Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2003 Mar;41(2-3):103–109. doi: 10.1023/A:1024870605447

Cell fusion and plasticity

Joseph J Lucas 1, Naohiro Terada 2,
PMCID: PMC3466689  PMID: 19002947

Abstract

Cell plasticity is a central issue in stem cell biology. In many recent discussions, observation of cell fusion has been seen as a confounding factor which calls into question published results concerning cell plasticity of, particularly, adult stem cells. An examination of the voluminous literature of "somatic cell fusion" suggests the relatively frequent occurrence of "spontaneous" cell fusion and shows that the complicated cellular phenotypes which it can give rise to have long been recognized. Here, a brief overview of this field is presented, with emphasis on studies of special relevance to current work on cell plasticity.

Keywords: cell fusion, cloning, plasticity, stem cell, transdifferentiation

Full Text

The Full Text of this article is available as a PDF (85.9 KB).

References

  1. Baron MH, Maniatis T. Rapid reprogramming of globin gene expression in transient heterokaryons. Cell. 1986;46:591–562. doi: 10.1016/0092-8674(86)90885-8. [DOI] [PubMed] [Google Scholar]
  2. Barski G, Sorieul S, Cornefert F. 'Hybrid' type cells in combined cultures of two different mammalian cell strains. J Natl Cancer Inst. 1961;26:1269–1291. [PubMed] [Google Scholar]
  3. Barski G, Cornefert F. Characteristics of 'hybrid'-type clonal cell lines obtained from mixed cultures in vitro. J Natl Cancer Inst. 1962;28:801–821. [PubMed] [Google Scholar]
  4. Bengtsson BO, Nabholz M, Kennett R, Bodmer WF, Povey S, Swallow D. Human intraspecific somatic cell hybrids: A genetic and karyotypic analysis of crosses between lymphocytes and D98/AH-2. Somatic Cell Genet. 1975;1:41–64. doi: 10.1007/BF01538731. [DOI] [PubMed] [Google Scholar]
  5. Blau HM, Blakely BT. Plasticity of cell fate: Insights from heterokaryons. Cell Develop Biol. 1999;10:267–272. doi: 10.1006/scdb.1999.0311. [DOI] [PubMed] [Google Scholar]
  6. Blau HM, Chiu CP, Webster C. Cytoplasmic activation of human nuclear genes in stable heterokaryons. Cell. 1983;32:1171–1180. doi: 10.1016/0092-8674(83)90300-8. [DOI] [PubMed] [Google Scholar]
  7. Blau HM, Parlath GK, Hardeman EC, Chin CP, Silberstein L, Webster SG, Miller SC, Webster C. Plasticity of the differentiated state. Science. 1985;230:758–766. doi: 10.1126/science.2414846. [DOI] [PubMed] [Google Scholar]
  8. Brazelton TR, Rossi FMV, Keshet GI, Blau HM. From marrow to brain: Expression of neuronal phenotypes in adult mice. Science. 2000;290:1775–1779. doi: 10.1126/science.290.5497.1775. [DOI] [PubMed] [Google Scholar]
  9. Briggs R, King TJ. Transplantation of living nuclei from blastula cells into enucleated frog's eggs. Proc Natl Acad Sci USA. 1952;38:455–457. doi: 10.1073/pnas.38.5.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Briggs R, King TJ. Nuclear transplantation studies on the early gastrula (Rana pipiens. Devel Biol. 1960;2:252–270. doi: 10.1016/0012-1606(60)90008-7. [DOI] [PubMed] [Google Scholar]
  11. Bruno J, Reich NR, Lucas JJ. Globin synthesis in hybrid cells constructed by transplantation of dormant avian erythrocyte nuclei into enucleated fibroblasts. Mol Cell Biol. 1981;1:1163–1176. doi: 10.1128/mcb.1.12.1163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bunn CL, Wallace DC, Eisenstadt JM. Cytoplasmic inheritance of chloramphenicol resistance in mouse tissue cells. Proc Natl Acad Sci USA. 1974;71:1681–1685. doi: 10.1073/pnas.71.5.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Carter SB. Effects of cytochalasen on mammalian cells. Nature. 1967;213:261–266. doi: 10.1038/213261a0. [DOI] [PubMed] [Google Scholar]
