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Abstract
Approximately 20 percent of all strokes will occur in the Infratentorial brain. This is within the
vascular territory of the posterior vascular circulation. Very few clinical specifics are known about
the therapeutic needs of this patient sub-population. Most evidence-based practices are founded
from research about the treatment of anterior circulatory stroke. As a consequence, little is known
about how stroke in the Infratentorial brain region would require a different approach. We
characterized the neurovascular features of Infratentorial stroke, pathophysiological responses, and
experimental models for further translational study.
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Introduction
The posterior brain circulation is a common vascular region affected by stroke [1–4]; and
one fifth of ischemic and hemorrhagic stroke subtypes will occur there [5–9]. The primary
Infratentorial vasculature consists of the single basilar and paired vertebral arteries that
collectively supply the thalamus (inferior), occipital lobes, midbrain, brainstem, and
cerebellum (Figure 1, A-C). The Infratentorial vertebrobasilar circumferential, paramedian,
and perforator vessels are terminal vascular branches; they lack collateral flow and are
common sources of the ischemic occlusion or brain hemorrhage [10–11]. Several
neurological signs are described for posterior vascular injury, and these are summarized in
table 1 [12].

Within the evolution from basic principle and concept to clinical trial translations: few
studies will account for Infratentorial stroke cases. Many trials will commonly claim to
enroll far too few, or even completely excluding, Infratentorial patients [13–17]. Although
these strokes are indeed too rare in some population centers to achieve sufficient numbers,
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others will control for confounding pathophysiological heterogeneities between anterior and
posterior circulations [18–19].

These practices have led to evidence-based guidelines that may not sufficiently represent
some important spectrums of stroke. For these reasons, experimental animal models would
be useful to help address treatment strategies [18, 20]. Therefore, this review will describe:
the neurovascular features, experimental findings, and animal models of posterior
circulation stroke, for further study of vascular injury to this brain region.

Pathophysiology: Vascular Responses
Similar vascular mechanisms are shared between ischemic and hemorrhagic strokes [21]. In
the brain, cerebrovascular autoregulation maintains optimal tissue perfusion by constricting
or dilating the arterial system in response to wide variations of systemic pressures (MABP)
and local levels of CO2 [22]. Stroke leads to damaged cerebral autoregulation capacity and a
greater dependence upon systemic arterial pressure [23–25]. This occurs after both carotid
and vertebrobasilar-based ischemic strokes [24, 26]. Impaired autoregulation has been
recognized as an important mechanism of secondary brain injury and edema formation in
patients after ischemic stroke [27] and intracerebral hemorrhage [28]. For this reason,
MABP and respiratory ability are closely controlled at intensive care units.

Compared to the MCA, vertebrobasilar vessels have a greater capacity to mechanically
dilate and constrict, which suggests a greater dynamic autoregulatory ability of the posterior
circulation [29–31]. This may enable the hindbrain to divert blood flow to the carotid system
during cerebrovascular strain, since a drop in CNS perfusion leads to a proportionally
greater diminished flow across the BA compared to the MCA [32]. Systemic CO2 and
MABP changes superimposed upon permanent PCA occlusion in dogs showed graded
autoregulatory decompensation caudally from the supratentorium to the brainstem, while the
MCA autoregulation was preserved [33]. Experimental work in rats showed cerebral sparing
when systemic hypotension led to progressive declines of cerebellar autoregulatory kinetics
while MCA autoregulatory kinetics remain intact [34]. Cerebellar autoregulatory
impairment also occurred after bilateral carotid ligation in spontaneously hypertensive rats
[35]. In comparison, the addition of hypocapnia to systemic hypotension in cats, led to
greater ischemic susceptibility in the MCA-region compared to the cerebellum [36].
Therefore cerebellar autoregulatory kinetics may handle CO2 changes more favorably in the
face of hypoperfusion, while a drop in MABP without systemic CO2 changes would affect
the cerebellum more severely [34].

Pathophysiology: Neural Consequences
Ischemic interruption of cerebral blood flow leads to hypoxic and anoxic brain injury,
increased neuronal excitability, and cell death [37]. Reperfusion following cerebrovascular
ischemia augments this injury through free radial production and mitochondrial dysfunction
[38–39]. Similar mechanisms are to blame after hemorrhagic stroke as well (discussed
elsewhere) [21].

The cells comprising the CA1 hippocampal region are well known for vulnerability to
ischemia; however even these cells may be more resistant to hypoxic-ischemic events than
several areas of the hindbrain [40–41]. Notably, electrophysiological studies after hypoxic
injury have shown greater neuronal excitability in the hypoglossal (CNXII) and dorsal vagal
motor (DVMN) cranial nuclei of the brainstem compared to hippocampal CA1 regions [41].
After anoxia, the hypoglossal nucleus has shown both greater initial injury, and also
impaired recovery as compared to temporal lobe neurons [42]. In-vitro simulation of
ischemic reperfusion injury, using cell cultures of oxygenglucose deprivation followed by
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re- oxygenation (OGD-R) showed greater free-radical injury (lipid peroxidation) and
mitochondrial impairment in cerebellar cells compared to cerebral cortical cell culture [43].

Comparing cerebellar to brainstem injury after vertebral arterial occlusion, in gerbils
(experimental models are summarized in table 2), showed the greatest amount of cell death
near areas of coordination and balance (cerebellar interpositus and lateral vestibular nuclei),
while brainstem cardio-respiratory areas remained relatively intact [40]. Due to the scattered
nature of brainstem nuclei, it is unlikely this finding simply represents re-distribution of
blood flow. This is therefore more likely a brain region dependant phenomenon.

In support of this notion, magnetic resonance imaging (MRI) perfusion and diffusion studies
in humans have determined white matter to have an infarction threshold of 20ml/100g/
minute, while gray matter can sustain flow down to infarctions starting at 12ml/100g/minute
[44–47]. The cerebellum and brainstem have an abundance of white matter tracts, and this
implicates a greater vulnerability to ischemic injury. Therefore, the viability of brainstem
cardiorespiratory centers during periods of stress, such as severe systemic hypotension,
global cerebral ischemia, and cardiac arrest will require further investigation- as this could
yield many lasting clinical implications.

Experimental Studies: Ischemic Stroke
Animal models of posterior circulation stroke (see table 2) have revealed several
mechanisms of injury as targets for future study. In progressive hypotension in rats the
autoregulatory kinetics remained intact at the cerebrum, while there was a progressive loss
of autoregulatory efficacy in the cerebellum [34]. However, a manipulation of both mean
arterial blood pressure (MABP) and CO2 levels (in cats) and measuring blood flow
(hydrogen clearance method) in the cerebrum, cerebellum and spinal cord, found a greater
susceptibility to pressure dependant ischemia in the cerebrum and spinal cord than the
cerebellum, which was relatively resistant [36].

De Bray et al [48] used transcranial Doppler to compare blood flow in the supratentorial and
infratentorial compartments under increasing intracranial pressure (in rabbits). The
maximum amplitude of vasomotor activity occurred 30 seconds later in the basilar artery
compared to the carotid siphon. This indicates a delayed effect of intracranial pressure on
hindbrain microvascular tone. Matsumoto et al [33] caused permanent occlusion of posterior
cerebral artery perforators (canine model). They monitored cerebral blood flow
(autoregulation) and carbon dioxide reactivity in response to induced hypotension or
hypertension during the occlusion. The cerebral cortex maintained autoregulation and
carbon dioxide reactivity, while thalamic autoregulation was maintained during hypotension,
but not hypertension. On the other hand, the midbrain had markedly impaired autoregulation
and carbon dioxide reactivity. This suggests a differential vulnerability to permanent
vascular occlusion, and the brainstem may decompensate compared to the forebrain areas, in
spite of abundant posterior collateral circulation.

Using a model of bilateral carotid ligation (in spontaneously hypertensive rats), impaired
autoregulation was demonstrated in the cerebrum [49]. However, the addition of stepwise
drop in blood pressure caused impairment of cerebellar autoregulation as well. This suggests
a vulnerability to hypotension in a distant area from the original stroke location, an effect
possibly modulated by the alpha-adrenoceptor system (vasoconstrictive), secondary to
cerebral hypertensive stimuli or other transtentorial signals [35, 49–50]. The chronic
collateral vascular response may be age dependant, since bilateral carotid occlusion led to a
greater dependence on basilar flow in adult rats, compared to extra-cerebral midline
collaterals in the younger animals [51–53].
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Many animal studies of anterior circulation ischemic stroke have demonstrated impaired
autoregulation after ischemic stroke. The extent of which would depend on occlusion
duration and extent of reperfusion hyperemia [54–56]. This physiological response would be
expected to contribute to injury in the posterior brain region, and the effects of global brain
ischemia after cardiac arrest needs further study as well.

Experimental Studies: Hemorrhagic Stroke
One-fifth of the approximate 2 million worldwide intracerebral hemorrhages (ICHs) each
year will occur in the infratentorium [7–9]. Brainstem hemorrhages have an approximate
65% mortality rate and around 40% after cerebellar hemorrhage [57–59]. Prolonged
endovascular cerebrovascular damage from uncontrolled hypertension leads to
arteriosclerotic and amyloid angiopathic changes, vessel fragility and rupture at the deep
cerebellar vessels or brainstem basilar (paramedian) branches [8, 60]. Less common causes
of occurrence are: cancer, coagulopathy, or vascular anomalies (arterial-venous
malformations, aneurysms, cavernomas and dural arteriovenous fistulas) [8, 60]. For most
patients, supportive care is the best treatment rendered, since surgery is only available for
one-quarter of hospitalized cerebellar hemorrhage patients, and the brainstem is not
surgically accessible [61–64].

Mechanisms of infratentorial hemorrhage have not been studied. Due to the small size of the
hindbrain region, previous attempts using autologous blood injection could not reproduce
consistent hematomas, and consequently have received no further study [65–66]. Therefore
our preliminary studies developed experimental models of infratentorial intracerebral
hemorrhage (Figure 2) using clostridial collagenase to induce a hematoma in the cerebellum
or brainstem [67–68]. These animal models successfully mimic the clinical hemorrhage at
the infratentorial region (Figure 3). In clinical agreement, these animals were highly ataxic,
with motor-sensory, cognitive, and cranial nerve deficits. Most animals survived past 30
days, so long as gustatory, cardiovascular and reticular-activating systems remained intact.
These approaches produced consistent bleeding inside the tissue borders of these small brain
regions, with reproducible neurological and morphological features which can be intervened
with neuroprotective treatments in future studies.

Conclusion
The hindbrain has many neural tracts and nuclei that are critical and involved with
orchestrating, processing and transmitting information between the cerebral cortexes and
spine. Cerebrovascular injuries to the Infratentorium can therefore be particularly
devastating. In support of this notion, several animal studies and clinical reports together
indicate that the Infratentorial brain region may have less innate neurovascular protective
mechanisms, and greater amounts of cell death and injury, in comparison to supratentorial
brain regions, after stroke.

Though a very limited, yet significant, amount of experimental study has been done for
ischemic posterior circulation stroke, hemorrhage into the infratentorium has received
almost no study to date. In spite of shared mechanisms between ischemic and hemorrhagic
strokes, there is an urgent need to study ICH in the hindbrain. Future studies can use these
experimental models of ICH, and an array of other ischemic models, to test interventions for
reversing the mechanisms of injury in this brain region.
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Figure 1.
Illustrations are showing vascular distributions within the human brain. (A) The circle of
Willis supplies abundant collateral circulation to the forebrain and hindbrain. Dotted line
demarcates anterior /posterior circulation separation at posterior communicating artery
(PComA). Double-headed arrow indicates potential reversal of flow across PComA. (B)
Volumetric 3-dimensional (3D) reconstruction of the human brain: color-coded to display
predominant vascular distributions. (C) Serial sagittal sections demonstrating depth
dependant distribution of the respective circulations. ACA indicates anterior cerebral artery;
CA, carotid artery; MCA, middle cerebral artery; PCA, posterior cerebral artery; AICA,
anterior inferior cerebellar artery; ASA, anterior spinal artery; BA, basilar artery; PICA,
posterior inferior cerebellar artery; SCA, superior cerebellar artery
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Figure 2.
Photomicrographs demonstrate how multiple MRI contrasts can characterize infratentorial
hemorrhage in the rodent brain (*). T2 weighted imaging (T2WI; A and G) can easily
identify the location of the ICH injury based on loss of signal within the hemorrhage and it
can also provide information on peri-lesional edema. Diffusion-weighted imaging (DWI; B
and H) can also delineate the ICH, but is more useful to evaluate ongoing cellular changes
such that there is an increased signal around the ICH lesion consistent with cellular swelling.
T1 weighted imaging (T1WI; C and I) can readily evaluate the blood-brain barrier if an
exogenous contrast agent such as Gadolinium is administered. More recently, susceptibility
weighted imaging (SWI; D and J) has been shown to be extraordinarily sensitive to
extravascular blood, as shown with the dotted line, SWI identifies a larger region of
hemorrhage than the T2W, and is particularly useful for small hemorrhages not be visible on
standard imaging modalities. All data can be readily correlated with gross (E and K) and
histological (F and L) specimens. C=cerebellum and P=pons.
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Figure 3.
Images showing computed tomography of the head. The lesion foci (white arrows) represent
Infratentorial hemorrhage in the Human cerebellum (A), and the pons (B).
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Table 1

Posterior circulation brain regions and clinical signs after vascular injury [69–70]

Vessel Brain Region Ipsilateral Signs Contralateral Signs

SCA Superior and
middle cerebellar

peduncles

Cerebellar ataxia,
Dysarthria, Nausea,

Vomiting

Horner’s syndrome, Loss
of pain and temperature

sensation, Nausea,
Vomiting

AICA Middle cerebellar
peduncle, Pons
(lateral-caudal),
Caudal Medulla

Horner’s syndrome, Facial
and lateral gaze

weakness, Deafness,
Tinnitus, Nausea, Vomiting

Loss of pain and
temperature sensation,

Nausea, Vomiting

PICA Cerebellum
(inferior),

Medulla (lateral)

Horner’s syndrome,
Sensory loss, Diplopia,
Nystagmus, Hiccups,

Nausea, Vomiting

Loss of pain and
temperature sensation,

Nausea, Vomiting

BA (caudal) Medulla (medial) Tongue paralysis
(hypoglossal nerve)

Hemipalagia, but facial
structures unaffected

SCA indicates superior cerebellar artery; AICA, anterior inferior cerebellar artery; BA, basilar artery; PICA, posterior inferior cerebellar artery
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Table 2

Experimental animal models of posterior circulation stroke

Study Stroke Type Species Experimental Method Injury
Region

Chung et al, 1993 ICH Cat Autologous blood injection Brain Stem

Cossu et al, 1994 ICH Rat Autologous blood injection Cerebellum

Guo et al, 1995 Ischemic Dog Embolized PComA and SCA,
then clamped VA and ventral

spinal artery

Brainstem

Hata et al, 1994 Ischemic Cat Extra-cranial VA occlusion Brainstem
Cerebellum

Henninger et al, 2006 Ischemic Rat Injected Autologous clots into
VA

Brainstem
Cerebellum

Kuwabara et al, 1988 Ischemic Dog Occluded perforators of PCA Brainstem

Nakahara et al, 1991 Ischemic Cat Radiographic embolization of
VA

Brainstem
Cerebellum

Qureshi et al, 2004 Ischemic Dog Radiographic embolization BA Brainstem

Sekiguchi et al, 2005 Ischemic Rat Microspheres into right CCA Cerebellum
Forebrain

Shiroyama et al, 1991 Ischemic Rat Endoluminal suture into BA Brainstem

Wojak et al, 1991 Ischemic Rat Coagulated BA Brain Stem

Yamada et al, 1984 Ischemic Gerbil Vascular-clip to BA Brainstem
Cerebellum

Yao et al, 1990 Ischemic Rat Cauterized VA and decreased
MAP

Brainstem
Cerebellum

ICH indicates intracerebral hemorrhage; VA, vertebral artery; BA, basilar artery; CCA, common carotid artery; MAP, mean arterial pressure; PCA,
posterior cerebral artery; PComA, posterior communicating artery; SCA, superior cerebellar artery
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