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ABSTRACT

Binding experiments with alkyl-transfer-active and
-inactive mutants of human O6-alkylguanine DNA
alkyltransferase (AGT) show that it forms an O6-
methylguanine (6mG)-specific complex on duplex
DNA that is distinct from non-specific assemblies
previously studied. Specific complexes with duplex
DNA have a 2:1 stoichiometry that is formed without
accumulation of a 1:1 intermediate. This establishes
a role for cooperative interactions in lesion binding.
Similar specific complexes could not be detected
with single-stranded DNA. The small difference
between specific and non-specific binding affinities
strongly limits the roles that specific binding can
play in the lesion search process. Alkyl-transfer
kinetics with a single-stranded substrate indicate
that two or more AGT monomers participate in the
rate-limiting step, showing for the first time a func-
tional link between cooperative binding and the
repair reaction. Alkyl-transfer kinetics with a
duplex substrate suggest that two pathways con-
tribute to the formation of the specific
6mG-complex; one at least first order in AGT, we
interpret as direct lesion binding. The second, inde-
pendent of [AGT], is likely to include AGT transfer
from distal sites to the lesion in a relatively slow
unimolecular step. We propose that transfer
between distal and lesion sites is a critical step in
the repair process.

INTRODUCTION

Many environmental and endogenous alkylating agents
react with cellular DNA to produce base adducts (1).
Among these, O6-alkylguanines are particularly muta-
genic and carcinogenic because they base-pair with
thymine in preference to cytosine during DNA replication
(2). In human cells, O6-alkylguanines are repaired by the
O6-alkylguanine DNA alkyltransferase (AGT, also known

as methylguanine methyltransferase, MGMT) (3,4). This
enzyme is of clinical interest because, in addition to
its native roles, it also protects tumor cells against
chemotherapeutic DNA alkylating drugs (4–7).
AGT-inhibitors are currently in clinical trial with the
goal of improving the efficacy of alkylating agents in
cancer chemotherapy (8–10).

Human AGT is a small, monomeric protein (207 amino
acids, Mr=21 519) that is expressed constitutively in
normal cells (6,11,12). It is overexpressed in some tumors
that have been exposed to alkylating agents, and this is
thought to be one mechanism by which tumor cells survive
alkylating chemotherapy (4,6,13). AGT catalyzes DNA-
repair reactions in which a single alkyl-group is transferred
from the O6-position of guanine (or less efficiently, the O4-
positionof thymine (3,14)) to anactive-site cysteine (C145 in
the human protein). This returns the DNA base to its un-
modified state, but the alkylated enzyme is permanently
inactivated by this reaction and is rapidly degraded in vivo
(15,16). Because repair by AGT is stoichiometric, the
number of O6-alkylguanine and O4-alkylthymine adducts
that can be repaired at one time depends on the cellular
concentration of the un-alkylated form of AGT (6,17) and
on its distribution between alkylated and competing
unmodified sites throughout the genome. These facts
motivate our study of AGT–DNA interactions.

AGT binds unmodified single-stranded and duplex
DNAs with little sequence specificity and modest affinity
but significant cooperativity (18–20). Cooperative DNA
binding appears to be important for lesion search and/or
repair, as mutations in the protein–protein interface that
disrupt cooperativity also make cells highly sensitive to the
alkylating agent N-methyl-N0-nitro-N-nitrosoguanidine
(MNNG) (21). Cooperative interactions allow AGT to
bind available DNA sites to high densities (up to 1
AGT/4 bp (22)) and may speed the movement of AGT
molecules between sites as part of the lesion-search mech-
anism (23).

Comparable binding studies using wild-type enzyme
and alkylguanine-containing DNAs have proved difficult,
because the alkyl-transfer reaction rapidly converts the
enzyme-substrate mixture into alkyl-enzyme and
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unmodified DNA products (18,24). As a partial solution
to this problem, alkyl-transfer-inactive forms of AGT
have been studied, including active-site mutants, such as
the C145S protein (24) and chemically modified forms
such as the C145-methyl and C145-benzyl adducts
(18,25). This strategy allowed DNase I mapping of a
6mG-specific complex, showing protection of 18 nt on
the 6mG-strand and 14 nt on its complement (24),
although the number of proteins and their distribution
within the complex were not established. If binding
densities like those found with unmodified DNA apply,
this protected site might accommodate as many as 4
AGT molecules. Use of catalytically inactive forms of
AGT and a related strategy using suicide substrates,
allowed crystallization of AGT-substrate and
substrate-analogue complexes, providing detailed views
of structures involved in the alkyl-transfer reaction
(3,26,27), including direct evidence for the stabilization
of extrahelical bases in the active site of the enzyme.
Intriguingly, all of these structures contained single
AGT molecules bound to isolated DNA sites. If general-
izable to free-solution conditions, this result would suggest
that specific AGT-lesion complexes might have 1:1
stoichiometries and that lesion specific binding might not
be cooperative. The contrast between the cooperative
binding distributions observed with unmodified DNAs
and the crystallography-based predictions for specific
complexes calls for further examination. The results pre-
sented below are a first attempt to address this gap in our
knowledge.

MATERIALS AND METHODS

Reagents

Agar, yeast extract and tryptone broth were obtained
from Midwest Scientific. T4 polynucleotide kinase and
endonuclease Nar I were purchased from New England
Biolabs. [g-32P]ATP was from ICN Radiochemicals. All
other biochemicals were from Sigma.

Proteins

Human AGT, with wild-type sequence except for a
C-terminal (His)6-tag replacing residues 202–207, was
encoded on plasmid pQE-hAGT (26); active site mutants
C145S, C145A as well as the alkyltransfer-active P140K
were encoded on analogous plasmids pQE-hAGT-C145S,
-C145A and -P140K. All were kindly provided by Dr A.E.
Pegg (Penn State University). The P140K mutation
reduces the size of the active site pocket and replaces an
aliphatic surface within the pocket with a positively
charged one (4). These changes do not abolish
alkyltransferase activity, but they weaken binding of the
inhibitor O6-benzylguanine (28). We anticipated that these
changes might slow repair of 6mG in DNA enough to
allow detection of a pre-repair complex by an active
form of AGT. Experiments testing this possibility are pre-
sented below.

Wild-type and mutant sequences were confirmed by
sequencing plasmid DNA from candidate clones (per-
formed by Seqwright DNA Technology Services).

Proteins were expressed in XL1-blue Escherichia coli
(Stratagene), grown in Luria Broth supplemented with
100 mM ZnCl2 (29). They were purified by Talon� chro-
matography as described (26). Minor contaminants were
removed and proteins were transferred into storage buffer
(20mM Tris (pH 8.0 at 20�C), 250mM NaCl, 1mM DTT
(dithiothreitol)) by chromatography on Sephadex G-50.
Protein solutions were stored frozen at �80�C until
needed. AGT concentrations were measured spectro-
photometrically using e280=3.93� 104M�1 cm�1 (18).
The samples of AGT used here were >95% active in
DNA binding (20).