  14. Choi J, Costa ML, Mermelstein CS, Chagas C, Holtzer S, Holtzer H. MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblsts and multinucleated myotubes. Proc Natl Acad Sci USA. 1990;87:7988–7992. doi: 10.1073/pnas.87.20.7988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Davidson RL, Ephrussi B. A selective system for the isolation of hybrids between L cells and normal cells. Nature. 1965;205:1170–1171. doi: 10.1038/2051170a0. [DOI] [Google Scholar]
  16. Davidson RL, Ephrussi B, Yamamoto K. Regulation of pigment synthesis in mammalian cells as studied by somatic hybridization. Proc Natl Acad Sci USA. 1966;56:1437–1440. doi: 10.1073/pnas.56.5.1437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Davidson RL, Ephrussi B, Yamamoto K. Regulation of melanin synthesis in mammalian cells, as studied by somatic hybridization. I. Evidence for negative control. J Cell Physiol. 1968;72:115–127. doi: 10.1002/jcp.1040720206. [DOI] [PubMed] [Google Scholar]
  18. Davis RL, Weintraub H, Lassar AB. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987;51:987–1000. doi: 10.1016/0092-8674(87)90585-X. [DOI] [PubMed] [Google Scholar]
  19. Eglitis MA, Mezey E. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA. 1997;94:4080–4085. doi: 10.1073/pnas.94.8.4080. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Engel E, McGee BJ, Harris H. Cytogenettic and nuclear studies on A9 and B82 cells fused together by Sendai virus: The early phase. J Cell Sci. 1969;5:93–120. doi: 10.1242/jcs.5.1.93. [DOI] [PubMed] [Google Scholar]
  21. Ferrari G, Cusella-DeAngelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F. Muscle regeneration by bone marrow-derived myogenic progenitors. Science. 1998;279:1528–1530. doi: 10.1126/science.279.5356.1528. [DOI] [PubMed] [Google Scholar]
  22. Finch BW, Ephrussi B. Retention of multiple developmental potentialities by cells of a mouse testicular teratocarcinoma during prolonged culture in vitro and their extinction upon hybridization with cells of permanent lines. Proc Natl Acad Sci USA. 1967;57:615–621. doi: 10.1073/pnas.57.3.615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Fischberg M, Gurdon JB, Elsdale TR. Nuclear transplantation in Xenopus laevis. Nature. 1958;181:424. doi: 10.1038/181424a0. [DOI] [PubMed] [Google Scholar]
  24. Fougere C, Weiss MC. Phenotypic exclusion in mouse melanoma-rat hepatoma cells: Pigment and albumin production are not reexpressed simultaneously. Cell. 1978;15:843–854. doi: 10.1016/0092-8674(78)90269-6. [DOI] [PubMed] [Google Scholar]
  25. Gopalakrisnan TV, Anderson WF. Epigenetic activtion of phenylalanine hydroxylase in mouse erythroleukemia cells by the cytoplast of rat hepatoma cells. Proc Natl Acad Sci USA. 1979;76:3932–3936. doi: 10.1073/pnas.76.8.3932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Gurdon JB. Adult frogs derived from the nuclei of single somatic cells. Develop Biol. 1962;4:256–273. doi: 10.1016/0012-1606(62)90043-X. [DOI] [PubMed] [Google Scholar]
  27. Gurdon JB, Melton DA. Gene transfer in amphibian eggs and oocytes. Ann Rev Genet. 1981;15:189–218. doi: 10.1146/annurev.ge.15.120181.001201. [DOI] [PubMed] [Google Scholar]
