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Abstract
Human exposure to fine particulate matter (PM2.5) is associated with short and long term adverse
health effects. The amount of ambient PM2.5 that infiltrates indoor locations such as residences
depends on air exchange rate (ACH), penetration factor, and deposition rate. ACH varies by
climate zone and thus by geographic location. Geographic variability in the ratio of exposure to
ambient concentration is estimated based on comparison of three modeling domains in different
climate zones: (1) New York City; (2) Harris County in Texas, and (3) a six-county domain along
the I-40 corridor in North Carolina. Inter-individual variability in exposure to PM2.5 was estimated
using the Stochastic Human Exposure and Dose Simulation for Particulate Matter (SHEDS-PM)
model. ACH is distinguishably the most sensitive input for both ambient and nonambient exposure
to PM2.5. High ACH leads to high ambient exposure indoors but lower non-ambient exposure, and
vice versa. For summer, the average ratio of exposure to ambient concentration varies by 13
percent among the selected domains, mainly because of differences in housing stock, climate
zone, and seasonal ACH. High daily average exposures for some individuals are mainly caused by
non-ambient exposure to smoking or cooking. The implications of these results for interpretation
of epidemiological studies are discussed.
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1. Introduction
Fine particulate matter (PM2.5) includes particles that are 2.5 microns or less in aerodynamic
diameter. Exposure to PM2.5 is associated with adverse health outcomes (EPA, 2009).
Hence, there is a need to quantify human exposure to PM2.5 to support assessment of its
health effects. Individual exposures to PM2.5 occur both outdoors and indoors, and indoor
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PM2.5 concentrations are affected by penetration of ambient PM2.5 and exposures from
sources such as cooking, cleaning and smoking (Lachenmyer and Hidy, 2000).

In recent epidemiology studies, associations between exposure to PM2.5 and health effects
are quantified as response-concentration functions based on multicity studies; however,
exposure is not measured or estimated (EPA, 2009). These studies assumed that ambient
concentration is a surrogate for exposure, but do not address whether the ratio of exposure to
concentration is similar for different locations.

PM2.5 exposure studies typically employ either direct measurement methods or estimate
exposure using models. For example, Williams et al. (2003) performed a 1-year
investigation in North Carolina of PM2.5 and related co-pollutants to characterize the
relationship between measured personal exposure versus ambient and residential PM2.5
concentration. Mean daily personal PM2.5 exposures were only moderately correlated to
ambient PM2.5 concentrations. Lachenmyer and Hidy (2000) conducted outdoor, indoor and
personal exposure measurements for a sample population in Alabama and observed a
weakly linear relationship between personal exposure and ambient PM2.5 concentration.

Population-based exposure monitoring is an economical tool for quantifying personal
exposure but requires considerable resources In contrast, scenario-based exposure models
estimate personal exposure for simulated members of a defined population. based on the
time spent in specific microenvironments, including home, school, store, restaurant and
vehicles (Burke et al., 2001). Total individual exposure is calculated from the sum of the
microenvironmental exposures over the course of an averaging time of interest, such as a
typical weekday. As an example, the Stochastic Human Exposure and Dose Simulation for
Particulate Matter (SHEDS-PM) model, developed by the US Environmental Protection
Agency (EPA), uses a probabilistic approach that incorporates to estimate distributions of
outdoor and indoor PM2.5 exposure for a population of simulated individuals based on
ambient PM2.5 concentrations and sources of indoor PM2.5 emissions (Burke, 2005).

SHEDS-PM inputs include demographic data, ambient PM2.5 concentration, and human
activity data. Demographic data are from the 2000 U.S. Census. The daily average ambient
PM2.5 concentration for each census tract for the geographic area of interest can be based on
ambient monitoring or air quality modeling data such as from the Community Multiscale Air
Quality (CMAQ) model (Byun and Schere, 2006). The amount of time each person spends
during a typical day in each microenvironment is quantified based on the Consolidated
Human Activity Database (CHAD), which is comprised of U.S. human activity pattern diary
data compiled based on multiple activity studies (Johnson 1984, 1989; Settergren et al.,
1984; Wiley 1991; Klepeis et al., 1996; McCurdy et al., 2000).

The key factors affecting the fraction of ambient particles that penetrate indoors and remain
suspended are: (1) air exchange rate (ACH); (2) penetration factor (P); and (3) deposition
rate (k) (Wilson et al., 2000). ACH is estimated based on measurements with a tracer gas,
such as perfluorocarbon tracer (PFT) or sulfur hexafluoride (SF6). P and k are difficult to
measure directly, but are typically estimated by fitting a mass balance model to data for
paired indoor and outdoor concentration and ACH. Few observational data are available on
seasonal and geographic variability P and k.

The estimated exposure (E) can be conceptualized as a linked source-to-exposure model by
the coupling of daily average ambient concentration (C) from an output of an air quality
model and an exposure model that estimates the ratio of exposure to ambient concentration
(E/C) (Özkaynak et al., 2009). The ratio E/C is approximately independent of C for ambient
sources of exposure, and varies geographically depending on demographics and housing

Cao and Frey Page 2

Atmos Environ. Author manuscript; available in PMC 2012 October 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



stock, and infiltration parameters ACH, P and k (Burke, 2005). Thus, E/C may vary
seasonally among geographic areas.

The objectives of this paper are to: (1) review and recommend values of ACH, P, and k for
selected geographic areas; (2) conduct sensitivity analysis for ACH, P, and k to evaluate
their importance; (3) evaluate geographic differences in inter-individual variability in
exposure; and (4) evaluate geographic differences in the ratio of exposure to concentration.

2. Methodology
The methodology includes: (1) review of the algorithm and values ACH, P, and k for
estimating residential PM2.5 microenvironmental concentration; (2) sensitivity analysis of
ACH, P, and k to assess their importance with respect to estimated exposure; (3)
characterization of geographical variability associated with total daily average PM2.5
exposure; and (4) characterization of the ratio of exposure to ambient concentration for
ambient exposure, non-ambient exposure, and total exposure in each geographic area.

2.1 Residential PM2.5 concentration
SHEDS-PM includes a single-compartment, steady-state mass balance equation to estimate
the indoor PM2.5 concentration in the residential microenvironment (Burke et al. 2001).
Indoor residential PM2.5 includes outdoor PM that enters indoors and PM generated by
indoor emission sources such as cigarette smoking, cooking, and cleaning:

(1)

Where,

ACH = air exchange rate (h−1);

CHome = PM2.5 concentration in the home (µg/m3);

Cambient = ambient outdoor PM2.5 concentration (µg/m3);

Ei = emissions from indoor sources i;

k = deposition rate (h−1);

Ncig = number of cigarettes smoked during model time step (cig);

P = penetration factor (unitless);

T = model time step (min);

V = volume of microenvironment (m3).

ACH, P, and k can be specified as probability distributions. ACH is the volume flow of air
within the indoor microenvironment divided by the interior volume. ACH is affected by air
leakage through cracks and crevices in the building envelope, natural ventilation through
open windows and doors, and mechanical ventilation by fans (Liu and Nazaroff, 2001).

SHEDS-PM categorizes ACH into four seasons: winter, spring, summer, and fall. The
default data for ACH for these seasons was originally derived from a PFT database
developed by Brookhaven National Laboratory (BNL). Murray and Burmaster (1995)
analyzed the database and categorized ACH by climate region and season. However,
regional variations of ACH represented in Murray and Burmaster (1995) are not included in
SHEDS by default.
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P is the ratio of particles that penetrate indoors from outdoors. k refers to settling of airborne
particles due to gravity and diffusion. The deposition rate depends on particle size source
strength and ventilation conditions (He et al., 2005; Thatcher et al., 2002; Lai and Nazaroff,
2000). The default values of P and k in SHEDS were obtained from the Particle Total
Exposure Assessment Methodology (PTEAM) study conducted for Riverside, California, in
fall of 1990 (Özkaynak et al. 1997).

2.2 Review of penetration, depostion, and air exchange rates
The review of P, k, and ACH is based on: (a) detailed review of SHEDS-PM, its user guide,
and the literature cited as the basis for default input assumptions; (b) published peer
reviewed papers regarding similar models; and (c) published peer reviewed papers regarding
data for ACH, P and k. Data are reviewed with respect to selected geographic areas and for
four seasons.

2.3 Sensitivity analysis
Sensitivity analysis of an exposure model helps to identify the most significant factors that
aid in risk management or that enable prioritization of additional research to reduce
uncertainty in the estimates (Frey and Patil, 2002). Sensitivity analysis was conducted to
assess the variability in daily average PM2.5 exposure as a function of variation in P, k, and
ACH.

During the sensitivity analysis, all inputs were held at their default values except for one,
which was varied probabilistically. Results are shown as a Cumulative Distribution Function
(CDF) of inter-individual variability in daily average exposure for simulated individuals.
Based on the percent difference in the mean and standard deviation of exposure associated
with comparison of alternative distributions for each selected input, the key inputs were
identified and prioritized.

2.4 Geographic and inter-individual variability
To assess the geographic variability in estimated exposure, three locations were selected that
represent different climate zones: (1) New York City (NYC); (2) Wake, Durham, Orange,
Alamance, Guilford, and Forsyth Counties in North Carolina, which includes the cities of
Raleigh, Durham, Burlington, Greensboro, High Point, and Winston-Salem; and (3) Harris
County in Texas, which includes Houston. Since the average ambient PM2.5 concentration
tends to be highest in the summer, air quality data for July 2002 were selected. The six
counties selected for the NC case study represent urban areas along the I-40 highway
corridor.

SHEDS-PM output includes a database for each individual for each simulated day, with
estimates of daily average microenvironmental exposure concentrations for ambient,
nonambient, and total exposure. The ratio of exposure to ambient concentration for ambient
exposure, non-ambient exposure, and total exposure in each geographic area are based on
the pairwise estimated exposure and assigned ambient concentration for each simulated
individual.

3. Results
Recommended values of ACH, P, and k are given. Data regarding ACH are reviewed mainly
based on Murray and Burmaster (1995) and the Relationship of Indoor, Outdoor and
Personal Air (RIOPA) study from 1999 to 2001. Data regarding P and k are reviewed
mainly based on the RIOPA and PTEAM Studies (Weisel et al. 2005; Özkaynak et al.
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1997). Each input is evaluated using sensitivity analysis. Geographic and inter-individual
variability in daily average exposure to PM2.5 is evaluated for summer.

3.1 Air exchange rate
Murray and Burmaster (1995) summarized ACH data compiled by BNL for 2,844
households. This is the most recently reported comprehensive analysis of such data. They
stratified the data into four regional climate zones based on heating degree days. For each
region and season, lognormal distributions were fit to the data to represent inter-household
variability. New York State includes two regions, and NYC is in region 2. Koontz and
Rector (1995) analyzed 2,976 measurement results from the BNL database stratified by state
rather than climate zone.

Summer estimates for Region 2 are based mostly on data from Washington State, and thus
are not representative of NYC (Murray and Burmaster, 1995). Koontz and Rector (1995)
report geometric mean (μg) for New York State but not geometric standard deviation (σg).
However, Murray and Burmaster (1995) report σg of 2.09 for Region 2, which includes New
York State just north of NYC. Thus, ACH for summer in NYC is assumed to have μg of
0.64 with σg of 2.09.

For summer and Texas, μg and σg from the RIOPA and Koontz and Rector (1995) data are
much lower than from Murray and Burmaster (1995). Because air conditioning usage is
higher in Texas than in the northern regions (EIA, 2000), ACH is expected to be lower in the
summer than for other seasons. The seasonal trend in μg from the RIOPA data is internally
constant and thus these data (μg = 0.37, σg=1.90) are used for summer.

Wallace et al. (2006) measured ACH in 37 residences in the Research Triangle Park (RTP)
area in North Carolina for 7 consecutive days in each of four seasons. The highest mean
value of ACH was observed in the winter and the lowest in the summer, a reversal of the
typical pattern in other studies (Abt et al., 2000; Long et al., 2001). North Carolina is in
Region 3 in Murray and Burmaster (1995). For summer, both μg and σg from Murray and
Burmaster (1995) are similar to these reported by Wallace et al. (2006). The data from
Wallace et al. (2006) (μg = 0.54, σg=1.70) are used for summer.

3.2 Penetration factor and deposition rate
Ideally, P and k should be measured and estimated for houses with no indoor emission
sources. However, many of the available data appear to be for houses with indoor sources,
except as noted. The presence of indoor sources will produce bias in P, including values
greater than 1, and bias in k. In some cases, estimates of k are negative.

In the RIOPA study, there are a limited number of households (n=21) for which there is
explicit reporting of no indoor emission sources (Weisel et al., 2005). For these households,
P and k are 0.78, and 0.40 h−1, respectively. For 165 households, the indoor concentration
was less than the outdoor concentrations, denoted as I/O<1. I/O<1 is consistent with houses
that do not have indoor sources, but it is not adequate assurance that no indoor sources were
present. For these data, the average values of P and k are 0.73 and 0.20 h−1, respectively.
Data for other RIOPA locations may include indoor sources and, thus, might be biased. The
PTEAM study was conducted in Riverside, California in fall 1990. Indoor concentrations
were measured in the center of the residence and outdoor concentrations were measured
nearby. Measurements were conducted daily for two consecutive 12-h periods. During each
12-h period, PFT measurements were made from which ACH was estimated.

Based on the physical constraint that P ≤ 1, an upper bound of P = 1 is assumed. A lower
bound of 0.7 is assumed consistent with the mean value observed for the RIOPA study for I/
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O<1, Elizabeth, NJ, and the lower bound of the reported 95 percent Confidence Intervals
(CI)s for Los Angeles and the overall data. A nominal “best estimate” of 0.78 is assumed
based on the mean of the data for which no indoor sources were reported. A triangular
distribution is used for P to represent these judgments. Triangular distributions are
sometimes used to represent judgment in the absence of a probability sample of data (Cullen
and Frey, 1999).

A lower bound of k = 0.2 h−1 is assumed consistent with the mean value observed for the
RIOPA data in which I/O ≤ 1, the lower bound of reported CIs for overall cases, and the
lower bound of the CI for Los Angeles from the PTEAM study. A nominal “best estimate”
of 0.40 h−1 is assumed based on the mean of data for which no indoor sources were
reported, and the mean of data from the PTEAM study. The upper bound of k = 0.6 h−1 is
assumed based on the upper bound of the CI from the PTEAM study. A normal distribution
is assumed for k with a mean of 0.40 h−1 and standard deviation of 0.1, giving a 95 percent
probability range of approximately 0.2 to 0.6 h−1.

3.3 Sensitivity analysis
The specified distributions for these inputs in sensitivity analysis are summarized in Table 1.
In addition to a triangular distribution of P, two alternative frequency distributions are also
considered: (1) normal distribution with a mean of 0.85 and a standard deviation of 0.075;
(2) normal distribution with a mean of 0.90 and a standard deviation of 0.05. An alternative
normal distribution is also considered for k with a mean of 0.39 h−1 and a standard deviation
of 0.085, which are consistent with the data observed for the PTEAM study.

To compare the sensitivity of estimated exposure to each of several residential
microenvironmental inputs, a case study was developed based on all census tracts in Harris
County, Texas. For each census tract, 1% of the population was simulated. Distributions for
P and k are assumed to be the same for the three geographic areas, while ACH differs.
Sensitivity analysis for ACH is conducted for summer using air quality data for July 2002.
These data are estimated based on the predictions of average concentrations for 12 by 12 km
grid cells obtained from CMAQ and combined, using Bayesian statistical methods, with
monitoring data (McMillan et al., 2010). Model validation was analyzed by the comparison
between predictions from kriging model based solely on monitoring data and Bayesian
model. The Bayesian model and kriging approaches provided similar mean squared
prediction error across all Bayesian model runs. The Bayesian model reduced bias by 10 to
15 percent compared to kriging (McMillan et al., 2010). However, PM2.5 concentration
tends to have relatively less spatial variability at a given time than other pollutants (EPA,
2009). Thus, the use of monitoring data in a Bayesian framework to “update” the CMAQ
predictions will improve the accuracy of the representation of data for a region at a given
time. Furthermore, updating based on monitoring data helps ensure better representation of
temporal trends in concentration.

All exposure model runs were conducted using longitudinal simulations and the same
random seed. Five simulations were conducted for various combinations of probabilistic
assumptions for P, k, and ACH: (1) P1, k1, ACH1; (2) P2, k1, ACH1; (3) P3, k1, ACH1; (4)
P1, k2, ACH1; and (5) P1, k1, ACH2. Each model run was conducted on a Windows XP
Pentium 4 computer and had an approximate runtime of 800 minutes.

The three alternative distributions for P differ in terms of central tendency and range.
However, the corresponding three simulated distributions of inter-individual variability in
exposure are very similar. The mean exposure differs by less than 5 percent and the standard
deviations differ by less than 2 percent. Therefore, the results are not sensitive to the choice
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of distribution for P. Since P3 is the only one of the three that observes the physical limit of
P ≤ 1, P3 is chosen as the basis for further simulations.

The two alternative distributions for k differ in terms of central tendency and. However, the
corresponding simulated distributions of inter-individual variability in exposure are very
similar. Both the mean exposure and the standard deviation of exposure differ less than 1
percent. Therefore, the results are not sensitive to the choice of distribution, and k1 is chosen
as the basis for further simulations.

The two alternative distributions of ACH for Texas differ in terms of central tendency and
range as shown in Fig. 1(a). The μg and σg of ACH1 are 65 and 24 percent higher than those
of ACH2, respectively. The corresponding simulated distributions of inter-individual
variability in mean exposure and standard deviation based on ACH1 is 67 and 40 percent
lower than that based on ACH2 as shown in Fig. 1(b), respectively. Therefore, the results are
sensitive to the choices of distributions of ACH. ACH2 is chosen because it is consistent
with the expected seasonal trends as explained in Section 3.1.

3.4 Geographic variability of exposure to PM2.5

A random sample of 50,000 individuals in all age groups from all census tracts in each of
NYC, Harris County in Texas, and the six counties in North Carolina was simulated to
characterize the geographic variability of estimated exposure to PM2.5. PM2.5 air quality
data are the same as used in sensitivity analysis. The average daily ambient PM2.5
concentration was 20.9, 15.7, and 20.6 µg/m3 in the NY, TX, and NC domains, respectively.
Longitudinal simulation was used in all model runs.

Inputs that vary among geographic areas, including ACH, smoking prevalence,
demographics, and distribution of housing types, are given in Table 2. A detailed review of
smoking prevalence data and its adequacy is given by Cao and Frey (2011). Because of lack
of county level smoking prevalence data, state level data were used. The central tendency of
summer ACH in Texas is 31 and 42 percent lower than for the NC and NYC domains,
respectively. Lower ACH leads to more retention of indoor emissions, and higher non-
ambient exposure. Conversely, lower ACH leads to lower penetration of ambient PM2.5
indoors, and lower ambient exposure.

Based on the distribution of smoking by gender and age, and the population distribution by
age and gender, the weighted overall prevalence of smokers are 23.4, 20.0, and 19.1 percent
for NC, TX, and NYC, respectively. The smoking prevalence varies substantially among
different age and gender cohorts. For example, the proportion of smokers older than 45
years old is 28 percent higher than those in other age groups in Harris County, TX.
Furthermore, the proportion of time spent indoors also varies by cohort. Based on CHAD
diary data, the distribution of daily average time spent outdoors, indoors, and in travel by
gender and age are given in Table 3. The time spent indoors for people older than 64 years is
16 percent higher than that of people from 14 to 15 years old. Differences in human activity
patterns lead to difference in exposures.

The average interior volume of residential housing is approximately similar for the NC and
TX domains, but approximately 30 percent lower in NYC. The smaller average housing
interior volume is because the proportion of multiple family (apartment) housing in NYC is
more than 50 percentage points larger than that in North Carolina. The NC and TX domains
have approximately two-thirds single family houses, which have larger interior volume than
apartments. Large indoor volume enhances the dilution of indoor emissions. Smaller indoor
volume leads to higher indoor exposure to non-ambient PM2.5.
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When the activity patterns in Table 3 are weighted based upon the geographic location-
specified population distribution, as given in Table 2, differences in activity patterns
between cohorts can be pronounced in some cases. For example, even though the same
activity diary data are used, because there is a larger proportion of 18 to 24 year old males in
NC, the overall proportion of time spent outdoors by 18 to 24 year old males in NC is 4 and
13 percent more than those for TX and NYC, respectively. The aggregated proportion of
time spent outdoors for people older than 45 years old in NYC is estimated to be 6 percent
more than those of TX and NC domains, respectively. There is also a larger proportion of
smokers older than 45 years old in NYC.

The estimated daily average ambient exposure in NYC is 12.7 µg/m3, with a 95 percent
frequency range, as shown in Fig. 2(a), of 3.4 to 24.6 µg/m3. For Harris County, the mean is
8.4 µg/m3, with a range of 3.4 to 14.1 µg/m3. For the six county area of North Carolina, the
mean is 12.2 µg/m3, with a range of 4.4 to 21.0 µg/m3.

The higher estimated ambient exposure in NYC is attributed in part to higher ambient PM2.5
concentration, which averages 25 and 1.4 percent higher than that of Texas, and North
Carolina, respectively. The higher summer ACH in NYC leads to more indoor penetration of
ambient PM2.5. Ambient exposure for NC is 31 percent higher than that for TX. This is
attributed in part to higher ACH and ambient PM2.5 concentration in NC than for Harris
County.

The average estimated non-ambient exposure in Harris County is 14 and 11 percent higher
than that of the NC and NY domains. The population weighted smoking prevalence in Texas
is lower than that of NC. The weighted average indoor residential volume for Texas is
higher than that of NC and NYC. These two factors lead to lower non-ambient exposure to
PM2.5. However, the low summer ACH in Texas leads to overall higher non-ambient
exposure. This implies that non-ambient exposure is more sensitive to ACH than to other
factors, at least in this comparison.

NYC has a lower weighted average smoking prevalence and higher summer ACH than NC,
which would favor lower non-ambient exposure. However, the smaller average indoor
volume in NYC leads to overall higher non-ambient exposure to PM2.5. This implies that
estimated nonambient exposure is sensitive to the distribution of housing stock.

The mean values of total daily average exposure to PM2.5 in the NYC, NC, and TX domains
are 28.9, 27.8, and 26.6 µg/m3, respectively. The comparative order of these averages is
consistent with the order of average ambient exposure. However, the 90th percentile of total
exposure is higher in Harris County by 3 and 7 percent compared to NYC and NC,
respectively. The latter trend is consistent with the trend in non-ambient exposure. Thus,
geographic variability of total daily average exposure is influenced by the variability in
ambient exposure. However, the geographic variation in high-end exposure is influenced by
variability in nonambient exposure. This is because the high-end of non-ambient exposures
can be a factor of 2 to 10 higher than the ambient exposures. The high-end exposures are
mainly caused by indoor emissions, such as, smoking and cooking. The estimated average
non-ambient exposures for smokers are approximately fivefold higher than those for non-
smokers in each on the three geographic areas.

3.5 Inter-individual variability in exposure to PM2.5

Fig. 3 illustrates variability in the ratio of estimated exposure to ambient concentration for
ambient exposure (Ea/C), non-ambient exposure (Ena/C), and total exposure (Et/C). The
estimated mean values of Ea/C given in Fig. 3(a) are 0.60, 0.58, and 0.52, with standard
deviations of 0.16, 0.15, and 0.14, for the NY, NC and TX domains, respectively. The
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geographic differences in the mean Ea/C ratio are mainly associated with differences in
average ACH.

NYC has the highest Ea/C ratio. Higher ACH in NYC leads to higher penetration of ambient
PM2.5 indoors, which leads to higher exposure to ambient PM2.5. The average Ea/C in the
three geographic areas increase as the mean ACH increases. Each of the average, 50th

percentile, and 90th percentile of Ea/C varied approximately by 3 percent between the NYC
and NC domains, 9 percent between the NC and TX domains, and 12 percent between the
NYC and TX domains. The 50th percentile of ACH in NYC is 16 and 42 percent higher than
those of the NC and TX domains, the 90th percentile of ACH in NYC is 2 and 13 percent
higher than those the TX and NC domains. The relative magnitude of Ea/C appears to be
insensitive to population demographics when comparing the three geographic areas. For
example, the comparative increase in mean Ea/C for NYC, NC, and TX does not correspond
to a demographic trend such as the proportion of the population aged 18 to 65.

Based on Fig. 3(b), the estimated average ratios of Ena/C are 1.2, 1.0, and 0.9, with standard
deviations of 2.1, 1.8, and 1.4, for the TX, NY and NC domains, respectively. Geographic
variability in Ena/C is associated with ambient air quality, ACH, smoking prevalence, and
indoor volume. The TX domain has the lowest ACH and the lowest average ambient air
quality. Low ACH leads to more retention of indoor emissions. Thus, TX has the highest
average Ena/C ratio. The overall smoking prevalence in TX is lower than that of NC. The
proportion of single family homes in TX is 67 percentage points more than that of NYC;
therefore, the average indoor volume of TX is greater than that of NYC. Larger indoor
volume helps the dilution of indoor emission sources, such as smoking and cooking.

Based on Fig. 3(c), the estimated average ratios of Et/C are 1.8, 1.6, and 1.4, with standard
deviations of 2.1, 1.8, and 1.5, for the TX, NY and NC domains, respectively. The relative
magnitudes of the average and 90th percentile Et/C ratios among geographic areas are
consistent with the order of the average Ena/C ratio. However, at the 50th percentile, Et/C is
consistent with the order of the Ea/C ratio. The 50th percentile of the Et/C ratio for NYC is
17 and 35 percent higher than for the TX and NC domains, respectively. This indicates that
the average personal exposures to PM2.5 are dominated by ambient exposure; however, the
high-end personal exposures are more influenced by non-ambient exposure.

4. Conclusions
ACH is distinguishably the most sensitive input for both ambient and non-ambient exposure
to PM2.5. The distributions of Ea/C ratios in each geographic area indicate that simulated
individuals are typically exposed to more than half of the modeled ambient concentrations.
The estimated average Ea/C ratio relatively varies 13 percent among geographic areas based
on differences in housing stock, climate zone, and seasonal ACH. However, the range of
inter-individual variability in exposures tends to be similar. High ACH, whether on average
for a geographic area or for a specific individual regardless of geographic area, leads to high
ambient exposure indoors but lower non-ambient exposure, and vice versa. Thus,
geographic areas or seasons with higher average values of ACH are likely to have relatively
higher average ratios of ambient exposure to ambient concentration. One implication is that
assessments of human exposure and risk to PM2.5 should identify regions and seasons with
high ACH as being potentially highly exposed and thus prioritized for further investigation.

Approximately 60 percent of the estimated total daily average exposures to PM2.5 are caused
by non-ambient exposures for each of the three geographic areas. The extremely high daily
average exposures for some individuals are mainly caused by non-ambient exposure to
smoking or cooking. The magnitude of non-ambient exposure for a given indoor source
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strength is inversely proportional to ACH and to interior housing volume. Indoor behavior
and air quality at home is typically treated as a private matter. Thus, these results imply a
need to develop communications to the public to increase awareness of the potentially very
high levels of indoor particles that occur particularly as a result of smoking and some kinds
of cooking, to encourage voluntary measures at prudent avoidance of such exposures.

Geographic differences in housing stock and climate, which lead to geographic differences
in ACH, account for geographic variability in the estimated ambient and non-ambient
exposure to PM2.5. The microenvironmental simulation modeling approach can take into
account region- and climate-specific values of these key inputs, and can be applied more
broadly than demonstrated here to provide additional insights regarding geographic and
seasonal differences in exposures.

There are a number of limitations of this work that motivate priorities for future refinement
of the input data used for microenvironmental exposure modeling of PM2.5. For example,
there are relatively few data from which to estimate P and k. Data are needed for P and k
that more clearly represent situations without indoor emissions. Because P and k are likely
to be different among PM2.5 species, further studies are required to obtain P and k for
different PM2.5 species. Furthermore, more recent data for ACH are needed to represent
current housing stock in different regions. Although CHAD contains 22,968 diaries, there
are not sufficient geographic or seasonal coverage of these diaries to specifically represent a
given location or season. There is a need for more extensive diary data to represent multiple
climate zones and land use patterns.

Most epidemiology studies use central site ambient monitoring data as a surrogate for
population-level exposure. The estimates produced here imply that, on average, exposure
concentrations are 50 to 80 percent of ambient concentrations, and that there is substantial
inter-individual variability in exposures for a given ambient concentration. Because the
average Ea/C ratio is significantly less than one, the effects estimates from epidemiology
studies are biased low if exposure, rather than ambient air quality, is taken into account.
Furthermore, there are differences in estimated Ea/C ratios that are attributed to geographic
differences in ACH, housing distribution, and population distribution. Factors such as these
could lead to inter-city variations in concentration-response functions inferred using
epidemiological methods. Area-specific Ea/C ratios are recommended for possible use in
epidemiology studies to better address geographic and inter-individual variability in
exposure to PM2.5.

Despite limitations of scenario-based exposure modeling associated with the current scarcity
of data for factors such as ACH and diaries, the results obtained are plausible. The potential
use of scenario-based exposure models to aid in explaining or quantifying inter-city
variations in dose-response functions merits further attention.
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Research Highlights

• Most human exposure to ambient fine particulate matter (PM2.5) occurs indoors

• Ambient exposure to concentration (Ea/C) for PM2.5 averages 0.52 to 0.60

• Average Ea/C varies with geographic differences in residential air exchange
rates

• The coefficient of variation of inter-individual variability in Ea/C is 0.25

• Variations in Ea/C are not accounted for in many health effects studies.
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Fig. 1.
Variability in air exchange rate and daily residential PM2.5 exposure for Harris County, TX
for July 2002
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Fig. 2.
Geographic variability of inter-individual variability in daily average PM2.5 exposure in
summer
Note: in (b), non-ambient exposure is zero below 10th percentile
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Fig. 3.
Inter-individual variability of exposure to concentration ratio (E/C) in summer
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Table 1

Input assumptions for sensitivity analysis of P, k, and ACH

Input Distribution

P1 N (0.85, 0.075)a

P2 N (0.90, 0.05)

P3 Tri (0.70, 0.78, 1.0)b

k1 (h−1) N (0.40, 0.10)

k2 (h−1) N (0.39, 0.085)

ACH1 (h−1) in summer in TXc Log (1.05, 2.49)d

ACH2 (h−1) in summer in TXe Log (0.37, 1.90)

a
N~ Normal (mean, standard deviation).

b
Tri ~ Triangular (minimum, mode, maximum).

c
Sources: Murray and Burmaster (1995).

d
Log ~ lognormal (geometric mean, geometric standard deviation).

e
Sources: Weisel et al., 2005.
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