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Abstract

Genome-wide association (GWA) studies, where hundreds of thousands of single-nucleotide
polymorphisms (SNPs) are tested simultaneously, are becoming popular for identifying disease
loci for common diseases. Most commonly, a GWA study involves two stages: the first stage
includes testing the association between all SNPs and the disease and the second stage includes
replication of SNPs selected from the first stage to validate associations in an independent sample.
The first stage is considered to be more fundamental since the second stage is contingent on the
results of the first stage. Selection of SNPs from stage one for genotyping in stage two is typically
based on an arbitrary threshold or controlling type | errors. These strategies can be inefficient and
have potential to exclude genotyping of disease-associated SNPs in stage two. We propose an
approach for selecting top SNPs that uses a strategy based on the false-negative rate (FNR). Using
the FNR approach, we proposed the number of SNPs that should be selected based on the
observed p-values and a pre-specified multi-testing power in the first stage. We applied our
method to simulated data and a GWA study of glioma (a rare form of brain tumor) data. Results
from simulation and the glioma GWA indicate that the proposed approach provides an FNR-based
way to select SNPs using pre-specified power.
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1. Introduction

Genome-wide association (GWA) studies have been shown to be a powerful approach to
identify common variants for many complex diseases [1, 6, 9, 13, 22]. GWA studies are
designed to identify common, low-penetrance disease alleles without prior knowledge of
their location and function [9]. Over the past few years, GWA studies have been applied to
many different complex diseases and have identified a large number of genetic variants,
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such as those associated with coronary heart disease [6, 12, 19, 23], type 2 diabetes [25, 27,
30, 38], lung cancer [2, 15, 35], prostate cancer [10, 34], colorectal cancer [14, 36],
melanoma [4], and glioma [28, 37].

In a GWA study typically hundreds of thousands of single-nucleotide polymorphisms
(SNPs), which are the most common form of genetic variants, are genotyped using high-
throughput technologies. Such analyses are costly and time consuming. Also, the large
number of tests performed leads to a high proportion of false-positives. Most GWA studies
are therefore based on multistage designs, in order to reduce the number of false-positive
results, minimize the amount of genotyping performed, and retain power [13, 29]. Generally,
for multistage designs, the investigator performs a genome-wide scan on an initial group of
case and control participants and then replicates a much smaller number of associated SNPs
in a second or third group of cases and controls. For example, in a type 2 diabetes study,
Sladek et al.[30] selected 57 SNPs from the first-stage analyses, tested these SNPs in an
independent sample of 2,617 cases and 2,894 controls in the second stage, and finally
confirmed association with 8 SNPs using the combined results from the two stages. In a
glioma study, 34 SNPs were prioritized as showing significant associations in the first stage.
The investigators then conducted a replication study of these 34 SNPs in three case-control
series that included 5,498 individuals in the second stage, and confirmed the association
with 14 SNPs [28]. In a lung cancer study, Amos et al. [2] selected the top 10 SNPs from the
first-stage analyses, tested these SNPs in an additional sample of 711 cases and 632 controls
from Texas and 2,013 cases and 3,062 controls from the United Kingdom in the second
stage, and confirmed 2 SNPs associated with the risk of lung cancer.

In GWA studies, investigators typically choose the top SNPs in the first stage and then test
the selected SNPs for replication in an independent sample in the second stage. Therefore, in
the first stage of a GWA study, the investigators hope to include disease-associated SNPs in
the set of SNPs that are to be replicated. So, it is important to decide the number of top SNPs
to select in the first stage. If more SNPs are selected in the first stage, more genotyping is
required in the second stage; if fewer SNPs are selected in the first stage, some of the SNPs
that are potentially causal might not be included for replication in the second stage. Mostly,
in the first stage of current GWA studies, investigators select top SNPs for replication based
on an arbitrary cutoff p-value (e.g. p-value < 107 as in the glioma GWA study [28]) or an
arbitrarily fixed number of SNPs (e.g. 10 top SNPs as in the lung cancer GWA study [2]). If
the investigators are selecting a very large number of SNPs (e.g. top 1000 SNPs) or a very
liberal significance level (e.g. p-value < 1072), they might include more disease-associated
SNPs for replication. However, such strategies would require a large number of SNPs to be
genotyped. Moreover, it may not be necessary to select such a large number of top SNPs.
The alternative is to select the top SNPs using the approaches based on controlling type |
errors in the stage one, such as the Bonferroni correction or Benjamini-Hochberg False
Discovery Rate (BH-FDR) approach. These approaches can control the type | error very
well, but are usually very conservative, and might exclude the potentially interesting
(disease-associated) SNPs from the analysis of second stage. Therefore, instead of using
arbitrary thresholds or using the criterion based on controlling the type | errors, the purpose
of this paper is to propose a selection criterion for the first stage of GWA studies based on
the power of the multiple testing.