  28. Gussoni E, Soneoka Y, Strickland CD, Buzney EA, Khan MK, Flint AF, Kunkel LM, Mulligan RC. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature. 1999;401:390–394. doi: 10.1038/43919. [DOI] [PubMed] [Google Scholar]
  29. Harris H, Watkins JF. Hybrid cells derived from mouse and man: Artificial heterokaryons of mammalian cells from different species. Nature. 1965;205:640–646. doi: 10.1038/205640a0. [DOI] [PubMed] [Google Scholar]
  30. Hernandez LD, Hoffman LR, White JM. Virus-cell and cell-cell fusion. Annu Rev Cell Dev Biol. 1996;12:627–661. doi: 10.1146/annurev.cellbio.12.1.627. [DOI] [PubMed] [Google Scholar]
  31. Iwakura Y, Nozaki M, Asano M, Yoshida MC, Tsukada Y, Hibi N, Ochiai A, Tahara E, Tosu M, Sekiguchi T. Pleiotropic phenotypic expression in cybrids derived from mouse teratocarcinoma cells fused with rat myoblasts. Cell. 1985;43:771–779. doi: 10.1016/0092-8674(85)90251-X. [DOI] [PubMed] [Google Scholar]
  32. Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest. 2001;107:1395–1402. doi: 10.1172/JCI12150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Jami J, Failly C, Ritz E. Lack of expression of differentiation in mouse teratoma-fibroblast somatic cell hybrids. Exp Cell Res. 1973;76:191–199. doi: 10.1016/0014-4827(73)90435-7. [DOI] [PubMed] [Google Scholar]
  34. Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418:41–9. doi: 10.1038/nature00870. [DOI] [PubMed] [Google Scholar]
  35. Kahn CR, Berttolotti R, Ninio M, Weiss MC. Short-lived cytoplasmic regulators of gene expression in cell hybrids. Nature. 1981;290:717–720. doi: 10.1038/290717a0. [DOI] [PubMed] [Google Scholar]
  36. Kahn CR, Gopalakrishnan TV, Weiss MC. Transfer of heritable properties by cell cybridization: Specificity and the role of selective pressure. Somatic Cell Genet. 1981;7:547–565. doi: 10.1007/BF01549658. [DOI] [PubMed] [Google Scholar]
  37. Korbling M, Katz RL, Khanna A, Ruifrok AC, Rondon G, Albitar M, Champlin RE, Estrov Z. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med. 2002;346:738–746. doi: 10.1056/NEJMoa3461002. [DOI] [PubMed] [Google Scholar]
  38. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105:369–377. doi: 10.1016/S0092-8674(01)00328-2. [DOI] [PubMed] [Google Scholar]
  39. Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nature Med. 2000;6:1229–1234. doi: 10.1038/81326. [DOI] [PubMed] [Google Scholar]
  40. Lemiscka I. Rethinking somatic stem cell plasticity (Commentary) Nature Biotechnol. 2002;20:425. doi: 10.1038/nbt0502-425. [DOI] [PubMed] [Google Scholar]
  41. Lewis WH. The formation of giant cells in tissue culture and their similarity to those in tuberculous lesions. Am Rev Tuberc. 1927;15:616–628. [Google Scholar]
  42. Lipsich LA, Kates JR & Lucas JJ (1979) Expression of a liverspecific function by mouse fibroblast nuclei transplanted into rat hepatoma cytoplasts. Nature 281: 74–76. [DOI] [PubMed]
  43. Lipsich LA, Lucas JJ, Kates JR. Cell cycle dependence of the reactivation of chick erythrocyte nuclei after transplantation into mouse L929 cytoplasts. J Cell Physiol. 1978;97:199–208. doi: 10.1002/jcp.1040970209. [DOI] [PubMed] [Google Scholar]
  44. Littlefield JW. Selection of hybrids from matings of fibroblasts in vitro and their presumed recombinants. Science. 1964;145:709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
  45. Lucas JJ (1983) Somatic cell hybridization. In: N Maclean, SP Gregory & RA Flavell (eds.) Eukaryotic Genes: Their Structure, Activity and Regulation (pp. 117-126) Butterworths, London.
