects of attention (Herrero et al., 2008).
Taken together, these findings suggest that cholinergic actions across both ionotropic and
metabotropic receptors and diverse brain areas contribute to cognitive processing.

Hypothalamus and food intake
The role of ACh in control of autonomic functions is well known, but it is likely that actions
of ACh in the brain also modulate adaptive responses to environmental and metabolic
conditions. Cholinergic signaling can alter thermoregulation (Myers and Waller, 1973),
sleep patterns (Steriade, 2004), food intake (Grunberg et al., 1988; Mineur et al., 2011) and
endocrine functions such as pancreatic release of insulin and glucagon (Ishikawa et al.,
1982). The hypothalamus is essential for homeostatic responses regulating metabolism, and
consequently, modulation of hypothalamic function by ACh is likely to be an important
component of adaptation to peripheral autonomic signals to the brain.

A small number of studies have investigated the role of ACh signaling in the hypothalamus,
which receives input from the PPTg and LDTg (Hallanger and Wainer, 1988; Jones and
Beaudet, 1987). Activity in both these areas adapts quickly to environmental changes
(Majkutewicz et al., 2010; Woolf, 1991) and is linked to peripheral control of feeding
behavior (Phillis, 2005). There are also intrinsic neurons within the hypothalamus that
express cholinergic markers (Tago et al., 1987) as well as the pro-opiomelanocortin
(POMC) peptide (Meister et al., 2006), and nAChRs in the hypothalamus are critical for
feeding behavior (Jo et al., 2002). It has also been suggested that neurons in the median
eminence could project to the hypothalamus (Schafer et al., 1998). Corticotropin-releasing
hormone-expressing neurons in this area can affect metabolism. In non-human primates,
neurons in the substantia innominata and LH, most of which express cholinergic markers,
were activated in response to presentation of food when the animals were hungry (Rolls et
al., 1979). Consistent with a potential role for ACh in coordinating caloric need with food-
seeking behaviors, long-term maintenance on a high-fat/high-sugar diet significantly down-
regulated levels of ACh-esterase (AChE) in a number of brain areas that was particularly
pronounced in the hypothalamus (Kaizer et al., 2004). One possibility is that the role of ACh
in the hypothalamus is to integrate the interoceptive cues related to hunger with
exteroceptive cues of food availability, threat or other salient conditions, a function
consistent with the role of the hypothalamus in integration of interoceptive and
exteroceptive conditions (Craig, 2002, 2003), but this remains to be tested.

At the cellular level, stimulation of nAChRs and mAChRs on lateral hypothalamic (LH)
neurons increases and decreases GABA release, respectively (Jo and Role, 2002). The data
suggest that the nAChRs and mAChRs may be localized to different populations of
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GABAergic terminals, but from these studies it is difficult to determine what the effects of
synaptically evoked ACh on LH GABA release might be. Optogenetic stimulation of
cholinergic transmission in the LH and hypothalamus will be useful in identifying the source
of ACh input to these areas, the role of intrinsic ACh in hypothalamic function, and the
differential role of mAChRs and nAChRs in shaping responses to ACh in these brain
regions. In the arcuate nucleus of the hypothalamus, nicotine increases the firing rate of both
POMC- and neuropeptide Y (NPY)-positive neurons, although the increase in POMC
neuron activity predominates in vitro due to more rapid desensitization of nAChR responses
in NPY neurons, and in vivo, as evidenced by an increase in c-fos immunoreactivity
predominantly in POMC-positive cells (Huang et al., 2011; Mineur et al., 2011). Thus, as in
the mesolimbic system and the cortex, distinct actions of ACh appear to converge through
effects on receptor populations with different electrophysiological properties expressed on
distinct subsets of neurons to promote a coordinated output, in this case, activation of
POMC neurons.

ACh also regulates glutamatergic transmission in other neuronal subtypes involved in food
intake. Stimulation of nAChRs on orexin-positive neurons in the LH induces concurrent
release of glutamate and ACh, which could lead to feed-forward stimulation of this circuit
once activated (Pasumarthi and Fadel, 2010). There is also some indication from studies of
hypothalamic neurons in culture that ACh signaling can be upregulated to compensate for
prolonged blockade of glutamatergic signaling (Belousov et al., 2001). Thus, ACh acting
through nAChRs may also potentiate glutamate signaling in particular neuronal subtypes of
the hypothalamus, although the functional consequences of this regulation are not yet
known.