Nucleic acids

Oligonucleotides of 24 and 26 residues (sequences shown
in Table 1) were purchased from The Midland Certified
Reagent Company Inc. DNA samples for repair assay and
Electrophoretic mobility shift assay (EMSA) experiments
were labeled at 50 termini with 32P as described by Maxam
and Gilbert (30). Unincorporated [g-32P]ATP was
removed by buffer exchange using Sephadex G-10
mini-spin columns pre-equilibrated with 10 mM Tris
(pH 8.0 at 21�C). If needed, labeled oligonucleotides
were further purified by gel electrophoresis under
denaturing conditions (30% polyacrylamide gel, 8M
Urea (30)) and recovered by the crush–soak method,
precipitated with ethanol, resuspended and dialyzed
against buffer consisting of 10mM Tris, 0.1mM EDTA,
pH 8.0 at 20±1�C. DNA duplexes were prepared by an-
nealing purified 50-labeled oligonucleotides with slight
excess of the complementary unlabeled strands.
Single-stranded DNA (ssDNA) concentrations were
measured spectrophotometrically using extinction coeffi-
cients provided by the manufacturer.

Electrophoresis mobility shift assays

Two different binding buffers were used. Our standard
buffer (used in previous work) is 10mM Tris-HCl (pH
7.6 at 20�C), 100mM KCl, 2mM DTT. In a few cases
where consistency with the alkyltransferase assay buffer
was needed, the binding buffer was 20mM Tris-acetate
(pH 7.9 at 25�C), 50mM potassium acetate, 10mM mag-
nesium acetate, 1mM DTT. For each experiment the cor-
responding buffers are identified in text and figure
captions. Samples were equilibrated at 20±1�C for 1 h;
tests with longer incubations gave indistinguishable
results, indicating that equilibrium had been attained
(results not shown). Electrophoresis was carried out as
previously described (20) in 15% or 20% polyacrylamide
gels, cast and run in 10mM Tris-acetate (pH 8.0), 100mM
KCl. Autoradiographic images were captured on storage
phosphor screens (type GP, GE Healthcare) detected with
a Typhoon phosphorimager and bands were quantified
with Image-Quant software (GE Healthcare).

Binding analyses

Stoichiometries were estimated using the method of Fried
and Crothers (31). For the concerted binding of n protein
molecules to a single DNA (nP+D$PnD), the
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association constant K=[PnD]/[P]n[D] can be rearranged
to give the linear relationship

ln
½PnD�

½D�
¼ n ln½P�+lnK ð1Þ

Titration of DNA with protein varies the ratio [PnD]/
[D], and [P] is calculated for each titration step using the
conservation relation [P]= [P]tot� n[PnD], in which [P]tot
is the total protein concentration. The linear dependence
of ln [PnD]/[D] on ln [P] provides a new estimate of n and
this value is fed back into the conservation relation. The
cycle is iterated until values of n and K converge. This
approach is particularly useful for analysis of mobility
shift data like those in Figure 1, which allow direct meas-
urement of [D] and [PnD] at every step (32). It is worth-
while to note that for n> 1, the equilibrium constants
obtained in this analysis are composite values that
include contributions from two or more protein–DNA
interactions (for 6mG-containing DNAs these could be
lesion-specific and non-specific interactions) as well as
protein–protein contacts.

DNA alkyltransferase assays

NarI endonuclease is inactive when its substrate contains
an O6-methylguanine (6mG) at residue 2 of its target
sequence (33) (numbering shown in Table 1). Cleavage is
restored when the methyl group is removed by AGT (25).
To assay duplex DNA repair, oligonucleotides 4 and 5
containing the NarI sequence (Table 1) were annealed
and transferred into reaction buffer (20mM Tris-acetate
(pH 7.9 at 25�C), 50mM potassium acetate, 10mM mag-
nesium acetate, 1mM dithiothreitol) by dialysis.
Alkyltransferase reactions were carried out at
20±0.1�C, with varying amounts of AGT for varying
times (details given in figure captions). Reactions were
stopped by addition of sodium dodecyl sulphate (SDS)
to a final concentration 0.2% w/v, followed by two extrac-
tions with water-saturated phenol and three extractions
with water-saturated diethylether. Samples were incubated
at room temperature under vacuum to evaporate ether
before digestion with a 10-fold unit excess of NarI endo-
nuclease (3 h at 37�C). Samples were resolved by native
electrophoresis on 20% polyacrylamide gels (34); electro-
phoretic distributions were recorded and quantified using
a phosphorimager.

Figure 1. Discrete, high-mobility complexes form when AGT binds
6mG-containing dsDNAs. EMSAs performed at 20 ±1�C. (A)
Titration of unmodified double stranded 26 bp DNA (oligo 1+3
duplex; 0.17mM) with wild-type AGT (0–9.6 mM) to form the
low-mobility cooperative complex. The equilibration buffer was 10
mM Tris (pH 8.3 at 20�C), 50mM NaCl, 0.1mM EDTA, 1mM
DTT, 5% glycerol, 0.1mg/mL BSA (bovine serum albumin).
Samples resolved in a 15% native polyacrylamide gel cast and run as
described. (B) Titration of unmodified double stranded 26 bp DNA
(oligo 1+3 duplex; 0.17mM) with C145S-AGT (0–9.5 mM).
Equilibration buffer and gel conditions as in (A). (C) Titration of
6mG-containing 26 bp duplex DNA (oligo 2+3 duplex; 0.15mM)
with C145S-AGT (0–5.1 mM). Equilibration buffer and gel conditions
as in (A). (D) Titration of 6mG-containing 24 bp duplex DNA (oligo
4+5 duplex; 0.038 mM) with C145S-AGT (0–2.0mM). Equilibration
buffer was 40 mM Tris-acetate (pH 7.9 at 20�C), 100mM potassium
acetate, 20mM magnesium acetate, 2mM DTT, 0.5mg/mL BSA. These
samples resolved in a 20% native polyacrylamide gel cast and run as
described. Band designations: F, free DNA; C, cooperative AGT-DNA
complex; grey arrows, 6mG-specific complexes.

Table 1. Oligonucleotides used in this study

Oligo Sequence Purpose

1 5’-AGT CAG TCA GTC AGT CAG TCA GTC AG-3’ 26mer binding substrate
2 5’-AGT CAG TCA GTC AGT CAG TCA GTC AG-3’ 6mG- 26mer binding substratea

3 5’-CTG ACT GAC TGA CTG ACT GAC TGA CT-3’ Complement to oligos 1 and 2
4 5’-GGG TCA TTT GGC GCC TTT CGA TCC-3’ 24mer binding and repair substrateb

123 456
5 5’-GGA TCG AAA GGC GCC AAA TGA CCC-3’ 24mer binding and repair substrate, complement to oligo 4

aThe underlined residue G is O6-methylguanine.
bResidue numbers refer to the NarI recognition sequence. When residue 2 is O6-methylguanine, the duplex of oligos 4 and 5 is refractory to NarI
cleavage (25,33).
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To assay ssDNA repair, oligo 4 was transferred into
reaction buffer and incubated with AGT (concentrations
and times given in figure captions). Reactions were
stopped with SDS and AGT was extracted with phenol
and ether as described above. Following evaporation of
the ether, a 2-fold molar excess of oligo 5 was added and
samples were heated to 80�C for 1min and allowed to
slowly cool to room temperature over 2 h. Samples were
then digested with a 10-unit excess of NarI, and cleavage
products were resolved by electrophoresis, as described
above.