  46. Lucas JJ, Kates JR. The construction of viable nuclearcytoplasmic hybrid cells by nuclear transplantation. Cell. 1976;7:397–405. doi: 10.1016/0092-8674(76)90169-0. [DOI] [PubMed] [Google Scholar]
  47. Maclean N, Hall BK. Cell Commitment and Differentiation. Cambridge: Cambridge University Press; 1987. [Google Scholar]
  48. McBurney MW. Hemoglobin synthesis in cell hybrids formed between teratocarcinoma cells and friend erythroleukemia cells. Cell. 1977;12:653–662. doi: 10.1016/0092-8674(77)90265-3. [DOI] [PubMed] [Google Scholar]
  49. McBurney MW, Featherstone MS, Kaplan H. Activation of teratocarcinoma-derived hemoglobin genes in teratocarcinomafriend cell hybrids. Cell. 1978;15:1323–1330. doi: 10.1016/0092-8674(78)90057-0. [DOI] [PubMed] [Google Scholar]
  50. McBurney MW, Strutt B. Fusion of embryonal carcinoma cells to fibroblast cells, cytoplasts, and karyoplasts. Exp Cell Res. 1979;124:171–180. doi: 10.1016/0014-4827(79)90267-2. [DOI] [PubMed] [Google Scholar]
  51. McKay R. A more astonishing hypothesis (Commentary) Nature Biotechnol. 2002;20:426–427. doi: 10.1038/nbt0502-426. [DOI] [PubMed] [Google Scholar]
  52. Mercer WE, Schlegel RA. Cytoplasts can transfer factor(s) that stimulate quiescent fibroblasts to enter S phase. J Cell Physiol. 1982;110:311–314. doi: 10.1002/jcp.1041100315. [DOI] [PubMed] [Google Scholar]
  53. Mevel-Ninio M, Weiss MC. Immunofluorescence analysis of the time-course of extinction, reexpression, and activation of albumin production in rat hepatoma-mouse fibroblast heterokaryons and hybrids. J Cell Biol. 1981;90:339–350. doi: 10.1083/jcb.90.2.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR. Turning blood into brain cells bearing neuronal antigens generated in vivo from bone marrow. Science. 2000;290:1779–1782. doi: 10.1126/science.290.5497.1779. [DOI] [PubMed] [Google Scholar]
  55. Migeon BR, Miller CS. Human-mouse somatic cell hybrids with single human chromosome (group E): Link with thymidine kinase activity. Science. 1968;162:1005–1006. doi: 10.1126/science.162.3857.1005. [DOI] [PubMed] [Google Scholar]
  56. Miller RA, Ruddle FH. Pluripotent teratocarcinomathymocyte somatic cell hybrids. Cell. 1976;9:45–55. doi: 10.1016/0092-8674(76)90051-9. [DOI] [PubMed] [Google Scholar]
  57. Okada Y. The fusion of Ehrlich's tumor cells caused by HVJ virus in vitro. Biken's J. 1958;1:103–110. [Google Scholar]
  58. Okada Y, Murayama F. Multinucleated giant cell formation by fusion between cells of two different strains. Exp Cell Res. 1965;40:154–158. doi: 10.1016/0014-4827(65)90303-4. [DOI] [PubMed] [Google Scholar]
  59. Orlic D, Kajstura J, Chimenti S, Limana F, Jakoniuk I, Quaini F, Nadal-Ginard B, Bodine DM, Leri A, Anversa P. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc Nat. Acad Sci USA. 2001;98:10344–10349. doi: 10.1073/pnas.181177898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Pesce M, Gross MK, Scholer HR. In line with our ancestors: Oct-4 and the mammalian germ. Bioessays. 1998;20:722–732. doi: 10.1002/(SICI)1521-1878(199809)20:9<722::AID-BIES5>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  61. Petersen BE, Bowen WC, Patrene KD, Mars WM, Sullivan AK, Murase N, Boggs SS, Greenberger JS, Goff JP. Bone marrow as a potential source of hepatic oval cells. Science. 1999;284:1168–1170. doi: 10.1126/science.284.5417.1168. [DOI] [PubMed] [Google Scholar]
  62. Pontecorvo G. Production of indefinitly multiplying mammalian somatic cell hybrids by polyethylene glycol (PEG) treatment. Somatic Cell Genet. 1976;1:397–400. doi: 10.1007/BF01538671. [DOI] [PubMed] [Google Scholar]