As might be expected from the complex regulation of hypothalamic neuronal activity by
ACh, cholinergic modulation of feeding behavior is multifactorial and state-dependent. In
rats, the mAChR competitive antagonist atropine modestly altered the frequency and choice
of meals but not their size (Nissenbaum and Sclafani, 1988). Consistent with the ability of
nicotine in tobacco smoke to decrease body weight in humans and food intake in rats
(Grunberg et al., 1988), β4-containing nAChRs on POMC neurons are critical for the ability
of nicotine to reduce food intake in mice (Mineur et al., 2011). These observations
underscore a potential role for ACh in metabolic regulation involving POMC neurons;
however, very little is known about the role of endogenous ACh-mediated modulation of the
arcuate nucleus.

ACH and stress-related systems
Increasing evidence suggests that ACh signaling in a number of brain areas is important for
stress responses (Figure 4). In addition to the well-documented role of the hippocampus in
learning and memory, the amygdala in mediating fear responses and the PFC in attention,
these brain areas are critical nodes in adaptation and responses to stress (Belujon and Grace,
2011; Gozzi et al., 2010; McGaugh, 2004; Sapolsky, 2000; Tottenham and Sheridan, 2009).
Dysfunction in the activity of these regions is strongly implicated in major depressive
disorder (Sheline et al., 1998; Videbech and Ravnkilde, 2004). The hippocampus, amygdala
and PFC receive a very high level of cholinergic input that come from the BF complex, and
in particular, from the medial septum and nucleus basalis, respectively (Mesulam, 1995).
Several studies have shown that stress increases ACh release in a brain region-specific
manner (Mark et al., 1996). For instance, hippocampal and cortical ACh levels can increase
following restraint stress in rats, while ACh levels in the amygdala are unchanged, although
an increase in amygdalar cholinergic tone can also reduce BLA activity though activation of
mAChRs (Power and Sah, 2008). Conversely, acute activation of presynaptic α7 nAChRs in
the BLA can also favor the release of glutamate from impinging cortical projections, which
is critical for aversive memory and fear (Klein and Yakel, 2006). Stimulation of this
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pathway during development blunts paired facilitation due to subsequent stimulation,
however, which would be expected to decrease BLA reactivity (Jiang and Role, 2008),
further highlighting the role of cholinergic signaling in plasticity of this system. The
hippocampus provides inhibitory feedback to the amygdala through inhibition of the
hypothalamic-pituitary-adrenal (HPA) axis (Tasker and Herman, 2011). Interestingly, relief
from stress leads to an increase in cholinergic signaling in the amygdala and PFC (Mark et
al., 1996), indicating that the valence of ACh varies by brain area. The effect of increased
cortical ACh levels on amygdala signaling has not been studied, but stress impairs PFC
output (Arnsten, 2009), and PFC can normally decrease basolateral amygdala activity
through projections to the intercalated nucleus (Manko et al., 2011; Pinard et al., 2012).

At the cellular level, neuronal activity in the hippocampus is strongly modulated by both
nAChRs and mAChRs. Cholinergic inputs to the hippocampus from the medial septum and
the diagonal band of Broca impinge on both glutamatergic and GABAergic neurons
throughout the structure, and a comprehensive review of the effects of ACh on synaptic
plasticity in the hippocampus has been published recently (Drever et al., 2011). The ability
of ACh to induce synaptic plasticity through actions on pre- and post-synaptic nAChRs and
mAChRs is likely to modulate learning and memory, including memory of stressful events
(Nijholt et al., 2004), and a role for ACh in regulation of hippocampal excitability through
presynaptic release of glutamate and GABA has also been well-characterized (Alkondon et
al., 1997; Freund et al., 1988; Radcliffe et al., 1999). Stress also induces alternative splicing
of the AChE mRNA in the hippocampus leading to altered ACh signaling in this structure
(Nijholt et al., 2004). There is currently no consensus on how these cholinergic actions
converge to regulate the output of the hippocampus in response to stress, although one
possibility is that ACh is critical for regulating theta oscillations, and the concurrent effects
of mAChRs and nAChRs on excitatory and inhibitory transmission serve to regulate
rhythmic activity (Drever et al., 2011; Fisahn et al., 1998). Although theta rhythms are
thought to be critical for memory encoding, disturbance of hippocampal rhythms may also
contribute to mood disorders (Femenia et al., 2012).

The amygdala also receives cholinergic inputs from the basal forebrain complex (Mesulam,
1995) and is consistently hyperactivated in fMRI studies of patients with mood disorders
(Drevets, 2001). In rodents, decreasing ACh signaling through nAChRs depresses neuronal
activity in the basolateral amygdala as measured by c-fos immunoreactivity (Mineur et al.,
2007). As discussed above, ACh shapes the output of cortical neurons, and cortico-amygdala
glutamatergic connections are also strongly and persistently potentiated by nAChR
stimulation (Mansvelder et al., 2009). Thus, ACh release in the amygdala is thought to
strengthen associations between environmental stimuli and stressful events, potentially
contributing to maladaptive learning underlying affective disorders (Mansvelder et al.,
2009).