RESULTS

Single-step binding to unmodified duplex DNAs and
two-step binding to 6mG-containing duplexes

AGT binds cooperatively to short double-stranded DNAs
(dsDNAs) that contain no modified bases (18,23). This
binding is characterized by a single-step transition
from free DNA to a saturated complex, without signifi-
cant accumulation of stoichiometric intermediates.
Examples of this pattern for wild-type and
alkyltransferase-inactive C145S mutant proteins bind-
ing to a 26 bp duplex (formed with unmodified oligos 1
and 2) are shown in the EMSAs of Figure 1A and B. The
cooperative binding pattern is robust, appearing with
single-stranded and duplex DNAs of varying sequence,
base composition and length, over a range of solution
conditions, and whether the protein is methylated at its
active site (Cys145), or not (18–20). In contrast, when the
26mer duplex contained a single 6mG residue, titration
with the alkyl-transfer-inactive C145S mutant protein
gave an initial complex with greater gel-mobility than
the saturated complex (Figure 1C). This initial complex
is converted to one with the same gel-mobility as the
saturated form, on further addition of AGT. A similar
two-step binding pattern was also obtained by titrating
the 6mG-duplex 26mer with the alkyltransfer-active
P140K mutant (data not shown) and by titration of
a 24 bp 6mG-duplex (containing oligos 4 and 5) with the
C145A mutant protein (Figure 1D). Parallel bind-
ing experiments with wild-type AGT could not be per-
formed. Under our conditions, intervals required for
alkyl-transfer and binding equilibration were similar, so
equilibrium could not be attained without alkyl-transfer.
Since most experiments were carried out under condi-
tions of AGT excess, the dominant species in such
equilibrium mixtures were alkyl-AGT and lesion-free
DNA.

The titrations of 6mG-26mer dsDNA were carried out
in 10mM Tris (pH 7.6 at 20�C), 1mM EDTA, 50mM
sodium chloride, 5% v/v glycerol buffer, while those
with the 6mG-duplex 24mer were carried out in 40mM
Tris-acetate (pH 7.9 at 25�C), 100mM potassium acetate,
20mM magnesium acetate, 2mM dithiothreitol, 5% v/v
glycerol. Together these results argue that the two-step
pattern is not an artifact of enzyme preparation, identity
of active-site mutation, DNA sequence or buffer condi-
tions. Our current interpretation is that the first binding

step is a 6mG-specific interaction of AGT. This inter-
action is characterized further below.

Stoichiometries of 6mG-dependent and non-specific AGT
complexes differ

The electrophoretic mobilities of the first complexes
formed with 6mG-containing dsDNAs are greater than
those of the saturated complexes. This suggests that they
might contain fewer molecules of protein than are present
in the saturated complexes (31,35). To test this, we
measured the stoichiometric differences between free
dsDNA and the first binding state and between the first
and second binding states. Species concentrations were
calculated fromEMSAband intensities and the dependence
of ln ([PnD]/[D]) on ln [P] was determined using Equation
(1), as described in the ‘Materials and Methods’ section.
Graphs of these data are shown in Figure 2 and
stoichiometries summarized in Table 2. Measured in this
way, the single-step binding of wild-type and C145S
AGTs to unmodified 26 bp dsDNA had stoichiometries of
�6 in agreement with previous results (20,23). In contrast,
the first binding steps of P140K and C145S AGTs with
6mG-26mer and 6mG-24mer dsDNAs had stoichiometries
of �2. This result was unexpected because the repair of a
single 6mG lesion in DNA consumes one active AGT
molecule (4,36) and because the available crystal structures
representing AGT bound to DNA lesions feature single
protein molecules surrounded by free dsDNA (26,27).
However, the small experimental uncertainties (<15% of
the central value) and the facts that measurements were
made with different protein preparations, different
protein sequences, different DNA sequences and different
buffer conditions, together argue that this stoichiometry is a
bona fide property of AGT interaction with an isolated
6mG-containing site.
For C145S- and P140K-mutant AGTs, the second

binding steps with 6mG-26mer dsDNA had
stoichiometries of 3–4 (Table 2) and the sum of first and
second steps gave an overall stoichiometries of 5–6 in rea-
sonable agreement with the saturating stoichiometry of 6
found for unmodified DNA. For C145S-AGT, the second
binding step with the 6mG-24mer duplex had a stoichi-
ometry of 2 and thus a saturating stoichiometry (�4).
This is less than the limiting value of 6 expected for co-
operative non-specific binding to a 24-mer duplex that has
no 6mG residues (20). In a previous analysis we found
that AGT gave no detectable binding at partial sites con-
taining 3 or fewer bp (22). It is possible that the initial
binding to the 6mG-duplex 24mer gives an AGT distri-
bution that leaves a smaller number of full-length sites for
the second binding step than would be obtained if binding
were unconstrained. The transition from the 2:1
6mG-specific complex to saturated assemblies containing
at least 4 (and in some cases 6) proteins appears to take
place in a single concerted step without formation of stoi-
chiometric intermediates. This closely resembles the co-
operative non-specific binding mode seen with
unmodified DNAs and indicates that such cooperative
binding operates in the presence of the lesion-specific
AGT complex as well as in its absence.
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Small differences in affinities for unmodified and
6mG-containing duplex DNAs

In addition to giving information about stoichiometry, the
data in Figure 2 allow estimation of the equilibrium con-
stants of the corresponding interactions. Equation (1)
shows that at the midpoint of the binding transition,
ln[PnD]/[D]=0 and –n ln[P]= ln K. Here K is the associ-
ation constant for the overall reaction, with stoichiometry
n. A monomer-equivalent association constant, given by
K1/n, allows easy comparison of the AGT-affinities of re-
actions with different stoichiometries. These values are
given in Table 2. The association constants for wild-type
and C145S-AGTs with unmodified 26mer duplex,
�0.9� 106M�1 for wild-type enzyme and �2� 106M�1

for C145S-AGT, agree well with values found for short,
unmodified dsDNAs, under similar conditions (20), and
are 2–4 fold larger than affinities measured for linear and
relaxed-circular pUC19 DNAs (2686 bp), under similar
buffer conditions (23). Thus, they are fair representations
of the lesion-non-specific interaction of AGT with duplex
DNA.