In this paper, we propose an approach for selecting top SNPs from the first stage by using
the false-negative rate (FNR). FNR is a measure of the type Il error rate for multiple testing,
which is defined as the expected proportion of falsely not-rejected hypotheses among all
alternative hypotheses [20, 21]. Delongchamp et al. [7] called the same quantity the
“Fraction of Genes Not Selected” in their study. This is the definition of FNR that we will
use throughout our paper. It should be noted that some other investigators have defined FNR
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differently [11, 24, 33]. Genovese and Wasserman [11] defined the “False Nondiscovery
Rate” as the proportion of non-rejections that are incorrect. This was also referred to as the
“False Negative Rate” by Sarkar [24] and the “Miss Rate” by Taylor et al. [33].

Using the proposed FNR approach, we selected SNPs on the basis of observed p-values and
pre-specified multi-testing powers, which is also defined as (1 — false-negative rate), in the
first stage of a GWA study. To test the performance of the FNR-based SNP selection
approach, we performed simulation studies under different scenarios. We compared our
FNR-based approach to the fixed p-value cutoff approach, fixed number of SNPs cutoff
approach, Bonferroni correction and BH-FDR approach. We also applied the proposed
approach to the analysis of SNP genotype data from 1,247 glioma patients and 2,232
controls. Our results from the simulation and real data analyses show that the proposed
approach provides an FNR-based criterion to select top SNPs in the first stage, while
attaining adequate power.

2. Methods and Materials
2.1 Statistical Methods

In our study, we considered a GWA study with /77 SNPs. The null hypothesis was no
association between a SNP and the phenotype of interest, and the alternative hypothesis was
that there is an association. Let /1y denote the number of true null hypotheses and /77, denote
the number of alternative hypotheses, where m = m — my. Therefore, in the GWA study, we
had /m disease-associated SNPs and 1y unassociated SNPs. We performed logistic
regression analysis for each SNP and obtained a p-value for each SNP using Wald's test.
Table 1 shows the outcomes of these /m multiple tests at a specified significance level a.

From Table 1, we can see that, statistically, there are two groups of SNPs based on a given
significance level: the SNPs whose estimated effects are declared significantly different than
zero () and those declared not to be significantly different than zero (/- r). The SNPs that
were significant can be further classified into two groups: one group is from the true null
hypotheses (1), in which the SNPs were selected as a consequence of type | error; the other
group is from the true alternative hypotheses (r1), in which the SNPs are true positives.
Given rmy as the true null hypothesis and a nominal significance level of a, statistically, rp =
a x my tests would show a false significant association (false positive, type | error) between
the SNPs and the phenotype of interest, and 7y — 1 tests would show no significant
association between the SNPs and the phenotype (true negative). Among all the /m true
alternative hypotheses, 7 — r; tests would show no association between the SNPs and the
phenotype (false negative, type Il error), and r, = r— rp = r— a % n tests would indicate a
significant association (true positive).

In this paper, we proposed an approach to select top SNPs in the first stage of a GWA study
using a strategy based on FNR. FNR, as defined in this paper, is a measure of the type Il
error rate for multiple tests, or the expected proportion of falsely not-rejected hypotheses
among all alternative hypotheses [20, 21]. In our study, FNR is defined as the proportion of
SNPs that are associated with the disease of interest but not selected in the first stage of the
GWA study. By using a strategy based on FNR, we can obtain the number of SNPs that
should be selected given a pre-specified overall study power based on performing rm tests.

To begin with, assume that /1 is known (we will describe how to estimate this value later).
At a given significance level a, we can evaluate the power of m independent multiple tests
by using the formula:
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my m—mog—(r—axXmg) r—aXmy
power=1 —B=1 — =1- = ,
m m—mg m—my

where mis the total number of SNPs, /m is the number of true -unassociated SNPs, ris the
number of SNPs rejected at a significance level a, /m is the number of true disease-
associated SNPs, and r; is the number of true disease-associated SNPs found significant in
the analysis. Therefore, gis the type Il error rate and 1 - gis the study power.

Using the above formula, if the power of multiple testing is specified the number of SNPs to
be selected from among all true disease-associated SNPs to achieve this power can be
derived. Let py, ..., py be the p-values of the /7 SNPs, and denote p1) < gy < - < oy < -
< Pm) as the ranked p-values, so g is the kth smallest p-value. If the top A SNPs with the
lowest p-values are selected at the significance level a, then there are A SNPs with p-values
less than the significance level a. For our purpose, we therefore substitute g4 for a and &
for rin the above formula, and then the power of multiple tests is given by:

- m—mo— (k—pgy Xmp) k—pu Xm
power:]—,B:]—mI g o — (k= pw) 0): Y205 07

mj m— mo m— mo

where g4 is the kth-order of p-value. From this formula, /77is known and /77 can be
estimated (see below). The power is a function of &; and to calculate the number &; we
started with 4= 1 and stopped when for the first time, the power value in above formula was
greater than or equal to the pre-specified power. Therefore, if the power is pre-specified, the
ranking value &; which is the number of SNPs selected, can be obtained based on the
observed p-values.

As we discussed previously, to compute the number of SNPs selected, or &, we need to
estimate 7775, denoted by /7%, the number of true null hypotheses [3, 26, 31]. In our study, we
employed three different methods to estimate the value of /1. The first method we used was
the adaptive linear step-up procedure [3, 31, 32]. For this approach, /7y was computed as (m
- n(A))/(1 - 1), where A was a tuning parameter for the p-values between the null and
alternative hypotheses and (1) was the number of p-values less than or equal to the
parameter A. It has been shown that, the estimator /7% is unbiased if all p-values were from
null hypotheses (i.e. from uniform (0, 1) distribution) [5, 32]. However, when both null and
alternative p-values are included, the estimate of /77, tends to be overestimated. When A
approaches 0, the bias of the estimate gets larger and the estimate is too conservative; while
when A approaches 1, the bias gets smaller but the variance of this estimate gets larger.
Therefore, selecting an appropriate A is significant in efficiently estimating /7%. In general, a
bootstrapping procedure is suggested to obtain the optimal A. However, in Storey's paper
[31], he also suggested that when the proportion of true alternative hypotheses is very small
among all hypotheses, the best A should be close to 0. This is indeed the case in the GWA
studies, where the proportion of the disease-associated SNPs is likely to be small. Therefore,
in this paper, we used different values of A, such as 107>, 5x107°, 1074, and 1073, The
second method is referred to as the two-stage linear step-up procedure [3]. For this method,
we used a modified significance level a "= a/(1 + a), where a is the nominal statistical
significance level. We then evaluated the number of hypotheses rejected by

 k
r=max(kipe <@ X k=1.....m¢ anq m0 was estimated as m— . The last approach is

the adaptive Benjamini-Hochberg procedure [3]. In this procedure, my(k) = (m+ 1 - K)I(1 -
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P(w) is defined as a function of ranked p-values and corresponding ranks. The procedure
started with &= 2 and stopped at the smallest & value for which m(A) >my(k—1). The
estimated /7y is the minimum of (m(K),m), rounding up to the next highest integer. In the
simulation study, we found that the two-stage and the adaptive Banjamini-Hochberg
approaches were relatively low powered and the adaptive linear step-up procedure was more
robust than the other two methods; therefore, we only report results using this procedure in
the paper.

2.2 Simulation Study

3. Results

In order to investigate the performance of the FNR-based approach for selection of top SNPs
in the first stage of a GWA study, we applied forward-time simulation software
(genomeSIM) to simulate large-scale genomic data in a population [8]. The specific
parameters used for simulation are detailed in Table S1 in the Supplementary Material. We
simulated 100 replicates, each with 4,000 individuals and 500,000 SNPs for each individual.

We used a logistic regression model to simulate the case-control status. We studied five
different models using different numbers of causal SNPs (5, 10, 15, 20, and 25 causal
SNPs). For simplicity, we also assumed that the causal SNPs were independent (i.e., no
linkage disequilibrium among causal SNPs). Within each model, we defined a range of odds
ratios (ORs) for the causal SNPs. The ORs used for simulating case-control status are listed
in Table 2. For example, for Model 4, we assumed that there were 20 causal SNPs
associated with the disease: 3 SNPs with OR = 1.2, 3 SNPs with OR = 1.3, 3 SNPs with OR
= 1.4, 3 SNPs with OR = 1.5, 3 SNPs with OR = 1.6, 3 SNPs with OR = 1.7, and 2 SNPs
with OR = 1.8. We further denote ¥;={0, 1}, /=1, ..., M, as the outcome variables of case-
control status of Mindividuals in the study, with O representing the individuals in the control
group and 1 representing the individuals in the case group. So the logistic regression model
is defined below:

Logit(p(Y;=1)=Bo+ Y . BiXij.

where X (/=1, ..., n j=1, ..., M) represent the categorical random variable for each
individual with respect to the value of the three genotypes {0, 1, 2} for 77 causal SNPs. B{(/=
1, ..., n) were the logistic regression coefficients, which are equal to Log(ORs). For each
model, using specific intercept coefficient B, we randomly selected 1,000 cases and 1,000
controls from the 4,000 individuals for each replicate. In our study, we coded the genotypes
as an additive model. The FNR approach is, however, not limited to the additive model and
can readily be applied to the dominant or recessive models using appropriate genotype
coding. The heritability associated with the simulated models was calculated using the
expected squared residual between the observed and the predicted disease status [16-18].
The values of heritability are listed in Table 2. For example, for Model 2, the 10 causal
SNPs explained 14.2% of the residual variance. In this study, we performed the statistical
analyses using R (v 2.8) and Matlab (v R2007a).

Table 3 shows the numbers of SNPs that should be selected by the five models using the
FNR approach given different pre-specified multi-testing powers. The results were also
based on the following parameters: A = 10", 5x10, 104, and 10-3. We reported the median
numbers of SNPs selected, as well as the 15t and the 3" quartile (Q; and Q3) numbers of
SNPs selected, based o 100 replicates. Each replicate included 1,000 cases and 1,000
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controls. The results of the FNR approach are also reported according to the pre-specified
multi-testing powers of 50%, 60%, 70%, 80%, and 90%.

Table 3 shows that to achieve higher power, more SNPs need to be selected as expected. For
example, in Model 4, for A = 104, to achieve the pre-specified multi-testing power of 50%,
the median number of SNPs selected was 48, and the Q; and Q3 numbers were 38 and 54,
respectively; to achieve the pre-specified power of 60%, the median number of SNPs
selected was 62; to achieve the pre-specified power of 70%, the median number of SNPs
selected was 75; to achieve the pre-specified power of 80%, the median number of SNPs
selected was 92; and to achieve the pre-specified power of 90%, the median number of
SNPs selected was 111. Similar trends were observed for other models.

In most cases, when the number of causal SNPs increased, the number of SNPs selected also
increased, given the same parameter value (Table 3). For example, given A = 1074, to
achieve the pre-specified multi-testing power of 80% in Model 1, when there were 5 causal
SNPs, we needed to select 28 top SNPs using the FNR approach. When the numbers of
causal SNPs were 10, 15, and 20, we needed to select the top 46, 70, and 92 SNPs,
respectively, to achieve the same power. However, using the same parameter in Model 5,
where the number of causal SNPs was 25, to achieve 80% pre-specified power, we only
needed to select 81 SNPs. This result could be due to variations in the ORs that were used in
different simulation scenarios. Furthermore, as shown in Table 3, we also found that the
number of SNPs selected increased as the parameter A value increased, which is expected
because the number of alternative hypotheses increases in proportion to the value of A. For
example, in Model 4, to achieve the pre-specified power of 80%, we needed to select the top
33 SNPs using our FNR approach when A = 1072, When the parameter A values were
5x10°, 104, and 1073, we needed to select the top 63, 92, and 456 SNPs, respectively, to
achieve the same power based on the median of 100 replicates. The large difference between
the number of top SNPs selected using A = 10 and A = 1073 could be due to the non-
uniform property of the distribution of p-values.

We also evaluated the number of top SNPs selected using the traditional approaches for
comparison: Bonferroni correction, BH-FDR approach, and fixed p-value cutoff (see Table
4). As expected, the approaches based on controlling type | errors are very conservative. For
example, in Model 1, there were 5 causal SNPs in the model, but only 3 top SNPs were
selected using Bonferroni correction, and 4 top SNPs were selected using BH-FDR
approach, at a genome-wide 5% level of significance. More interestingly, we observed that
the numbers of top SNPs selected using the type | error-based approaches are similar to
those obtained using our FNR-based approach with a stringent parameter value A = 10°5: the
results from Bonferroni correction are similar to those obtained from our approach with pre-
specified multiple testing power of 50%, and the results from BH-FDR are similar to those
from our approach with pre-specified multiple testing power of 60%~70%. For the
traditional p-value cutoff of p value < 103, it is expected that in most cases, the number of
top SNPs selected increases as the number of causal SNPs increases. For example, in Model
1, where there were 5 causal SNPs, 12 SNPs (Q; =9 and Q3 = 14) had p-values less than the
specified threshold, based on the median of 100 replicates. The numbers of top SNPs
selected were 18, 30, and 44 when the numbers of causal SNPs were 10, 15, and 20,
respectively. In Model 5, when there were 25 causal SNPs, 34 top SNPs were selected,
which could be due to variations in ORs in the different models. Many GWA studies select
arbitrary numbers of top SNPs in stage one, so we also employed a fixed number of SNPs
cutoff for each model, including selections of 10, 20, and 30 top SNPs, which are
concordant with the commonly used cutoffs in current GWA studies. Obviously, for all the
traditional approaches discussed here, for each model, there is only one number of top SNPs
selected in this situation, since no false negative rate will be attached to these approaches.
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We compared the number of causal SNPs with different ORs selected using the FNR-based
method, given the different A values and a pre-specified power of 80%, to the number of
causal SNPs selected using the traditional approaches discussed above (Table 5). In the
simulated data, the numbers and locations of the causal SNPs were known for the different
simulation models. Therefore, given a number of how many top SNPs were selected, the
exact number of causal SNPs selected and the corresponding ORs were known. As expected,
when the ORs were high (i.e., OR = 1.7 or 1.8), all approaches showed very similar results
and the corresponding causal SNPs were selected with a higher probability. All the causal
SNPs associated with OR = 1.8 were selected for all 5 models by using different approaches,
except for the approaches using the Bonferroni correction and the fixed top 10 SNPs in
Model 3, which only selected 1 of the 2 causal SNPs associated with OR = 1.8. We observed
a similar trend for the causal SNPs associated with OR = 1.7. When the ORs decrease, it is
not surprising that all approaches would select the corresponding causal SNPs with a lower
probability. When the OR was small (i.e., OR = 1.2), we found that given the sample size,
none of the approaches could identify the corresponding causal SNPs. However, we also
observed that when the OR was moderate, such as OR = 1.3 and 1.4, which are similar to the
ORs reported in the current GWA studies, our FNR-based approach could identify more
causal SNPs than the traditional approaches. For example, in Model 2, there are 2 SNPs with
OR=1.3. Using the traditional approaches, we only can identify half of the causal SNPs
(1/2), whereas using our FNR-based approach with A = 10-3, we can identify all the causal
associated SNPs (2/2) based on the median of the 100 replicates. In Model 3 where there
were 2 causal SNPs associated with OR = 1.3, none of the causal SNPs (0/2) was selected
using the traditional approaches, but 1 of 2 causal SNPs was selected using the FNR-based
approach with parameters A = 104 and 1073,

These findings provide strong support that compared to the traditional fixed p-value cutoffs,
fixed number of top SNPs cutoffs and the type | error-based approaches, the FNR-based
approach has more power to identify moderate significant causal SNPs when using a
relatively liberal parameter A. On the basis of the results from our simulation studies, we
would like to recommend a parameter value of A = 103 for selecting top SNPs for stage one
of GWA studies. In the simulation studies, because the disease-causal SNPs were pre-
defined, we estimated the type I error probabilities and the observed powers for all
approaches in the stage one analysis. Table 6 reports the median type | error probabilities
and median observed powers using the proposed FNR-based approach with different values
of A parameter. As expected, for the FNR-based approach, as the pre-specified multi-testing
power and the value of the parameter A increased, the type I error probabilities increased
because more SNPs were selected. However, it is important to note that the GWA
significance (5%10-8) employed at the end of the experiment (stage two) will control the
overall type | error probabilities. Also, the observed powers of the FNR-based approach
increased with the increase of pre-specified multi-testing power and the value of the
parameter A. Table 7 reports the median type | error probabilities and median observed
powers for the standard approaches.

4. Application to Real Glioma Data

In addition to the simulated data, we applied the proposed FNR-based approach to data from
a GWA study of glioma we have recently conducted [28]. Glioma is a rare and diffusely
infiltrating brain disease. To investigate the FNR-based approach proposed in this paper, we
used SNP genotype data from this whole-genome association analysis. The GWA study was
based on genotyping 1,247 glioma patients and 2,232 controls in the first stage for 499,139
autosomal SNPs. Using these data, we applied the FNR-based approach to estimate the
number of top SNPs to be selected given different pre-specified multi-testing powers in the
first stage. These results are shown in Table 8. Wth the use of the FNR approach with A =
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1074, 49 SNPs were selected to achieve 50% power, and 61, 77, 89, and 113 SNPs were
selected to achieve powers of 60%, 70%, 80%, and 90%, respectively. In the original GWA
study of glioma, 34 SNPs were selected in the first stage using an arbitrary threshold p-value
<105, Subsequent replication of these 34 SNPs was performed in three case-control series
totaling 5,498 individuals confirmed that 14 SNPs were significantly associated with glioma
and identified 5 distinct genetic loci. Using the FNR approach to achieve 80% power, we
would have selected 89 SNPs in the first stage, which could have identified the same 5
genetic loci. It needs to be noted that all the genetic regions we proposed to select in the first
stage have been validated in the second stage of replication in this GWA study of glioma.
The identification of more susceptive SNPs to be repeated in the second stage might allow
us to identify more genetic loci. Actually, if the investigators could have selected more top
SNPs as we suggested using the FNR-based approach with a liberal parameter value of A
(e.g. 1 =10"% or 1073), it would be possible to identify two additional loci associated with
glioma which were recently discovered (unpublished data). Most importantly, compared to
the traditional arbitrary cutoff approach, using the FNR-based approach, one can select top
SNPs in stage one with pre-specified confidence.

5. Discussion

The purpose of this paper is to provide a criterion that the investigators can follow to select
top SNPs in the first stage of a GWA study based on controlling the type Il errors. The
findings from both our analysis of simulated data and our GWA study of glioma indicate
that the proposed approach provides an FNR-based criterion to select more potential
disease-associated SNPs with moderate significance according to pre-specified powers.
Using the FNR-based approach, the number of SNPs to be selected in the first stage on the
basis of observed p-values and a pre-specified multi-testing power can be ascribed, thus
controlling the false negative rate.

To illustrate the performance of the FNR approach, we conducted simulation studies of five
different scenarios, with respect to different numbers of actual causal SNPs for a range of
OR values. As expected, the simulation results showed that more SNPs need to be selected
when the pre-specified multi-testing power increases, as well as when the number of actual
causal SNPs increases. We compared the FNR-based approach using pre-specified powers
to the traditional approaches for selecting SNPs, including fixed p-value cutoffs, fixed
number of SNPs cutoffs, Bonferroni correction and BH-FDR approach. The approaches
based on controlling type | errors (e.g. Bonferroni correction and BH-FDR) are conservative
and select fewer top SNPs for replication in stage two. When the disease-associated SNPs
are highly significant, both the traditional approaches and the FNR-based approach can
identify them. But when the disease-associated SNPs are only moderately significant, the
traditional approaches may lose power to identify them, whereas the FNR-based approach
will have more power to identify this kind of disease-associated SNP. In the simulations, we
assumed that all the causal SNPs are in linkage equilibrium, therefore, single SNP analysis
is valid and provides unbiased estimate of marker effect size. We performed a proof of
principle simulation study to investigate the impact of linkage disequilibrium (LD) among
causal SNPs. We simulated two scenarios. In one scenario the two disease-causal SNPs were
in LD (/2= 0.4) and in the other scenario they were not in LD (/2= 0). We found that the p
values were less significant when causal SNPs were in LD compared to when causal SNPs
were not in LD. Therefore, none of the approaches, including the standard approaches and
the proposed FNR-based approach, selected the two causal SNPs in LD in the first stage
(Data not shown). The issue related with multiple causal SNPs in varying linkage
disequilibrium should be further investigated. One of the limitations of our simulation study
is that our simulation models with multiple disease causing loci had larger heritability (as
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shown in Table 2), therefore, signal to noise ratio or the complexity of the trait may have
some impact on the results.

When using the FNR-based approach proposed in this paper, the selection of appropriate
parameter A in estimating /7y is very important. It has been shown that /7y can be
overestimated when the parameter A is very small [32]. An alternative approach for
estimating /7y has been proposed [32, 32] where 7y was estimated by smoothing the
function my(A) over a range of values of A, based on natural cubic spline with 3 degree of
freedom. However, this approach might not be suitable for GWA studies because it
estimates /7 at the limiting value of A = 1. Thus, the estimated proportion of disease-
associated SNPs among all the SNPs will be extremely high. However, this is not the case
from the findings of the current GWA studies, where only a handful of SNPs were
discovered. Moreover, based on p-values obtained from our simulated GWA data, we did
not find pattern of p-values suggested by Storey and Tibshirani, therefore, this approach is
not directly applicable for GWA studies. Because the proportion of the unassociated SNPs
(not associated with the disease of interest) among all the SNPs could be close to 1 and the
p-values corresponding to the disease-associated SNPs are always assumed to be more
significant than those corresponding to the unassociated SNPs, we used small values of A as
suggested in [31], such as 10-°, 5x10°, 104 and 10-3 for our FNR-based approach. From our
simulation results, we found that the average values of estimated 7, were not dramatically
different for different values of A. For example, when the number of causal SNPs is 15
(Model 3), the medians of estimated /7jy based on 100 replicates were 499970, 499960,
499950 and 499945, respectively, for A of 10, 5x10°, 10 and 10-3. Thus, the estimated
Mo was not overestimated in our simulation studies. This phenomenon could be due to
multiple SNPs in linkage disequilibrium with causal SNPs. Therefore, p-values associated
with these SNPs will also be significant.

To select the parameter value of A for GWA studies, we would like to recommend using a
liberal A = 103, Although more top SNPs will be selected in the first stage using A = 103
(usually hundreds of top SNPs) than with the traditional approaches, it is still feasible for
replications in GWA studies because of the rapid development of genotyping techniques and
therefore the decrease of genotyping cost. Furthermore, because a pre-specific power-based
criterion is attached to our FNR-based approach, this approach provides a more optimal
selection criterion than traditional approaches. To identify disease-associated SNPs with
smaller ORs (such as 1.2), much larger sample sizes in stage one of the two-stage design
may be required. Our methodology of choosing the number of SNPs is, however, valid
irrespective of the magnitude of the odds ratio. It should also be noted that the type I error
can be controlled in the second-stage analysis of GWA studies, because the SNPs selected in
stage one with the use of our FNR approach are not final, and they have to meet the GWA
significance (5.0x108) at the end of the stage two analysis [1]. Furthermore, to achieve
higher power, much larger samples would be needed in order to detect the causal SNPs with
small true ORs (i.e. OR = 1.2). Therefore, a GWA study with 1,000 cases and 1,000 controls
is likely to have low power to select 90% of the small effect causal SNPs.

We also applied the FNR approach to a recently published GWA dataset. Selecting a bit
larger number of SNPs in stage one, our approach led to the same conclusion as the original
GWA study using an arbitrary p-value cut-off. Furthermore, using arbitrary p-value or fixed
number cutoffs, one just selects top SNPs, without confidence about the disease-associated
variants being selected; on the other hand, using the proposed FNR-based approach, we have
confidence that most of the moderately significant SNPs in the GWA study of glioma were
selected in stage one for replication.
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In conclusion, we present an FNR-based approach for selecting top SNPs given a pre-
specified power based on the ranked p-values. This approach will select a relatively larger
number of top SNPs in stage one that could include more moderately significant SNPs. The
type Il error for stage one can be controlled, and type | error can be controlled at the end of
the stage two analysis in the GWA studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1
Description of the outcomes of m multiple tests, where m is the total number of statistical
tests, mg is the number of true null hypotheses, my is the number of alternative

hypotheses, and r is the total number of hypotheses rejected at a significance level a

True hypothesis
Null

Alternative

Total

Non-significant ~ Significant  Total

my =1y o my
m-n n my
m-r r m
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Table 2
Parameters for the five simulation models. Different numbers of causal SNPs with a range
of OR values were employed for different models. The corresponding heritability for each
model is given as the expected squared residual of the observed and predicted disease
status
Odds ratios

Model Number of causal SNPs 1.2 13 14 15 16 1.7 1.8 Heritability

Model 1 5 1 1 1 1 1 0 O 6.7%

Model 2 10 2 2 2 1 1 1 1 14.2%

Model 3 15 3 2 2 2 2 2 2 20.5%

Model 4 20 3 3 3 3 3 3 2 25.2%

Model 5 25 4 4 4 4 3 3 3 28.2%
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Table 3
The median (Q1 — Q3)" numbers of SNPs selected in the first stage of a two-stage GWA

study using the FNR-based approach for the five simulation models, given pre-specified
multi-testing powers (50%, 60%, 70%, 80%and 90%) and different parameter A values

(105, 5x10°, 104, and 10-3), based on 100 replicates

Pre-specified multi-testing powers

Model (#of causal SNPs)  Parameter values 50% 60% 70% 80% 90%
A=10"° 3(2-5) 4(2-6) 5(3-7) 6(4-9) 8(4-11)
A=5x 1075 5(1-10) 7(1-14) 9(2-19) 12(2-25) 15(2-30)
Model 1 (5)
A=10"% 10(2-20) 16(3-30) 21(3-39) 28(4-46) 36(4-54)
A=10"8 130(1-254) 180(1-314) 223(1-379) 284(1-418) 335(1-464)
A=10"° 7(4-8) 8(5-11) 10(7-13) 12(8-16) 14(9-18)
A1=5x10"5 11(8-17) 16(11-22) 22(15-28) 27(18-36) 35(21-43)
Model 2 (10)
A=10"% 19(11-26) 25(15-35) 34(19-43) 46(26-55) 56(38-66)
A=10"8 172(85-246)  246(138-317) 314(187-378) 395(228-465) 476(273-525)
A=10"° 12(10-15) 15(13-19) 18(15-22) 21(18-26) 25(21-30)
A =5x107° 24(18-29) 31(24-37) 39(31-45) 46(38-55) 56(46-64)
Model 3 (15)
A=10"% 35(27-41) 45(36-53) 58(47-68) 70(61-83) 86(74-100)
A=10"8 194(147-229)  272(204-314) 349(280-412) 430(372-491) 535(461-581)
A=10"° 19(16-23) 24(20-28) 28(24-33) 33(28-39) 38(33-44)
A1=5x10"5 34(30-39) 43(36-50) 52(45-60) 63(54-71) 73(64-84)
Model 4 (20)
A=10"% 48(38-54) 62(50-68) 75(63-86) 92(78-103) 111(95-124)
A=10"8 193(159-228) 272(215-312) 355(304-419) 456(392-523) 573(506-628)
A=10"° 15(11-17) 18(14-22) 21(17-25) 25(20-29) 29(23-34)
A1=5x10"5 28(22-32) 36(29-40) 44(37-49) 54(44-60) 63(54-71)
Model 5 (25)
A=10"% 40(32-47) 52(44-61) 65(54-76) 81(65-91) 94(83-108)
A=10"8 212(170-257) 288(228-339) 379(311-428) 461(399-528) 566(508-627)

*
Q1: 18t quartile Q3: 3rd quartile

A: parameter used for estimating number of null hypotheses.
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The median (Q1 —-Q3)" numbers of SNPs selected in the first stage of a two-stage GWA
study using the traditional approaches, including Bonferroni correction and BH-FDR at

59%genome-wide significance level, and a fixed p-value cutoff 10, for the five simulation
models

Model (#of causal SNPs)

Approaches

Numbers of Selection

Model 1 (5)

Model 2(10)

Model 3(15)

Model 4(20)

Model 5(25)

Bonferroni Correction
BH-FDR
Fixed p=107°
Bonferroni Correction
BH-FDR
Fixed p=10-°
Bonferroni Correction
BH-FDR
Fixed p=107°
Bonferroni Correction
BH-FDR
Fixed p=107°
Bonferroni Correction
BH-FDR
Fixed p=107°

3(3-4)
4(3-5)
12(9-14)
6(5-7)
9(7-11)
18(14-22)
11(9-12)
18(14-23)
30(26-36)
14(12-16)
29(22-37)
44(38-51)
11(9-12)
21(16-25)
34(28-40)

Q1: 18t quartile Q3: 3" quartile

p. p-value cutoff
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Table 5
Comparison of the median numbers of causal SNPs selected for different pre-specified
odds ratios for the five simulation models using the FNR-based approach (given pre-
specified power 80%) with traditional approaches

Odds ratios
Model (#of causal SNPs) Approaches Parameter values 1.8 17 16 15 14 13 12
Bonferroni Correction o0 o0 11 U1 U1 011 01
BH-FDR 0/0 00 11 11 11 01 01
Fixed p-value cutoff p=10"° 00 00 11 11 11 01 01
Fixed number cutoff 10 00 00 11 11 11 01 o1
20 0/0 00 11 11 11 01 01
Model 1) 30 0/0 00 11 11 11 11 o1
A=107° 0/0 00 11 11 11 01 01
A=5x10"° 00 00 11 11 11 01 01
FNR-based
A=10"4 0/0 0/0 11 11 11 01 01
A=107° 0/0 00 11 11 11 11 01
Bonferroni Correction 171 1 11 1/1 0/2 022 0/2
BH-FDR 171 1 11 11 12 12 02
Fixed p-value cutoff p=107° Y1 1 vl U1 12 12 012
Fixed number cutoff 10 1 11 11 u1 U2 12 02
20 171 V1 11 11 12 12 02
Model 2 (10) 30 Moo o 22 12 o
A1=10"5 171 1 11 11 12 12 02
A=5x107 171 1 11 11 12 12 02
FNR-based
A=10"4 11 1 11 11 272 12 02
A=1073 171 V1 11 11 2/2 22 02
Model 3 (15) Bonferroni Correction 12 2/2 2/2 12 12 02 03
BH-FDR 2/2 212 212 202 2/2 0/2 03
Fixed p-value cutoff p=107° 212 22 22 22 22 02 083
Fixed number cutoff 10 2 202 212 12 12 0/2 03
20 212 212 212 22 2/2 0/2 0/3
30 2/2 212 212 22 2/2 0/2 0/3
FNR-based A=10"5 212 212 22 22 22 02 083
A=5x10"° 2/2 212 212 22 2/2 0/2 0/3
A=10" 212 212 212 202 2/2 112 0/3
A=1073 212 212 212 202 22 112 013
Bonferroni Correction 212 33 2/3 33 13 03 073
BH-FDR 212 33 213 3/3 1/3 0/3 0/3
Model 4 (20) Fixed p-value cutoff p=10"° 22 3/3 2/3 33 213 0/3 03
Fixed number cutoff 10 212 213 213 213 13 0/3 0/3
20 2/2 33 213 3/3 1/3 0/3 0/3
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Odds ratios
Model (#of causal SNPs) Approaches Parameter values 18 1.7 16 15 14 13 12
30 22 33 2/3 33 13 0/3 083
A=10"° 212 33 213 3/3 1/3 0/3 0/3
A=5x10"5 212 33 2/3 33 233 03 073
FNR-based
A=10"4 2/2 33 213 3/3 2/3 0/3 03
A1=1073 2/2 33 33 3/3 2/3 2/3 03
Bonferroni Correction 33 213 13 2/4 0/4 0/4 0/4
BH-FDR 3/3 2/3 213 3/4 0/4 0/4 0/4
Fixed p-value cutoff p=10"5 3/3 33 213 3/4 44 14 0/4
Fixed number cutoff 10 33 2,3 13 1/4 0/4 0/4 0/4
20 33 213 2/3 34 U4 0/4 0/4
Model 5 (25) 30 33 33 23 4 34 U4 04
A=107° 3/3 33 213 3/4 204 14 0/4
A=5x107 3/3 33 33 3/4 44 14 0/4
FNR-based
A=10" 3/3 33 33 3/4 44 14 0/4
A=10"8 3/3 33 3/3 4/4 44 24 0/4

a
Denotes how many causal SNPs were selected

b . .
Denotes how many causal SNPs in total in the models

p. p-value cutoff.

A: parameter used for estimating number of null hypotheses.
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Table 7
The median type | error probabilities and median observed powers of the traditional
approaches in stage one analysis, including Bonferroni correction and BH-FDR at
59%genome-wide significance level, a fixed p-value cutoff 107, and fixed number cutoffs,
for the five simulation models

Model (# of causal SNPs) Approaches Parameter values  Type | errors  Observed powers
Bonferroni Correction 0 0.60
BH-FDR 0 0.60
Fixed p-value cutoff p=107° 1.60E-05 0.60
Model 1 (5)
10 1.40E-05 0.60
Fixed number cutoff 20 3.20E-05 0.80
30 5.20E-05 0.80
Bonferroni Correction 2.00E-06 0.50
BH-FDR 6.00E-06 0.60
Fixed p-value cutoff p=10"° 2.40E-05 0.60
Model 2 (10)
10 8.00E-06 0.60
Fixed number cutoff 20 2.80E-05 0.60
30 4.60E-05 0.70
Bonferroni Correction 6.00E-06 0.53
BH-FDR 1.80E-05 0.60
Fixed p-value cutoff p=107° 4.20E-05 0.67
Model 3 (15)
10 4.00E-06 0.53
Fixed number cutoff 20 2.20E-05 0.60
30 4.00E-05 0.67
Bonferroni Correction 8.00E-06 0.50
BH-FDR 3.60E-05 0.60
Fixed p-value cutoff p=10"° 6.30E-05 0.60
Model 4 (20)
10 3.00E-06 0.43
Fixed number cutoff 20 1.80E-05 0.55
30 3.60E-05 0.60
Bonferroni Correction 4.00E-06 0.36
BH-FDR 1.80E-05 0.48
Fixed p-value cutoff p=107° 4.20E-05 0.54
Model 5 (25)
10 2.00E-06 0.36
Fixed number cutoff 20 1.60E-05 0.48
30 3.40E-05 0.52
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Table 8
The numbers of SNPs selected given different pre-specified powers in the glioma GWA
dataset, at different parameter A values

Pre-specified multi-testing powers

Parameter Values 50% 60% 70% 80% 90%

A=10"° 6 19 23 27 31
A=5x10"5 3 47 56 65 80
A=10% 49 61 77 89 113
A=10"2 363 478 557 663 751

A: parameter used for estimating number of null hypotheses.
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