There is strong evidence that increasing ACh signaling in humans results in increased
symptoms of depression (Janowsky et al., 1972; Risch et al., 1980). This has been observed
with administration of the AChE blocker physostigmine to patients with a history of
depression, individuals with Tourette’s syndrome and normal volunteers (Risch et al., 1980;
Risch et al., 1981; Shytle et al., 2000). A similar effect has also been described with
organophosphate inhibitors of AChE (Rosenstock et al., 1991). More recently, human
imaging and post mortem studies suggested that there is increased occupancy of nAChRs by
ACh that is highest in individuals who are actively depressed and intermediate in those who
have a history of depression with no change in overall nAChR number (Saricicek et al.,
2012). In rodent studies, the Flinders rat model was selected for its sensitivity to challenge
with an AChE inhibitor, and sensitive rats also display a constellation of depression-like
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endophenotypes, supporting the idea that increasing ACh levels increases symptoms of
depression (Overstreet, 1993).

Consistent with an increase in ACh leading to symptoms of depression, antagonism of
mAChRs or nAChRs, or blockade of ACh signaling through nAChRs with partial agonists,
can decrease depression-like behavior in rodents (Caldarone et al., 2004; De Pablo et al.,
1991; Mineur et al., 2007; Picciotto et al., 2002; Rabenstein et al., 2006). Consistent with a
role for increased ACh signaling in affective disorders in humans, clinical trials have
suggested that blockade of either mAChRs (Furey and Drevets, 2006; Furey et al., 2010) or
nAChRs (George et al., 2008; Shytle et al., 2002) can decrease symptoms of depression.
While an increase in cholinergic tone appears to be sufficient to induce depression-like
symptoms in humans, a recent study has shown that decreasing striatal cholinergic tone in
the mouse can lead to depression-like symptoms, likely through interneuron-dependent
disinhibition of striatal neurons (Warner-Schmidt et al., 2012), highlighting the fact that
ACh can induce heterogeneous effects in different brain areas that appear to have opposite
behavioral consequences. The behavioral effect of ACh signaling in vivo likely depends on
the baseline conditions in the particular circuit of interest at the time of ACh release, and is
the result of integration of its, sometimes conflicting, effects in different circuits. More
studies are necessary to determine whether preclinical studies of cholinergic signaling in
hippocampus, PFC and/or amygdala can be linked to the effects of ACh in human subjects,
and to identify physiological mechanisms that are essential for these effects on behaviors
related to mood and affect.

CONCLUSIONS
A comprehensive explanation of cholinergic neuromodulation is not yet possible, given the
large number of behaviors, circuits, neuronal subtypes and cholinergic receptors in the brain.
Despite that complexity, some unifying themes have emerged. The well-defined temporal
association between firing of cholinergic projection neurons in the brain stem and the pause
in firing of tonically active cholinergic interneurons in the striatum can facilitate the
association of salient rewarding events with cues in the environment, contributing to reward
prediction and promoting orienting behaviors toward potentially rewarding stimuli. This
likely occurs through coordinated increases in glutamatergic drive that facilitate DA neuron
burst firing, and decreases in response to subthreshold, tonic signals from DA terminals.
Similarly, salient signals that require focused attention for correct performance of behavioral
tasks, increase feed-forward activation of principal cortical neurons and decrease inhibition
through specific classes of interneurons. The promotion of coordinated firing of adjacent
axons and the promotion of rhythmic activity in structures such as the hippocampus when
ACh is released and levels are high may provide an increase in the baseline excitability of
neurons that are then available for robust responses to glutamate, and this state dependent
facilitation of neurotransmission in pathways activated in response to ACh release is likely
to be maintained due to facilitated neuronal plasticity. This organization is echoed in the
hypothalamus where, despite the ubiquitous expression of nAChRs on multiple neuronal
subtypes with reciprocal functions, the kinetics of activation of one set of receptors may bias
the output in one direction, based on the starting conditions. This is obviously a gross
oversimplification that will be sensitive to the timing, duration and localization of ACh
signaling, but may provide a framework for generation of hypotheses. Finally, increases in
ACh signaling appear to contribute to stress-related illnesses such as major depressive
disorder, although the specific neuronal substrates and cellular mechanisms responsible for
these effects are only beginning to be studied.