  63. Poste G, Reeve P. Formation of hybrid cells and heterokaryons by fusion of enucleated and nucleated cells. Nature, New Biol. 1971;229:123–125. doi: 10.1038/229123a0. [DOI] [PubMed] [Google Scholar]
  64. Poste G, Reeve P. Enucleation of mammalian cells by cytochalasin B. II. Formation of hybrid cells and heterokaryons by fusion of anucleate and enucleated cells. Exp Cell Res. 1972;73:287–294. doi: 10.1016/0014-4827(72)90050-X. [DOI] [PubMed] [Google Scholar]
  65. Prescott DM, Meyerson D, Wallace J. Enucleation of mammalian cells with cytochalasin B. Exp Cell Res. 1972;71:480–485. doi: 10.1016/0014-4827(72)90322-9. [DOI] [PubMed] [Google Scholar]
  66. Rao P, Johnson RT. Mammalian cell fusion: Studies on the regulation of DNA synthesis and mitosis. Nature. 1970;225:159–164. doi: 10.1038/225159a0. [DOI] [PubMed] [Google Scholar]
  67. Resnitzky DM, Gossen M, Bujard H, Reed SI. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol Cell Biol. 1994;14:1669–1679. doi: 10.1128/mcb.14.3.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Ringertz NR, Savage RE. Cell Hybrids. New York: Academic Press; 1976. [Google Scholar]
  69. Ruddle FH, Chapman VM, Ricciuti F, Murnane M, Klebe R, Meera Khan P. Linkage relationships of seventeen human gene loci as determined by man-mouse somatic cell hybrids. Nature, New Biol. 1971;232:69–73. doi: 10.1038/newbio232069a0. [DOI] [PubMed] [Google Scholar]
  70. Ruddle FH, Kucherlapati RS. Hybrid cells and human genes. Sci Am. 1974;231:36–44. doi: 10.1038/scientificamerican0774-36. [DOI] [PubMed] [Google Scholar]
  71. Russo S, Tomatis D, Collo G, Tarone G, Tato F. Myogenic conversion of NIH3T3 cells by exogenous MyoD family members: Dissociation of terminal differentiation from myotube formation. J Cell Sci. 1998;111:691–700. doi: 10.1242/jcs.111.6.691. [DOI] [PubMed] [Google Scholar]
  72. Sata M, Saiura A, Kunisato A, Tojo A, Okada S, Tokuhisa T, Hirai H, Makuuchi M, Hirata Y, Nagai R. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nature Med. 2002;8:403–409. doi: 10.1038/nm0402-403. [DOI] [PubMed] [Google Scholar]
  73. Schneider JA, Weiss MC. Expression of differentiated functions in hepatoma cell hybrids. I. Tyrosine aminotransferase in hepatoma-fibroblast hybrids. Proc Natl Acad Sci USA. 1971;68:127–131. doi: 10.1073/pnas.68.1.127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Shimizu K, Sugiyama S, Aikawa M, Fukumoto Y, Rabkin E, Libby P, Mitchell RN. Host bone-marrow cells are a source of donor intimal smooth-muscle-like cells in murine aortic transplant arteriopathy. Nature Med. 2001;7:738–741. doi: 10.1038/89121. [DOI] [PubMed] [Google Scholar]
  75. Spear BT, Tilghman SM. Role of alpha-fetoprotein regulatory elements in transcriptional activation in transient heterokaryons. Mol Cell Biol. 1990;10:5047–5054. doi: 10.1128/mcb.10.10.5047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Surani MA. Reprogramming of genome function through epigenetic inheritance. Nature. 2001;414:122–128. doi: 10.1038/35102186. [DOI] [PubMed] [Google Scholar]
  77. Szybalski W, Szbalski EH, Ragni G. Genetic studies with human cell lines. Natl Cancer Inst Monograph. 1962;7:75–89. [Google Scholar]
  78. Tada M, Tada T, Lefebvre L, Barton SC, Surani MA. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 1997;16:6510–6520. doi: 10.1093/emboj/16.21.6510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Bio. 2001;11:1553–1558. doi: 10.1016/S0960-9822(01)00459-6. [DOI] [PubMed] [Google Scholar]
  80. Takagi N, Yoshida MA, Sugawara O, Sasaki M. Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma cells in vitro. Cell. 1983;34:1053–1062. doi: 10.1016/0092-8674(83)90563-9. [DOI] [PubMed] [Google Scholar]