The presence of a 6mG residue had a surprisingly small
effect on binding affinities. In the first binding step, the
C145S-AGT bound the 6mG-26mer duplex 3-fold more
tightly than it did the unmodified 26mer DNA. Slightly
larger differences (up to �10-fold) were found with
C145S-AGT binding to the 6mG-24mer and
P140K-AGT binding 6mG-26mer duplexes. Although
these larger differences may reflect changes in DNA and
protein sequences, they still barely reached a specificity
ratio K6mG/Kunmodified of 10. Such weak specificity has im-
portant implications for the mechanism of lesion search,
as will be discussed below. Analysis of the second binding
step gave affinities (K=2–4� 106M�1) that were within
error the same as those for binding to unmodified
dsDNAs. Thus, in spite of the presence of specifically
bound AGT proteins, this second step appears to reflect
an ensemble of non-specific interactions like that formed
in the absence of 6mG residues.

Binding intermediates do not accumulate when DNA is
single-stranded

AGT binds both single-stranded and duplex forms of
DNA (19,20), with a very modest (�1.5-fold) preference
for the duplex, under standard conditions (23). Such
closely matched affinities suggest that AGT might
function where DNA is single-stranded in vivo. It was of
interest then, to determine whether the enzyme binds spe-
cifically to 6mG sites in ssDNAs. Shown in Figure 3 are
titrations of unmodified and 6mG-containing
single-stranded 26mers (oligos 1 and 2, respectively) with
C145S-AGT. Both ssDNAs undergo single-step binding

Figure 2. Graphs of the dependence of log[PnD]/[D] on log[P] for
AGT-complexes with duplex DNAs. Data are from the experiments
shown in Figure 1 and others that provide additional [AGT] values.
The lines represent least-squares fits to the data ensembles for the
ranges about the midpoint of each reaction, with [AGT]free calculated
as described in Experimental Procedures. Symbols: the points used in
the fit are indicated by the black symbols; other points in the data sets
are indicated by grey symbols. (A) Data from titrations of unmodified
double stranded 26 bp DNA (oligos 1+3) with C145S-AGT (filled
circle; displaced upward 3 units for clarity) and wild-type AGT (filled
square). The slopes are 5.97±0.49 and 6.09±0.32, respectively. (B)
Data from titration of 6mG-containing double stranded 26 bp DNA
(oligos 2+3) with alkyltransfer-active P140K-AGT. First binding step
(filled circle; points displaced upward 4 units for clarity); second
binding step (filled square). The slopes are 2.33±0.29 and
4.11±0.34, respectively. (C) Data from titration of 6mG-containing

double stranded 26 bp DNA (oligos 2+3) with C145S-AGT. First
binding step (filled circle; points displaced upward 5 units for clarity);
second binding step (filled square). The slopes are 2.01±0.19 and
3.37±0.12, respectively. (D) Data from titration of 6mG-containing
double stranded 24 bp DNA (oligos 4+5) with C145S-AGT. First
binding step (filled circle; points displaced upward 3 units for clarity);
second binding step (filled square). The slopes are 1.72±0.14 and
1.86±0.09, respectively.
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transitions to form saturated complexes with
gel-mobilities similar to those formed with unmodified
duplex 26mer. Graphs of the dependence of ln([PnD]/
[D]) on ln[P] for these interactions are shown in
Figure 4. Stoichiometries, estimated from the slopes near
the binding midpoints, were 5.7±0.4 and 6.3±0.5 for
unmodified and 6mG-ssDNAs, respectively. These values
are within error the same as that measured for wild-type
AGT with unmodified 26mer ssDNA (25). The
monomer-equivalent association constants for unmodified
single-stranded and duplex 26mers were indistinguishable
in these assays (K� 2.2� 106M�1), while that for the
single-stranded 6mG-26mer was �2-fold larger
(K� 4.5� 106M�1; Table 2). This small stability differ-
ence (amounting to only �0.4 kcal/mol at 20�C) may
account for the absence of a detectable 6mG-specific inter-
mediate; our working hypothesis is that some interactions
that generate a specific complex with a duplex substrate
are missing or contribute substantially less to the �G� of
binding, when the substrate is single-stranded.

Quantitative DNA repair

If specific complex formation is the rate-limiting step in
the repair reactions of AGT, the data shown above predict

that repair rates will have a second-order dependence on
[AGT] when the substrate is duplex, and possibly a
higher-order dependence when the substrate is
single-stranded. As a first step in a kinetic analysis, we
determined the repair activities of our AGT preparations
when reaction time was not limiting. Our assay takes ad-
vantage of the fact that NarI endonuclease is inactive
when substrate DNA contains an 6mG at position 2 of
its target sequence (33) (Table 1), but is restored by DNA
alkyltransferase activity provided by AGT. In addition,
the assay relies on the fact that 6mG repair is stoichiomet-
ric, i.e. that one active AGT molecule is consumed for
each 6mG converted to guanine (3,4). Shown in Figure 5
are continuous variation assays (37,38) in which AGT and
dsDNA solutions of equimolar concentration were
combined in a range of volume ratios, giving samples in
which the total macromolecular concentration was
constant but the AGT:DNA molar ratios varied. The
greatest amount of NarI cleavage occurs where AGT
and DNA combine in the optimal ratio for repair.
Linear fits to flanking data subsets intersect at optima
predicted by the entire dataset (Figure 6). For wild-type
AGT, the optimal combining ratio was reached when the
AGT mole-fraction was 0.503 (i.e. [AGT]/[DNA]=1.01,
corresponding to an active fraction of 0.99); for
P140K-AGT, the optimal mole fraction was 0.51, corres-
ponding to [AGT]/[DNA]=1.04 and an active fraction of
0.96. When wild-type AGT was mixed in 1:1 molar ratio
with alkyl-transfer-inactive C145S mutant protein, the
optimal mole fraction was 0.65, corresponding to
[AGT]/[DNA]=1.86 and an active fraction of 0.53. If
one molecule of AGT is inactivated for each DNA
molecule repaired (as previously shown (39)), these
results indicate that the DNA is fully competent for
repair and subsequent NarI cleavage, that the active frac-
tions of wild-type and P140K AGTs are near unity, and
that the C145S mutant is devoid of alkyltransferase
activity.

Kinetic orders of reaction and equilibrium binding
stoichiometries differ

We used a variant of the NarI assay to measure the rates
of alkyl-transferase reactions. In these measurements,
dsDNA, labeled with 32P at one 50-end, was combined
with AGT to start the reaction, and aliquots were
withdrawn as a function of time and quenched with

Table 2. Stoichiometries and equilibrium constants for binding to normal and 6mG-containing DNAs

DNA Protein Stoichiometry (n) Association constants

1st step 2nd step K1 K2 K1/K2

Unmodified ds-26mer Wild-type 5.9±0.5 – 9.1±4.2� 105M�1 – –
Unmodified ds-26mer C145S 6.1±0.3 – 2.2±1.1� 106M�1 – –
6mG ds-26mer P140K 2.3±0.3 4.1±0.3 1.7±0.3� 107M�1 3.4±0.8� 106M�1 5.0±0.3
6mG ds-26mer C145S 2.0±0.2 3.4±0.1 6.2±2.4� 106M�1 1.9±0.4� 106M�1 3.3±0.4
6mG ds-24mer C145S 1.8±0.1 2.1±0.1 2.5±1.2� 107M�1 4.4±2.8� 106M�1 5.7±0.8
Unmodified ss-26mer C145S 5.7±0.4 – 2.2±0.3� 106M�1 – –
6mG ss-26mer C145S 6.3±0.5 – 4.5±0.5� 106M�1 – –

Figure 3. Single-step binding to ssDNAs. EMSAs performed at
20±1�C. (A) Titration of unmodified single stranded 26 nt DNA
(oligo 1, 0.17 mM) with C145S-AGT (0–2.2mM) to form the
low-mobility cooperative complex. The equilibration buffer was 10
mM Tris (pH 8.3 at 20�C), 50mM NaCl, 0.1mM EDTA, 1mM
DTT, 5% glycerol, 0.1mg/ml BSA. Samples resolved in 20% native
polyacrylamide gels cast and run as described. (B) Titration of 6mG
containing 26 nt DNA (oligo 2; 0.19mM) with C145S-AGT (0–3.4 mM).
The equilibration buffer and electrophoresis conditions were as in (A).
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0.2% SDS. Samples were processed with solvent extrac-
tion and NarI digestion as before. Shown in Figure 7 is a
representative gel image showing the change in NarI
cleavage as a function of the AGT-DNA incubation
time. Band intensities, converted to mole fractions of
DNA repaired, were plotted as functions of time for rep-
resentative AGT concentrations (Figure 8A); the smooth

curves correspond to fits of Equation (2) to the data. This
expression describes the time course of product formation,
P(t), expected for a one-step reaction, in which F is the
mole fraction of repair-competent DNA, kobs is the
apparent rate constant and t is time (s) (40).

PðtÞ ¼ Fð1� expð � kobstÞÞ ð2Þ

These fits show that a single-step model accounts for the
time course of each reaction, but do not establish the
number of protein molecules contributing to its
rate-limiting step. However, agreement between fits and
data show that this model accounts well for initial
reaction rates, allowing us to determine reaction orders
using a version of the method of initial rates (41). For a
reaction step in which aAGT molecules participate with
one DNA, the rate equation v= k[AGT]a[DNA] can be
linearized as:

ln v ¼ � ln½AGT�+ln k0 ð3Þ

where v is the initial rate of the reaction and k0= k [DNA].
A graph of ln v as a function of ln [AGT] will have a slope
equal to �, the order of the reaction in AGT. Shown in
Figure 8B is this graph for dsDNA concentrations of
23 nM and 37 nM; linear fits to these data returned
reaction orders of 0.47±0.03 and 0.83±0.08, respect-
ively. As the enzyme preparation used in these measure-
ments was fully active (Figure 6), this difference in
reaction order is not easily attributable to a difference in
time-independent alkyltransferase activity. These results
are striking in several ways. First, they indicate a change
in the rate-limiting reaction mechanism with change in
[DNA]. Second, both values are significantly less than 2
(the order predicted on the basis of equilibrium binding
stoichiometries) indeed, they are significantly less than 1,
the smallest value consistent with direct binding of 6mG
sites by a free protein molecule. We interpret reaction
orders between 0 and 1 as evidence for a mixed mechanism
in which some repair reactions are independent of free
AGT concentration (e.g. through transfer of protein(s)
to the 6mG site from one or more sites elsewhere on the
DNA) while some reactions depend on the binding of
AGT from free solution. The fact that the order in AGT
is smaller at lower DNA concentration is consistent with
this view, since bimolecular encounters with the 6mG site
will be slower at low [DNA], increasing the time available
for AGT transfer from distal sites. Such transfer mechan-
isms are a feature of many sequence or structure-specific
protein–DNA interactions [c.f. (42–44)].

Alkyl-transfer-inactive C145S-AGT competes with
wild-type enzyme

The C145S-AGT binds unmodified dsDNA cooperatively,
forming complexes with gel mobilities, affinities and
stoichiometries that are indistinguishable from those of
the wild-type enzyme (Figures 1 and 2). In addition, it
forms a specific complex with 6mG-containing dsDNA
(Figure 1), but is, itself, fully alkyl-transfer-inactive.
Finally, apart from the effect of diluting active enzyme,
it has no discernable effect on ‘time-independent’

Figure 5. Continuous-variation NarI DNA repair assays. Images of
20% polyacrylamide gels resolving NarI cleaved fragment (C) from
uncleaved DNA (U). The DNA used was the double-stranded
6mG-containing 24mer (oligos 5+6) and oligo 6 carried a 50-32P
label. The reaction buffer was 20mM Tris acetate (pH 7.9), 50mM
potassium acetate, 10mM magnesium acetate, 1mM DTT. (A) DNA
and wild-type AGT solutions (each 5.8 mM) were mixed in volume
ratios giving mole-fractions of AGT ranging from 0.1 to 0.9. For
samples a–n, these were 0, 0.1, 0.15, 0.2, 0.36, 0.42, 0.5, 0.55, 0.6,
0.66, 0.72, 0.82, 0.86 and 0.92, respectively. Incubation was for 3 h at
20±0.1�C. Repair reactions were quenched by addition of SDS to a
final concentration of 0.2%, and samples were extracted with phenol,
then ether, as described, then digested with 10U of NarI for 2 h at
37�C, prior to electrophoresis. (B) Effect of mixing wild-type and
C145S-AGTs in 1:1 molar ratio. Assays carried out as described
above. For samples a–n, the mole fractions of AGT (wild-type plus
C145A) were 0, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8,
0.85 and 0.9, respectively.

Figure 4. Graphs of the dependence of log[PnD]/[D] on log[P] for
C145S-AGT-complexes with ssDNAs. Data are from the experiments
shown in Figure 3. The lines represent least-squares fits to the data
ensemble for the range about the midpoint of each reaction, with
[AGT]free calculated as described in Experimental Procedures.
Symbols: the points used in the fit are indicated by the black
symbols; other points in the data sets are indicated by grey symbols.
Titration of 6mG-containing 26mer (oligo 2, filled circle, displaced
upward 4 units for clarity) and unmodified 26mer (oligo 1, filled
square). The slopes are 6.35±0.64 and 5.64±0.62, respectively.
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alkyl-transfer activity (Figures 5 and 6). These results
suggest that its presence in a mixture might affect the
alkyl-transfer kinetics of the wild-type enzyme. Since the
C145-methyl enzyme also binds DNA cooperatively and
with nearly wild-type affinity (18), mixtures of
C145S-mutant and wild-type AGTs are a useful model
for the mixtures of alkyltransferase-active and -inactive
AGTs in cells exposed to chemotherapeutic methylating
agents such as temozolomide (45).

We envisioned two possibilities. Since C145S-AGT is
unimpaired in its ability to form cooperative complexes
(Figure 1 and Melikishvili, unpublished result), addition
of this protein to a solution containing wild-type AGT
and DNA might increase the concentration of
AGT-DNA complexes by mass action, and thus increase
the repair rate of the wild-type protein in the mixture. On
the other hand, mixing C145S and wild-type AGTs will
increase the probability that the 6mG site will be occupied
by an inactive monomer, and if exchange of proteins
between distal and 6mG sites is rate limiting, this effect

could slow repair. These possibilities were tested by
measuring the initial repair rates of mixtures in which
the concentrations of wild-type (active) enzyme were
held constant and those of the C145S (inactive) enzyme
were varied. As shown in Figure 9, even though the ‘total’,
‘time-independent’ repair activity of the solutions
remained constant, the relative rate (v/v0) fell as the
[C145S]/[wild-type] ratio increased. This reflects a compe-
tition between wild-type and mutant enzymes. However,
the proportionality constant (equal to the slope,
�0.17±0.01) indicates that the change in activity was
not equal to the ratio of the two proteins, as would be
the case if initial 6mG-binding were irreversible on the
time scale of the assay. This result is most simply ac-
counted for by mechanisms in which C145S and wild-
type enzymes exchange at the 6mG site during the assay
interval. A similar result has been reported for a mixture
of AGT and an analogous protein, alkyltransferase-like
(ATL), that lacks alkyl-transfer activity (46). Our
current view is that, in mixed solutions of active and
inactive AGTs, repair rates are influenced by a combin-
ation of positive effects (such as mass action-driven
binding and protein exchange) and negative effects (such
as competition for 6mG sites).

For a single-stranded substrate, the kinetic order of
reaction differs from binding stoichiometry

AGT repairs 6mG-lesions in single-stranded as well as
duplex substrates (47). On the other hand, the equilibrium
binding data indicate that the stabilities of 6mG-specific
complexes must be different on single- and double-
stranded substrates (compare Figures 1C and 3B). To
learn how these differences in DNA secondary structure
and complex stability affect repair kinetics, we used a
variant of the NarI assay in which single stranded DNA
(oligo 4) was incubated with AGT for various times.
Reactions were stopped and samples deproteinized as
described for dsDNAs (see above) and the single-stranded
products were annealed with an excess of complementary
strand (oligo 5), before digestion with NarI and analysis
by gel electrophoresis (Figure 10). Mole fractions of DNA
repaired were graphed as functions of time for represen-
tative AGT concentrations (Figure 11A), together with fits
of Equation (2) to the data. These fits show that the early
stages of each repair reaction are kinetically homogeneous
(i.e. they can be described by a single rate constant) and
they give reaction rates that are similar to those obtained
with duplex substrates (see below). The reaction rates
depended on [AGT], allowing us to determine the
reaction-order in AGT using the initial rates method
described above. Shown in Figure 11B is a graph of ln v
against ln [AGT] for single-stranded [DNA]=23nM;
included for comparison are the data for the correspond-
ing duplex, replotted from Figure 8. As described for
Equation (3), the slopes of these graphs give the kinetic
orders of the reactions in [AGT]. A linear fit to the
single-stranded data returned a reaction order
�=1.48±0.08. For this single-stranded substrate, the
order of reaction in AGT is greater than that found for
duplex DNA (�duplex=0.47±0.03), consistent with the

Figure 6. Continuous variation analyses of dsDNA-repair reactions.
The data are from the experiments shown in Figure 5, plus an add-
itional one carried out with P140K-AGT. Symbols: wild-type AGT
(filled triangle); P140K mutant (open circle); wild-type- and
C145S-AGTs in 1:1 ratio (filled square). The solid lines are linear fits
to rising and falling subsets of the data. Optimal combining ratios are
given by their intersection. For wild-type- and P140K-AGTs and the
wild-type plus C145S-AGT mixture, these were 0.503, 0.51 and 0.65,
respectively.

Figure 7. Time-dependence of dsDNA repair detected by NarI sensi-
tivity. The 6mG-containing 24mer duplex (oligos 4 and 5) 0.037mM,
was dissolved in 40mM Tris acetate (pH 7.9 at 20�C), 100mM potas-
sium phosphate, 20mM magnesium acetate, 2mM DTT, containing
0.5mg/ml BSA. To start the reaction, AGT was added to a final con-
centration of 0.11mM. Aliquots were withdrawn and quenched in 0.2%
SDS after 15 s, 30 s, 45 s, 60 s, 120 s, 180 s, 240 s, 360 s, 900 s, 2400 s and
3600 s (samples b–l, respectively); unrepaired DNA is shown in sample
a. Samples were deproteinized by phenol extraction followed by ether
extractions as described; they were then digested with NarI (15U) for
2 h at 37�C and resolved by electrophoresis on a 20% gel.
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notion that the pathways contributing to the repair of
these substrates are different. Time-independent
alkyl-transferase assays like those shown in Figure 6, es-
tablished that the preparations compared here were
of equal activity (results not shown). Thus, the difference
in reaction order does not simply reflect a difference in
enzymatic activity. As above, we interpret the non-integral
reaction orders as evidence for mixed mechanisms. For
repair of ssDNA, the result suggests the contributions of
at least two repair pathways; one with a rate-limiting step
that requires two or more AGT monomers, and a second
pathway, involving one or fewer AGT molecules. Finally,
the reaction order in AGT is much less than the equilib-
rium binding stoichiometry (�6) measured by EMSA
(Figures 3 and 4). This is not surprising in view of the
fact that a single AGT molecule acts as alkyl-acceptor in
each repair reaction (Figure 6), and it argues against
models in which the binding of 6 AGT monomers, attain-
ing binding saturation on this DNA, is the ‘rate-limiting
step’ in repair.

DISCUSSION

Our current understanding of the mechanisms by which
AGT performs its surveillance and repair functions offers
intriguing contrasts. For example, AGT binds DNA to
form cooperative clusters (20) but the alkyl-transfer
reaction is stoichiometric (3,12). In addition, it performs
repair efficiently enough to protect cells against guanine
alkylation, but its affinity for 6mG-containing DNA is
only marginally greater than that for the unmodified hom-
ologous sequence ((18); Table 2). To learn how these dis-
parate properties combine in the surveillance and repair
mechanisms of AGT, we have characterized its activities
on a series of short single-and double-stranded substrates.
We were initially surprised to be able to detect discrete
6mG-specific complexes using EMSA, because previous
attempts with wild-type, C145A and C145-alkyl forms of
AGT gave only single-step cooperative binding that was
qualitatively indistinguishable from the pattern found
with unmodified DNA (18). However, better stabilization
of complexes during electrophoresis through use of higher
percentage polyacrylamide gels (15% and 20% as opposed
to 10% (48)) allowed us to resolve 6mG-dependent
complexes for the first time.

A survey of proteins and binding conditions revealed
that mixtures containing the alkyl-transfer-active P140K
mutant of AGT or the alkyl-transfer-inactive C145S or
C145A mutants formed detectable 6mG-specific
complexes with duplex DNA (Figure 1), but wild-type
AGT did not. The result with wild-type enzyme is under-
standable, because repair reactions with similar concentra-
tions of wild-type AGT (Figure 8) were complete within
6min (just 10% of the incubation time used in our equi-
librium experiments). Since the products of repair are
C145-methyl AGT and unmodified DNA, and since
[AGT]>>[DNA], the dominant pattern at binding equi-
librium would be that of unmodified AGT binding un-
modified DNA. We believe that we were able to detect

Figure 8. Analysis of repair reactions carried out on duplex DNA at
several AGT concentrations. (A) Time profiles for repair reactions.
Data were obtained as shown in Figure 7, with [6mG
DNA]=0.037 mM and [AGT]=0.037 mM (filled circle);
[AGT]=0.074 mM (open square); [AGT]=0.11 mM (filled triangle);
[AGT]=0.148 mM (open triangle). The smooth curves are fits of
Equation (2) to the data. (B) Graphs of the dependence of ln v as
functions of ln [AGT] for repair reactions run with
[DNA]=0.037 mM (open circle) and [DNA]=0.023 mM (filled circle).
Here v is the initial reaction rate; error bars correspond to the 95%
confidence intervals on v determined from fits like those shown in Panel
A. The solid lines are linear fits to the data as described for Equation
(3); the slopes provide estimates of the order of the reaction in AGT.
For [DNA]=0.037mM, �=0.83±0.08; for [DNA]=0.023 mM
�=0.47±0.03.

Figure 9. Effect of alkyl-transfer-inactive AGT on dsDNA repair. All
samples contained 32P-labeled 6mG-duplex 24mer DNA (0.037 mM)
and wild-type AGT (0.111 mM); samples contained, in addition,
C145S-AGT at 0 mM (filled circle), 0.111mM (open square) or
0.222 mM (filled triangle). The time course of repair was measured as
described for Figures 7 and 8. Inset: graph of relative velocity in the
presence of C145S-AGT (v) with respect to velocity in its absence (v0)
as a function of the molar ratio [C145S]/[WT] in each assay. The solid
line is a linear fit to the data.
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specific complexes with the alkyl-transfer active P140K
mutant, because its repair reaction is slower than that of
the wild-type enzyme (results not shown). Stoichiometry
analyses returned values of �2 for 6mG-specific
complexes formed with three different protein prepar-
ations, in two dsDNA sequence contexts, and under two
different buffer conditions. The consistency of these
results suggests that this stoichiometry is a bona-fide
property of 6mG-specific complexes.
The 2:1 stoichiometry of 6mG-specific complexes is

striking, because it differs from expectation based on the
1:1 crystalline complexes currently available (26,27) and
because AGT repair reactions have obligate 1
alkyl-transfer/protein stoichiometries (4). However, indi-
vidual AGT molecules occupy 8 bp centered on the minor
groove face of the DNA (26,27), so a 2:1 stoichiometry
may account for DNase I footprints spanning �18 nt on
the 6mG-strand and �14 nt on its complement (24). The
2:1 stoichiometry is also striking because the formation of
such a complex without the accumulation of detectable
concentrations of 1:1 intermediates indicates that specific
binding is cooperative. While the phenotypes of cells ex-
pressing mutant AGT proteins with reduced binding
cooperativity suggested a role for cooperative binding in
DNA repair (21), the stoichiometry data presented here
provides the first direct evidence that lesion binding is,
itself, cooperative. Although this result shows that co-
operative binding is a feature of both specific and
non-specific interactions, the fact that the specific stoichi-
ometry is limited to 2:1 while non-specific complexes are
often larger (20), suggests that the 6mG-specific complex
may be structurally distinct from those formed on
lesion-free DNA. An additional striking feature of the
6mG complexes is their low stability relative to
non-specific interactions. The resolved complexes have
equilibrium constants a factor of 3–6 greater than those
of the background, non-specific interactions available on
the DNA substrates (Table 2). This difference corresponds
to �1 kcal/mol at 20�C. If this outcome is generalizable to
cellular conditions, the low relative affinity for 6mG sites
must greatly limit the role of sequence-specific binding in
the lesion-search mechanism.
Single-step, cooperative transitions from free DNA to

saturated 6:1 complexes were obtained with ssDNAs,

Figure 10. Time course of repair for a ssDNA. The single-stranded
6mG-24mer (oligo 4) was 50-labeled with 32P. Repair was carried out
as described for Figure 7 in a solution containing 0.023 mM DNA and
0.092 mM AGT. Samples b–k correspond to reactions stopped by
addition of 0.2% SDS after 15 s, 30 s, 45 s, 60 s, 90 s, 120 s, 180 s,
240 s, 360 s and 600 s, respectively. Samples were deproteinized as
described and the substrate DNA was annealed with 1.1 equivalents
of complementary strand (oligo 5), prior to digestion with NarI.
Digestion products were resolved on a 20% polyacrylamide gel.
Sample a contains ssDNA that has not been subjected to repair or
annealing to its complement, or digestion with NarI. Band designa-
tions: U, uncut; C, cut with NarI.

Figure 11. Analysis of repair reactions carried out on ssDNA at
several AGT concentrations. (A) Time profiles for repair reactions.
Data were obtained as shown in Figure 10, with [6mG
DNA]=0.023 mM and [AGT]=0.023 mM (filled square);
[AGT]=0.046 mM (open circle); [AGT]=0.69mM (filled triangle);
[AGT]=0.092 mM (open square). The smooth curves are fits of
Equation (2) to the data. (B) Graphs of the dependence of ln v as
functions of ln [AGT] for repair reactions run with ssDNA
(0.023 mM; open circle); corresponding data for dsDNA, from Figure
8, is shown for comparison (filled circle). Here v is the initial reaction
rate; error bars correspond to the 95% confidence intervals on v
determined from fits like those shown in Panel A. The solid lines are
linear fits to the data as described for Equation (3); the slopes provide
estimates of the order of each reaction in AGT. For single stranded
DNA, �=1.48±0.08; for double stranded DNA, �=0.47±0.03.

Figure 12. Diagram of a reaction pathway in which two branches lead
to formation of the specific 6mG complex. In the left-hand branch, the
protein binds first to distal sites and then transfers in a unimolecular
step to the 6mG site. In the right-hand branch, the protein binds the
6mG-site directly from solution. For simplicity, a single oval is used to
represent AGT, however this is not intended to indicate the stoichiom-
etry of any step.
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whether the sequence contained a 6mG residue, or not
(Figure 3). While this qualitative pattern contrasts
with that found for duplex DNAs, the quantitative
theme is maintained: binding to 6mG-containing
DNA is only marginally (2-fold) stronger than that for
the unmodified homologue. Thus, if AGT repairs
single-stranded substrates in vivo, it seems unlikely that
binding specificity plays an important role in lesion
search in that context, either. In addition, AGT’s affinities
for single-stranded and duplex DNAs are within error the
same (Table 2). This indicates that AGT is not an effective
DNA-melting protein and that it does not partition
strongly in favor of single-stranded or duplex DNA
sites. Thus, neither DNA secondary state benefits dispro-
portionately from AGT activity, or acts as a sink for it.
The kinetics of DNA repair by AGT have been

studied several times, using different protein
preparations, DNA substrates, buffer compositions,
methods for the detection of alkyl-transfer and reac-
tion models (49–54). Unsurprisingly, the reported
bimolecular rate constants (krepair) vary widely
(1.4� 105M�1s�1� krepair� 1� 109M�1s�1). One poten-
tial source of variation is difference in reaction mechanism
under different reaction conditions or with different sub-
strates. As shown above, single-stranded and duplex
6mG-containing DNAs form complexes that differ in stoi-
chiometry and structure (compare Figure 1, panels C and
D with Figure 3). If assembly of the complex at the 6mG
site is rate-limiting, the dependence of repair rate on
[AGT] will itself depend on the secondary structure of
the substrate. The repair kinetics experiments (Figures
7–11) give evidence for different reaction orders in AGT
(�double stranded=0.47±0.03; �single stranded=1.48±0.08
at [DNA]=23nM) that strongly supports this idea.
A previous report indicated that AGT repaired a duplex

DNA significantly more rapidly than a corresponding
single stranded form (55). Data shown in Figure 11B are
consistent with this conclusion for low AGT concentra-
tions. However, these data also show differences in kinetic
order in AGT for single-stranded and duplex substrates
that result in more rapid repair for single-stranded sub-
strates than for duplex at high [AGT]. Under our condi-
tions the cross-over point occurs at [AGT] �10�7M, a
value that is close to its Kd value for duplex 6mG sites
(Kd� 2.2� 10�7 M, corresponding to K� 4.5� 106M�1

(Table 2)).
Preliminary experiments indicated that reaction rates

increased with increasing [dsDNA] (results not shown).
This was expected for a process in which the initial bimol-
ecular collision is rate limiting. However, a more detailed
analysis (Figure 8B) showed that changing the [dsDNA]
also changed the order of the reaction in AGT
(�=0.47±0.03 at [dsDNA]=23nM, �=0.83±0.08
at [dsDNA]=37nM). This effect is incompatible with
models in which the rate-limiting step is a simple bimol-
ecular reaction. In addition, the non-integral values of �
are most-simply explained by a mixed mechanism in which
two or more reactions with different [AGT] dependence
contribute to the rate-limiting step. Our working model is
that formation of the 6mG-specific complex is rate
limiting and that two pathways contribute to the

observed rate (Figure 12). In one, AGT binds first to a
distal site. Translocation to the 6mG site is rate-limiting
for that branch of the path. Since the translocation step is
unimolecular, that branch is of zero-order in AGT. In the
second, parallel branch, AGT binds directly to the 6mG
site, and the AGT-order of this branch is equal to the
stoichiometry. The AGT-order observed for the entire
pathway will be a weighted average of the orders of the
two branches. This parallel-path model accounts for the
increase in the AGT reaction order with increasing [DNA]
(Figure 8B), because increasing [DNA] will increase the
rate of the direct association (bimolecular) branch of
the reaction path and thus its proportional contribution
to the observed order. The model also makes testable pre-
dictions. It predicts that increasing the translocation time
by increasing the length of distal DNA should favor the
direct-association branch of the pathway, increasing the
observed order in AGT. It also predicts that barriers to
translocation (for instance, other proteins), located near
but not in the lesion site, should also increase reaction
order. Experiments to test these predictions are currently
underway.

How do alkyl-transfer-inactive forms of AGT affect the
repair process? This question is relevant to chemotherapy,
because the inactive C145-methyl-AGT is produced in
cells exposed to methylating drugs such as temozolomide,
while C145-benzyl-AGT is produced when the enzyme is
exposed to the chemotherapy-enhancing drug O6-
benzylguanine (56,57). Alkylated forms of AGT are ultim-
ately ubiquitinated and degraded (16), but these processes
are not instantaneous, so at least some alkyl-AGT must be
present at the sites of DNA repair in vivo. Further, the
C145-methyl- and C145-benzyl- forms bind unmodified-
and 6mG-containing DNAs with stoichiometries and
affinities like those of the wild-type enzyme (18), so com-
petitive effects might be expected. We tested
alkyl-transfer-inactive C145S-AGT in repair reactions
with wild-type AGT. Under conditions in which the
time-independent repair activity was constant, we found
that C145S-AGT slowed repair rates, but not in direct
proportion to its mole fraction. The simplest model con-
sistent with this result is one in which the life-time of the
specific AGT-6mG complex is short when compared to
the time intervals in our assays, and cycles of dissociation
and binding eventually bring active AGT molecules to
6mG sites that were initially occupied by the
C145S-protein. Such protein exchange between DNA
sites may be part of the lesion-search mechanism, and it
may also reduce the risk that a mutagenic 6mG-residue
will go un-repaired because it is obscured by an
alkyl-transfer-inactive AGT molecule.

How, then does AGT conduct its lesion search? Even
though we are now able to isolate a 6mG-specific complex,
its stability relative to non-specific interactions (less than a
factor of 10) is not great enough to drive an efficient lesion
search in a large genome. It is possible that AGT interacts
with a protein or proteins that provide the necessary
6mG-specificity, but none have been identified, to date.
Thus, our working model requires no additional
specificity-generating components. AGT has been shown
to interact in vitro with proteins involved in
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DNA-replication and repair (58). These include MCM2
(59), PCNA (60) and MSH2 (61). Such interactions may
concentrate AGT where access to DNA is provided by
chromatin remodeling (21,23,62). In addition, remodeling
may provide segments of open DNA suitable for coopera-
tive AGT binding, which should further increase the local
AGT concentration (20,21,23). Searching open DNA
segments may not require highly specific lesion binding,
since open regions make up only a small subset of the
genome at any one time. Cooperative interactions have
the potential to speed exchange between available sites,
making the lesion-search time-efficient. In this process,
AGT exchange between non-specific and specific sites (as
inferred from the kinetic analysis above) is likely to play a
key role. AGT-function near the replication fork may
require an ability to bind and repair ssDNA, like that
shown here. The movement of open DNA regions with
the advance of the replication machinery would make
possible a processive search for alkylated sites that spans
nearly the entire genome. This model predicts that AGT
will colocalize with chromatin-remodeling enzymes in the
cell and that AGT-mediated repair may be especially
concentrated in chromatin regions undergoing DNA rep-
lication. Experiments to test these predictions are
underway.
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