Despite a great deal of progress, there are still critical gaps in our understanding of the
dynamics of ACh release from different neuronal populations, how that changes in response
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to environmental conditions such as metabolic need or stress, and how far from the site of
release ACh can diffuse in different brain areas. While novel tools will allow more precise
stimulation of ACh release, the patterns of release will not be optimal unless there is a better
understanding of the physiological patterns of firing. The ability to mimic patterns of ACh
release in vivo will be critical for identifying the physiological effects of cholinergic
neuromodulation, and distinguishing the actual, from the possible, effects of ACh in the
brain.
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Figure 1. Sites of action for nicotinic and muscarinic acetylcholine receptors
Nicotinic (nAChR) and muscarinic (mAChR) acetylcholine receptors are localized both pre-
and post-synaptically. Presynaptic mAChRs (M2, M4) are largely inhibitory, and act as
inhibitory autoreceptors on cholinergic terminals, with M2 the predominant autoreceptor in
hippocampus and cerebral cortex, and M4 predominant in striatum (Wess, 2003b; Wess et
al., 2003). Post-synaptic mAChRs can be either inhibitory (M2, M4) or excitatory (M1, M3,
M5) (Wess, 2003b; Wess et al., 2003). Presynaptic nAChRs induce release of a number of
neurotransmitters including GABA, glutamate, dopamine, serotonin, norepinephrine and
acetylcholine (McGehee et al., 1995; Wonnacott, 1997). Postsynaptic nAChRs depolarize
neurons, increase their firing rate and can contribute to long-term potentiation (Bucher and
Goaillard, 2011; Ge and Dani, 2005; Ji et al., 2001; Kawai et al., 2007; Mansvelder and
McGehee, 2000; Picciotto et al., 1995; Picciotto et al., 1998; Radcliffe and Dani, 1998;
Wooltorton et al., 2003).
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Figure 2. Effects of acetylcholine on activity of dopamine neurons in the mesolimbic circuit
Salient cues associated with primary rewards increase activity of pedunculopontine
tegmental area (PPTg) neurons, inducing acetylcholine release in the ventral tegmental area
(VTA) (Futami et al., 1995; Omelchenko and Sesack, 2006). Acetylcholine increases firing
of dopamine (DA) neurons in the VTA and is likely to be important for burst firing of these
neurons (Maskos, 2008). Salient cues associated with rewards also induce a pause in firing
of tonically active cholinergic neurons (ACh TAN) in the nucleus accumbens (NAc)
(Goldberg and Reynolds, 2011). Decreased release of ACh onto terminals in NAc attenuates
DA release due to tonic firing of DA neurons, while preserving DA release in response to
phasic firing (Exley and Cragg, 2008).
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Figure 3. Effects of acetylcholine on activity of cortical neurons
Salient cues induce acetylcholine release onto interneurons targeting the apical dendrites of
cortical pyramidal neurons, resulting in rapid inhibition of pyramidal cells (Arroyo et al.,
2012; Couey et al., 2007; Fanselow et al., 2008; Ferezou et al., 2002; Gulledge et al., 2007;
Kawaguchi and Kubota, 1997). Acetylcholine subsequently depolarizes pyramidal neurons
through M1 mAChRs (Delmas and Brown, 2005; McCormick and Prince, 1985, 1986).
Acetylcholine also activates stimulatory α4β2 nAChRs on glutamatergic thalamocortical
terminals (Gil et al., 1997; Lambe et al., 2003; Oldford and Castro-Alamancos, 2003) and
inhibitory M2 mAChRs on GABAergic terminals of parvalbumin-expressing (PV)
interneurons (Kruglikov and Rudy, 2008). Activation of PV interneurons enhances
stimulation of pyramidal neuron firing by thalamocortical inputs (Gabernet et al., 2005;
Higley and Contreras, 2006; Kruglikov and Rudy, 2008). Acetylcholine also suppresses
cortico-cortical transmission through inhibitory M2 mAChRs on pyramidal cell axon
terminals (Gil et al., 1997; Hsieh et al., 2000; Kimura and Baughman, 1997; Oldford and
Castro-Alamancos, 2003), reducing intra-cortical communication while preserving
responses to thalamic inputs (Kimura et al., 1999).
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Figure 4. Effects of acetylcholine on hippocampal-amygdala stress response
Stress increases acetylcholine release in the hippocampus and frontal cortex (Mark et al.,
1996) and impairs signaling in the prefrontal cortex (PFC) (Arnsten, 2009). The
hippocampus provides inhibitory feedback to the amygdala through inhibition of the
hypothalamic-pituitary-adrenal (HPA) axis (Tasker and Herman, 2011) whereas the PFC can
normally decrease basolateral amygdala activity through projections to the intercalated
nucleus (Manko et al., 2011; Pinard et al., 2012). The effects of stress-induced acetylcholine
release on output of hippocampus and cortex is unknown, but cholinergic modulation of
cortico-amygdala glutamatergic connections strengthens associations between
environmental stimuli and stressful events (Mansvelder et al., 2009).
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