  81. Taylor MV. Muscle differentiation: How two cells become one. Curr Biol. 2002;12:R224–R228. doi: 10.1016/S0960-9822(02)00757-1. [DOI] [PubMed] [Google Scholar]
  82. Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz DM, Nakano Y, Meyer EM, Morel L, Petersen BE, Scott EW. Bone marrow cells adopt the phenotype of other cells by spontaneous fusion. Nature. 2002;416:542–545. doi: 10.1038/nature730. [DOI] [PubMed] [Google Scholar]
  83. Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L, Henegariu O, Krause DS. Liver from bone marrow in human. Hepatology. 2000;32:11–16. doi: 10.1053/jhep.2000.9124. [DOI] [PubMed] [Google Scholar]
  84. Tsai YL, Kittappa R, McKay RDG. Plasticity, niches, and the use of stem cells (Meeting review) Develop Cell. 2002;2:707–712. doi: 10.1016/S1534-5807(02)00195-8. [DOI] [PubMed] [Google Scholar]
  85. Veomett G, Prescott DM, Shay J, Porter KR. Reconstruction of mammalian cells from nuclear and cytoplasmic components separated by treatment with cytochalasin B. Proc Natl Acad Sci USA. 1974;71:1999–2002. doi: 10.1073/pnas.71.5.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Vignery A. Osteoclasts and giant cells: Macrophagemacrophage fusion mechanisms. Intnatl J Exptl Path. 2000;81:291–304. doi: 10.1111/j.1365-2613.2000.00164.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Weiss MC, Green H. Human-mouse hybrid cell lines containing partial compements of human chromosomes and functioning human genes. Proc Natl Acad Sci USA. 1967;58:1104–1111. doi: 10.1073/pnas.58.3.1104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. Weissman IL, Anderson DJ, Gage F. Stem and progenitor cells: Origins, phenotypes, lineage commitments, and transdifferentiation. Annu Rev Cell Dev Biol. 2001;17:387–403. doi: 10.1146/annurev.cellbio.17.1.387. [DOI] [PubMed] [Google Scholar]
  89. White JM, Rose MD. Yeast mating: Getting close to membrane merger. Curr Biol. 2001;11:R16–R20. doi: 10.1016/S0960-9822(00)00036-1. [DOI] [PubMed] [Google Scholar]
  90. Wilmut I, Beaujean N, de Sousa PA, Dinnyes A, King TJ, Paterson LA, Wells DN, Young LE. Somatic cll nuclear transfer. Nature. 2002;419:583–586. doi: 10.1038/nature01079. [DOI] [PubMed] [Google Scholar]
  91. Wimmel A, Lucibello FC, Sewing A, Adolf S, Muller R. Inducible acceleration of G1 progression through tetercyclineregulated expression of human cyclin E. Oncogene. 1994;9:995–997. [PubMed] [Google Scholar]
  92. Wright WE, Hayflick L. Formation of anucleate and multinucleate cells in normal and SV40 transformed WI-38 by cytochalasin B. Exp Cell Res. 1972;74:187–194. doi: 10.1016/0014-4827(72)90496-X. [DOI] [PubMed] [Google Scholar]
  93. Wu KJ, Samuelson LC, Howard G, Meisler MH, Darlington GJ. Transactivation of pancreas-specific gene sequences in somatic cell hybrids. Mol Cell Biol. 1991;11:4423–4430. doi: 10.1128/mcb.11.9.4423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Yeom YI, Fuhrmann G, Ovitt CE, Brehm A, Ohbo K, Gross M, Hubner K, Scholer HR. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Develop. 1996;122:881–894. doi: 10.1242/dev.122.3.881. [DOI] [PubMed] [Google Scholar]
  95. Ying QL, Nichols J, Evans EP, Smith AG. Changing potency by spontaneous fusion. Nature. 2002;416:545–548. doi: 10.1038/nature729. [DOI] [PubMed] [Google Scholar]
  96. Zepp HD, Conover JH, Hirschhorn K, Hodes HL. Human mosquito somatic cell hybrids induced by ultraviolet-inactivated Sendai virus. Nature, New Biol. 1971;229:119–121. doi: 10.1038/229119a0. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES