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Abstract

Heart failure research suggests that multiple biomarkers could be combined with relevant clinical 

information to more accurately quantify individual risk and to guide patient-specific treatment 

strategies. Therefore, statistical methodology is required to determine multi-marker risk scores that 

yield improved prognostic performance. Development of a prognostic score that combines 

biomarkers with clinical variables requires specification of an appropriate statistical model and is 

most frequently achieved using standard regression methods such as Cox regression. We 

demonstrate that care is needed in model specification and that maximal use of marker 

information requires consideration of potential non-linear effects and interactions. The derived 

multi-marker score can be evaluated using time-dependent ROC methods, or risk reclassification 

methods adapted for survival outcomes. We compare the performance of alternative model 

accuracy methods using simulations, both to evaluate power and to quantify the potential loss in 

accuracy associated with use of a sub-optimal regression model to develop the multi-marker score. 

We illustrate development and evaluation strategies using data from the Penn Heart Failure Study. 

Based on our results, we recommend that analysts carefully examine the functional form for 

component markers and consider plausible forms for effect modification to maximize the 

prognostic potential of a model-derived multi-marker score.
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1 Introduction

Chronic heart failure is a multi-factorial, progressive disorder in which structural damage to 

the heart impairs its ability to provide adequate blood-flow to the body. In the United States, 

heart failure accounts for more than one million hospitalizations and approximately 60 000 

deaths per year.1 Among heart-failure patients, substantial heterogeneity exists in the risk of 

adverse outcomes, even after accounting for key factors that are known to impact risk.2 

Clinical research suggests that one or more biomarkers—proteins in the blood whose 

concentration reflects the presence or severity of an underlying disease condition—could be 

combined with relevant clinical information to more accurately quantify risk heterogeneity 

among all patients and to inform more beneficial treatment strategies for individual patients 

by focusing attention on patients at high risk and providing reassurance to patients at low 

risk.3,4 Therefore, statistical methodology is required to address relevant scientific questions 

regarding which biomarkers, or which combinations thereof, provide improved prognostic 

metrics to predict adverse outcomes. The primary statistical challenges are: development of 

a multi-marker risk score that maximizes use of all available information; and evaluation of 

the predictive accuracy of the multi-marker score for a censored survival outcome.

Modern statistical methods for prediction, or classification, are based on the fundamental 

epidemiologic concepts of sensitivity and specificity for a binary disease outcome.5 

Sensitivity is measured by the proportion of diseased individuals who are correctly classified 

as diseased; specificity is measured by the proportion of non-diseased individuals who are 

correctly classified as non-diseased. For a diagnostic marker defined on a continuous scale, a 

receiver operating characteristic (ROC) curve is a standard method to summarize predictive 

accuracy. The ROC curve is a graphical plot of the sensitivity (or, the true-positive fraction) 

versus 1 – specificity (or, the false-positive fraction) across all possible dichotomizations of 

the continuous diagnostic marker. The predictive accuracy of the diagnostic marker is 

quantified by the area under the ROC curve (AUC), which measures the probability that the 

diagnostic marker will rank a randomly chosen diseased individual higher than a randomly 

chosen non-diseased individual. An AUC of 0.5 indicates that the diagnostic marker is 

uninformative; an increase in the AUC indicates an improvement in predictive accuracy; an 

AUC of 1.0 indicates a perfect diagnostic marker. Recent advances have allowed adjustment 

for covariates associated with the marker of interest.6

Standard measures of predictive accuracy based on ROC curves and their corresponding 

AUC are limited to a diagnostic marker and a binary disease outcome collected at a single 

time-point. However, in a typical prospective study, interest lies in quantifying the ability of 

a marker measured on non-diseased individuals at baseline to classify accurately diseased 

and non-diseased individuals after a fixed follow-up time. In our motivating example, 

interest lies in predicting the combined outcome of all-cause mortality or cardiac 

transplantation after one year of follow-up. However, individuals may be lost to follow-up, 
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so that their time of disease onset is unknown, or censored. It is well known that analyses 

based solely on the uncensored outcomes may provide biased point estimates. Recent 

advances in statistical methodology have extended ROC analyses for a single binary disease 

outcome to time-dependent binary disease outcomes (or, survival outcomes), which may be 

subject to censoring.7,8 Time-dependent ROC methodology has also been extended to 

accommodate censored survival outcomes in the presence of competing risks.9

Methods recently developed for censored survival outcomes have focused on a single 

diagnostic maker, but there are situations in which interest lies the predictive accuracy of a 

set of diagnostic markers. In our motivating example, interest lies in determining the added 

value of a novel biomarker, ST2, when used in combination with two established risk 

predictors: brain natriuretic peptide level (NT-proBNP), a diagnostic and prognostic 

measure of heart failure severity; and the Seattle Heart Failure Model (SHFM), a validated 

risk score for mortality based on readily available clinical and laboratory variables.10 We 

illustrate the use of a standard Cox regression model11 to derive a multi-marker risk score, 

hereafter referred to as a `composite marker,' as a weighted combination of biomarkers and 

clinical variables, in which the weights are determined by the estimated regression 

coefficients. Alternative regression methods include proportional odds models and additive 

failure time models, which have been shown to be as accurate as Cox regression models for 

developing a composite marker from time-independent component markers.12 Specialized 

methods, such as non-parametric transformation models13 and extended generalized linear 

models14, are also available to derive the composite marker. The composite marker can then 

be supplied as the input to a time-dependent ROC analysis.

ROC-based methods have been criticized for their relative insensitivity to detect clinically 

important risk differences15 and for their lack of direct clinical relevance.16 For a binary 

disease outcome, a marker strongly associated with the odds of disease may be a poor 

classification marker. For example, if a marker has a 10% false-positive rate and an 

association odds ratio of 3.0, then its true-positive rate is only 25%.15 Methods based on risk 

reclassification were recently proposed to offer an alternative approach to compare risk-

prediction models.17,18 Reclassification methods are based on the stratification of estimated 

absolute risk into categories defined by clinically relevant risk thresholds, and the degree to 

which a model of interest more accurately classifies individuals into higher or lower risk 

categories relative to a comparison model. For censored survival outcomes, the Kaplan-

Meier estimator can be used to estimate the number of cases and controls within cross-

classified risk strata.19,20

We focus on prospective studies of a censored survival outcome, in which multiple 

biomarkers and clinical variables are collected at baseline. Our goals are to compare analytic 

strategies to develop a composite marker that maximizes use of all available biomarker and 

clinical information, and to compare statistical methods to evaluate the accuracy of the 

composite marker in predicting a censored survival outcome. In Section 2, we detail the use 

of a standard Cox regression model to combine multiple biomarkers and clinical variables 

and review methods to quantify the predictive accuracy of the composite marker using time-

dependent ROC curves.7 In addition, we contrast ROC-based methods with recently 

developed methods based on risk reclassification.17,19,20 In Section 3, we apply the methods 
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to our motivating example, based on the Penn Heart Failure Study.21 In Section 4, we 

discuss key model assumptions and provide results from a simulation study evaluating the 

impact of a sub-optimal marker combination on estimation of the AUC and the net 

reclassification improvement. We provide concluding discussion in Section 5.

2 Statistical Methods

2.1 Notation

Let Xj, j = 1, …, p denote biomarkers and Zk, k = 1, …, q denote clinical variables collected 

at baseline. Let T denote the subsequent failure time, such as the time to all-cause mortality 

or cardiac transplantation, which may or may not be observed due to censoring. Then let 

D(t) denote the occurrence of an event prior to time t such that if T ≤ t, then D(t) = 1 

indicates a `case' and if T > t, then D(t) = 0 indicates a `control.'

2.2 Development of a Composite Marker

A standard Cox regression model can be used to derive a composite marker as a weighted 

combination of biomarkers and clinical variables, in which the weights are determined by 

the estimated regression coefficients. Recall that a Cox regression model is specified by the 

hazard function, which is defined as the instantaneous rate at which failures occur for 

individuals that are surviving at time t:

(1)

The Cox regression model employs a log function to relate the hazard function to a linear 

combination of biomarkers and clinical variables:

(2)

where: λ0(t) is an unspecified baseline hazard function; βj are regression parameters that 

correspond to biomarkers Xj; and γk are regression parameters that correspond to clinical 

variables Zk. Because biomarkers and clinical variables are only measured at baseline and 

are constant over time, λ(t) is often referred to as a `proportional hazards' model. Censoring 

can be accommodated in likelihood-based estimation of the regression parameters, but 

censoring must be assumed to be independent of survival, i.e. non-informative censoring. 

The estimated regression coefficients can then be used to derive a composite marker M as a 

weighted combination of biomarkers and clinical variables:

(3)

To quantify the predictive accuracy of the composite marker, M can be supplied as the input 

to a time-dependent ROC analysis, which we review in the following section.
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2.3 Evaluation of Time-Dependent Predictive Accuracy

2.3.1 Time-Dependent ROC Analysis—Recall that a standard ROC curve is a 

graphical plot of the sensitivity, or the true-positive fraction, versus 1 – specificity, or the 

false-positive fraction, across all possible dichotomizations of a continuous diagnostic 

marker. For censored survival outcomes, sensitivity and specificity can be defined as a time-

dependent function across all possible dichotomizations c of the composite marker M:

(4)

(5)

where: S(t) is the survival function at time t, i.e. S(t) = P[T > t]; S(t | M > c) is the conditional 

survival function for the subset defined by M > c; and S(t | M ≤ c) is the conditional survival 

function for the subset defined by M ≤ c. A time-dependent ROC curve at time t is simply a 

plot of the time-dependent false-positive fraction (or, 1 – specificity) versus the time-

dependent true-positive fraction (or, sensitivity). Estimation of time-dependent sensitivity 

and specificity based on censored survival outcomes may proceed via either a simple 

Kaplan-Meier estimator or nearest neighbor estimation.7 Nearest neighbor estimation is 

preferable because it guarantees monotone sensitivity and specificity, and allows the 

censoring process to depend on the composite marker. The area under the time-dependent 

ROC curve can be calculated to quantify the predictive accuracy of the composite marker at 

time t; the difference between two AUCs can be used to quantify the difference in 

predicative accuracy between two markers. Standard error estimation is discussed in Section 

2.4.

2.3.2 Risk Reclassification for Censored Survival Outcomes—Risk 

reclassification methods are based on the stratification of estimated absolute risk into 

categories defined by clinically relevant risk thresholds, and the degree to which a model of 

interest more accurately classifies individuals into higher or lower risk categories relative to 

a comparison model.17,18 Proposed reclassification metrics include the net reclassification 

improvement (NRI). The NRI quantifies the predictive accuracy of a marker or set of 

markers by examining the difference in the proportions `moving up' into a higher risk 

category and `moving down' into a lower risk category among cases and controls between 

models with and without the marker(s) of interest:

(6)

By considering reclassification improvement separately among cases and controls, the NRI 

facilitates evaluation of a marker's ability to more accurately classify high-risk and low-risk 

individuals. For survival outcomes, risk at time t can be quantified by estimated survival 
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probabilities obtained from a Cox regression model. Because individuals may be censored 

before time t, their true `case' or `control' status is unknown at t. Within cross-classified risk 

strata, the Kaplan-Meier estimator can be used to estimate the number of cases and controls 

at time t so that all individuals contribute information to the analysis.19,20 Thus for censored 

survival outcomes, NRI(t) can be calculated for the estimated number of cases and controls 

`moving up' or `moving down' risk categories. Alternatively, a general `prospective form' of 

the NRI may be obtained by exploiting Bayes' rule.20 Standard error estimation is discussed 

in the following section.

2.4 Standard Error Estimation

In Section 2.3.1, we described a simple procedure to quantify the predictive accuracy of a 

multiple biomarkers and clinical variables for censored survival outcomes, in which 

estimated Cox regression coefficients are used to derive a composite marker, which is then 

supplied as the input to a time-dependent ROC analysis. A confidence interval for the 

corresponding AUC can be used to quantify uncertainty in the predictive accuracy of the 

composite marker. In addition, a Wald test based on the difference between two AUCs can 

be used to test for a statistically significant difference in predictive accuracy between two 

markers. Standard error estimates for confidence intervals and Wald tests must account for 

both the uncertainty due to the estimation of the Cox regression parameters and the 

uncertainty due to estimation of the time-dependent sensitivity and specificity. Assuming 

that the sample is from an independent and identically distributed population, a bootstrap 

can be used to obtain standard error estimates.22 Bootstrap procedures involve constructing 

resamples of the original dataset (of equal size), each of which is obtained by sampling with 

replacement from the original dataset. Estimates of the AUC and of the difference between 

two AUCs are obtained for each resampled dataset, and the standard deviation of the 

estimates across resampled datasets can be used as the standard error. There are options for 

model-based standard error estimation.14

In Section 2.3.2, we discussed the NRI, which evaluates the degree to which a model with 

marker(s) of interest more accurately classifies individuals into higher or lower risk 

categories relative to a comparison model without marker(s) of interest. A confidence 

interval for the corresponding NRI can be used to quantify uncertainly in the improvement 

in predictive accuracy associated with the marker(s) of interest. In addition, a Wald test of 

the hypothesis that the NRI is equal to 0 can be used to formally test whether the 

improvement in predictive accuracy is statistically significant. Standard error estimates must 

account for both the uncertainty due to Kaplan-Meier estimation of the number of cases and 

controls and the uncertainty due to estimation of the NRI. A bootstrap can be used to obtain 

standard error estimates, in which estimates of the NRI are obtained from each resampled 

dataset, and the standard deviation of the estimated NRI across resampled datasets can be 

used as the standard error. In the following section, we apply ROC-based methods and 

methods based on risk reclassification to our motivating example.
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3 Case Study

3.1 Background

The Penn Heart Failure Study is a prospective cohort study of outpatients with primarily 

chronic systolic heart failure recruited from referral centers at the University of 

Pennsylvania (Philadelphia, Pennsylvania), Case Western Reserve University (Cleveland, 

Ohio), and the University of Wisconsin (Madison, Wisconsin).21 Biomarker levels were 

measured from plasma samples collected at enrollment. Subsequent adverse events, 

including all-cause mortality and cardiac transplantation, were prospectively ascertained 

every six months via direct contact with participants or through death certificates, medical 

records, and contact with family members. All participants provided written, informed 

consent; the study protocol was approved by participating Institutional Review Boards.

The analysis goal was to determine the added prognostic value of a novel biomarker, ST2, 

when used in combination with two established risk predictors: brain natriuretic peptide 

level (NT-proBNP), a diagnostic and prognostic measure of heart failure severity; and the 

Seattle Heart Failure Model (SHFM), a validated risk score for mortality based on readily 

available clinical and laboratory variables.10 The SHFM was based on age, gender, New 

York Heart Association functional classification, heart failure etiology, left ventricular 

ejection fraction, medications (angiotensin converting enzyme inhibitor/angiotensin receptor 

blocker use, beta-blocker use, carvedilol use, statin use, furosemide equivalent daily dose, 

digoxin use), and laboratory values (serum sodium and creatinine). We limited our analysis 

to the combined outcome of all-cause mortality or cardiac transplantation, or transplant-free 

survival, to focus on the most serious outcomes associated with heart failure.

3.2 Methods

ST2 and NT-proBNP were positively skewed and were transformed using a log2 

transformation to avoid the undue influence of participants with an abnormally high ST2 or 

NT-proBNP. Estimates of the baseline hazard function were used to recalibrate SHFM, 

which was derived from an external cohort. Transformed biomarkers, as well as SHFM, 

exhibited a symmetric distribution. To aide in the comparison of estimated regression 

coefficients, log2-transformed biomarkers and SHFM were scaled by their standard 

deviation (on the log2 scale).

Time-dependent ROC analyses were used to determine the predictive ability of ST2 in 

combination with NT-proBNP and SHFM. First, Cox regression models for transplant-free 

survival were used to derive a composite marker M1 as a weighted combination of NT-

proBNP and SHFM, and to derive a composite marker M2 as a weighted combination of 

ST2, NT-proBNP, and SHFM. Weights were determined by the estimated Cox regression 

coefficients. Next, ST2 and the composite markers M1 and M2 were supplied as inputs to a 

time-dependent ROC analysis to estimate the AUC at one year. Confidence intervals for the 

AUC and p-values for the difference between two AUCs were computed from 1000 

bootstrap samples.

Net reclassification improvement was used to determine the added predictive value of ST2 

above that of NT-proBNP and SHFM. Cox regression models with NT-proBNP and SHFM, 
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but with and without ST2, were used to predict one-year risk of all-cause mortality or 

cardiac transplantation. All participants were cross-classified according to their estimated 

risk across clinically meaningful risk thresholds of 10%, 20%, and 50%. Within each cross-

classified risk stratum, the Kaplan-Meier estimate of one-year risk was used to estimate the 

number of cases and controls. The NRI at one year was calculated for the estimated number 

of cases and controls `moving up' or `moving down' risk categories. Confidence intervals 

and p values were computed from 1000 bootstrap samples.

3.3 Results

Complete information was available on 1125 participants, of which 107 participants were 

censored before one year. Of the remaining 1018 participants, 147 (14%) died or received a 

cardiac transplantation within one year.

According to the estimated Cox regression coefficients, the composite markers M1 and M2 

were:

(7)

(8)

These results indicated that the composite marker for NT-proBNP and SHFM (M1) was 

more heavily weighted by SHFM compared to NT-proBNP. Similarly, the composite marker 

for ST2, NT-proBNP, and SHFM (M2) was most heavily weighted by SHFM compared to 

ST2 and NT-proBNP; ST2 was weighted more heavily compared to NT-proBNP.

Figure 1 displays estimated time-dependent ROC curves for transplant-free survival at one 

year for ST2 and both composite markers. The AUC for ST2 was 0.746, 95% CI: (0.697, 

0.794), which indicated that ST2 accurately discriminated between high- and low-risk 

individuals at one year. The AUC for M1—the composite marker for NT-proBNP and 

SHFM—was 0.828, 95% CI: (0.791, 0.865), which when compared to the AUC for ST2 

indicated that the predictive accuracy of NT-proBNP and SHFM was significantly greater 

than that of ST2 (p < 0.01). The AUC for M2—the composite marker for ST2, NT-proBNP, 

and SHFM—was 0.825, 95% CI: (0.786, 0.864). Because the AUC for M2 was not 

significantly different from that for M1 (p = 0.69), there was no evidence to suggest that ST2 

had added predictive ability when used in combination with NT-proBNP and SHFM.

Table 1 provides a risk reclassification table comparing one-year risk of all-cause mortality 

or cardiac transplantation from Cox regression models with NT-proBNP and SHFM, but 

with and without ST2. The model without ST2 classified 56% of participants into the <10% 

risk category, 23% into the 10% to <20% risk category, 18% into the 20% to <50% risk 

category, and 3% into the ≥50% risk category. Similar marginal proportions were observed 

for the model with ST2. Reclassification rates can be calculated from the estimated number 

of cases and controls `moving up' or `moving down' risk categories in Table 1. For example, 

the number of cases at one year was estimated from the Kaplan-Meier risk estimate: 1125 × 

0.132 = 148.6. Of the 148.6 estimated cases, 3.0 + 6.2 + 9.0 = 18.2 `moved up' in risk 
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category when ST2 was added to the model with NT-proBNP and SHFM, whereas 1.0 + 

10.4 + 2.0 = 13.4 `moved down' in risk category. Thus the reclassification rate among cases 

was 3.2% (18.2 – 13.4 of 148.6), 95% CI: (−5.6%, 12.0%), although the improvement was 

not statistically significant (p = 0.48). The reclassification rate among controls was 3.3% 

(77.6 – 45.8 of 976.4), 95% CI: (−0.3%, 6.8%), which represented a marginally significant 

improvement in classification accuracy (p = 0.07). Overall, the net reclassification 

improvement with the addition of ST2 was 6.4%, 95% CI: −4.2%, 17.1%), although the 

improvement was not statistically significant (p = 0.23).

3.4 Summary

The goal of this analysis was to determine the added prognostic value of ST2 when used in 

combination with two established risk predictors: NT-proBNP and SHFM. Time-dependent 

ROC analyses indicated that, although ST2 exhibited an ability to predict risk, the predictive 

ability of a combination of ST2, NT-proBNP, and SHFM was similar to that of a 

combination of NT-proBNP and SHFM. Risk reclassification analyses indicated that, 

although the addition of ST2 improved discrimination of low-risk individuals, there was no 

overall improvement in discrimination for defined risk thresholds. Therefore, although ST2 

was a potent predictor of risk, it offered limited predictive accuracy beyond that of an 

established biomarker (NT-proBNP) and a clinical risk score (SHFM).

4 Model Assumptions

In our case study, we illustrated the use of methods based on time-dependent ROC curves 

and risk reclassification to evaluate the ability of multiple biomarkers and clinical variables 

measured at baseline to predict a subsequent survival outcome that may be subject to 

censoring. Both approaches relied on a semi-parametric Cox regression model to form a 

simple linear combination of the component markers based on their estimated regression 

coefficients. However, there are two typical situations in which a simple linear combination 

of the component markers may not optimally capture their true association with the outcome 

of interest. First, there may be a non-linear association between a marker and the outcome. 

Second, there may be an interaction between two or more markers. In these situations, a 

simple linear combination of the component markers can be viewed as a sub-optimal marker 

combination, whereas a combination that more closely approximates the true functional 

form between the markers and the outcome can be viewed as an optimal combination. In a 

simulation study and our case study, we evaluated the impact of a sub-optimal linear marker 

combination on estimation and inference regarding the improvement in predictive accuracy 

associated with a marker of interest.

4.1 Simulation Study

We performed a simulation study to evaluate the impact of a sub-optimal linear marker 

combination on estimation of the time-dependent AUC and NRI. We considered two 

settings: first, when the optimal marker combination includes a quadratic term for the 

biomarker; and second, when the optimal marker combination includes an interaction 

between the biomarker and the clinical variable.
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4.1.1 Parameters—At each of 1000 iterations, we simulated a biomarker X and a clinical 

variable Z for a sample of n = 300 individuals from a bivariate Normal distribution:

(9)

for which ρ = 0.3. We specified the following optimal marker combinations: one that 

included a quadratic term for the biomarker [Setting (1)]; and one that included an 

interaction between the biomarker and the clinical variable [Setting (2)]:

(10)

(11)

In each setting, we generated a failure time T for each individual from an Exponential 

distribution with rate exp(M). We introduced an independent censoring process and in each 

setting selected the rate such that approximately 20% of individuals were censored before 

their failure time. In each setting, we estimated time-dependent ROC curves for Z alone, for 

the sub-optimal linear combination of X and Z, and for the optimal combination of X and Z 

at t = 0.25. We also estimated the NRI for the sub-optimal linear combination of X and Z 

versus Z alone and for the optimal combination of X and Z versus Z alone at t = 0.25. 

Standard error estimation was based on 200 bootstrap samples at each iteration.

4.1.2 Results—Figure 2 presents time-dependent ROC curves for Z alone (` '), 

for the sub-optimal linear combination of X and Z (` '), and for the optimal 

combination of X and Z (` ') in settings (1) and (2). Table 2 provides the 

difference in AUC and the NRI to quantify the improvement in predictive accuracy 

associated with a biomarker X for the sub-optimal linear combination of X and Z and for the 

optimal combination of X and Z in settings (1) and (2). In Figure 2 and Table 2, summaries 

are presented as the average estimate across 1000 iterations and the average standard error 

obtained as the average standard deviation of estimates from 200 bootstrap samples. In both 

settings, the sub-optimal linear marker combination provides a modest improvement in 

predictive accuracy compared to the clinical covariate alone, as exhibited by the increase in 

AUC and the positive NRI. However, in both settings the optimal marker combination 

provides a substantial improvement in predictive accuracy.

For the purpose of illustration, assume that the point estimates for the difference in AUC and 

the NRI provided in Table 2, along with their associated estimated standard errors, were 

obtained from a single dataset. These estimates could be used to formally test for an 

improvement in predictive accuracy based on a two-sided, one-sample z test. The p values 

from such a test are provided in Table 2. Of note, in neither setting would the sub-optimal 

linear marker combination provide evidence for a statistically significant improvement in 

predictive accuracy associated with the biomarker X (all p > 0.05). However, in both settings 

the optimal marker combination would provide evidence for a highly significant 

improvement in predictive accuracy (all p < 0.01).
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4.2 Case Study

The results of our simulation study suggest that in applications it is critical to verify 

assumptions regarding the functional form for component markers and to consider plausible 

forms for effect modification to determine whether the composite marker is correctly 

specified. Otherwise, the improvement in predictive accuracy associated with the marker(s) 

of interest may be incorrectly estimated. To evaluate the assumption of linearity, Martingale 

residuals can be plotted against each component marker.23 Figure 3 presents Martingale 

residuals versus (a) log2 ST2, (b) log2 NT-proBNP, and (c) SHFM with a flexible smoothing 

spline with 4 degrees of freedom (` '). If the linearity assumption was satisfied, 

then the smoothing spline would appear as a flat line at 0. For each component marker, this 

appears to be the case. To evaluate plausible forms for effect modification, a model-based 

Wald test could be used to evaluate the statistical significance of the interaction term. In our 

case study, there was no evidence of effect modification.

5 Discussion

In this article, we illustrated analytic strategies to develop a composite marker that 

maximizes use of all available biomarker and clinical information, and compared alternative 

statistical methods to evaluate the accuracy of the composite marker in predicting a censored 

survival outcome. We considered a standard Cox regression model to derive a composite 

marker as a weighted combination of biomarkers and clinical variables, in which the weights 

were determined by the estimated regression coeffcients; the composite marker was supplied 

as the input to a time-dependent ROC analysis. Alternatively, we considered risk 

reclassification methods based on the stratification of absolute risk estimated from a Cox 

regression model into categories defined by clinically relevant risk thresholds, and the 

degree to which a model of interest more accurately classified individuals into higher or 

lower risk categories relative to a comparison model. Our research adds to the growing body 

of literature on statistical methods for evaluating the predictive accuracy of a survival 

model.24,25 To our knowledge, our simulation study is the first to directly compare the 

statistical properties of AUC-based and reclassification-based approaches in the context of a 

censored survival outcome. In our simulation study, we showed that a sub-optimal marker 

combination may provide an incorrect estimate of the improvement in predictive accuracy 

associated with the marker(s) of interest, as quantified by the difference in AUC and the 

NRI. Therefore, in applications we recommend that analysts carefully examine the 

functional form for component markers and consider plausible forms for effect modification 

to maximize the prognostic potential of the composite marker.

In part, methods based on risk reclassification have been popularized because ROC-based 

methods may be insensitive to clinically important differences in risk.17,18,26 Our results 

provided examples in which these methods were similarly able (or, unable) to detect risk 

differences. First, in our case study neither the difference in AUC nor the NRI suggested that 

ST2 significantly improved predictive accuracy when used in combination with NT-proBNP 

and SHFM. Second, in our simulation study the difference in AUC and the NRI exhibited a 

similar ability to detect an improvement in predictive accuracy. Table 3 provides a 

comparison of p values from each simulated dataset for the optimal and sub-optimal 
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combination of X and Z in settings (1) and (2). Note that p values were obtained at each 

iteration from a two-sided, one-sample z test based on the estimated NRI, the estimated 

difference in AUC, and their corresponding bootstrap standard errors. In each setting, the 

difference in AUC was slightly more sensitive to an improvement in predictive accuracy 

than the NRI. For example, Table 3(a) compares p values evaluating the improvement in 

predictive accuracy for the sub-optimal linear combination in setting (1), at a threshold of α 

= 0.05. There was limited evidence of an improvement in this setting, such that the power 

level—the rate at which the null hypothesis of no improvement was rejected—was 10% for 

the NRI and 20% for the difference in AUC. Table 3(d) compares p values evaluating the 

improvement in predictive accuracy for the optimal combination in setting (2), at a threshold 

of α = 0.01. In this setting, there was strong evidence of an improvement, such that the 

power level for the NRI and the difference in AUC was 90% and 95%, respectively.

In our simulation study, we focused on two typical situations in which a simple linear 

combination of the component markers based on their estimated Cox regression coefficients 

may not optimally capture their true association with the outcome of interest: the presence of 

a non-linear association; and the presence of effect modification. In the context of censored 

survival outcomes, regression coefficients may also depend on time, i.e. the hazard may not 

be proportional. In this situation, a simple linear combination that ignores time-dependent 

effects may lead to a composite marker that does not accurately quantify predictive 

accuracy. There are standard methods to evaluate the proportional hazards assumption based 

on graphical representations and statistical tests.27 In our case study, there was no evidence 

to suggest that the proportional hazards assumption was violated for ST2, NT-proBNP, or 

SHFM. If the proportional hazards assumption was violated, then a time-dependent marker 

should be included in the model by interacting the marker with an appropriate function of 

time. The composite marker can be calculated as a weighted average of the time-

independent and time-dependent component markers.

An important consideration when exploring effect modification in the analysis of censored 

survival outcomes is the scale of interaction. Interactions on one scale (e.g., multiplicative 

hazards) may not be present on another scale (e.g., additive hazards). Therefore, it may be 

important to explore alternative model structures when developing the composite marker. 

We performed additional simulation studies in which failure times were generated according 

to both multiplicative and additive interaction models with M = 1.0X + 0.5Z + 2.0X × Z. For 

the true multiplicative model, failure times were generated from an Exponential distribution 

with rate exp(M), so that the true AUC for the optimal combination of X and Z at t = 0.25 

was 0.881. For the true additive model, failure times were generated according to 

, with U ~ Uniform(0, 1), so that the true AUC for the optimal 

combination at t = 0.42 was 0.762. We implemented both multiplicative and additive models 

to develop the composite marker. Because we focused on time-independent markers, we fit 

additive models using a partly parametric additive risk model, which accommodates time-

independent effects.28 In the scenarios we considered, we found that incorrectly specifying 

the scale of interaction did not have a substantial impact on estimation of predictive 

accuracy. For example, under a true multiplicative model, the AUC for the optimal 

combination of X and Z based on the fitted multiplicative model was 0.871, wheres that 
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based on the fitted additive model was 0.851. Under a true additive model, the AUC for the 

optimal combination of X and Z based on the fitted additive model was 0.729, wheres that 

based on the fitted multiplicative model was 0.738. Additional research is required to fully 

explore the use of alternative models to develop multi-marker risk scores.

Our case study considered the clinically relevant combined outcome of all-cause mortality 

or cardiac transplantation, or transplant-free survival, to focus on the most serious outcomes 

associated with heart failure. However, the occurrence of a cardiac transplantation may 

precede the occurrence of death, and if a transplantation occurs, then it may fundamentally 

alter the risk of death. Therefore, death and transplantation exist as competing risk events. A 

major goal in such a setting may be to accurately predict only those individuals who would 

require transplantation, and in this case the competing events must be considered in the 

choice of an inferential target. Simply censoring the competing risk events, such as all-cause 

mortality, leads to incorrect inference. Appropriate time-dependent ROC methods and risk 

reclassification methods were recently proposed to account for such competing risk 

events.9,20 If the goal is to identify individuals who are at risk for a particular event type 

(e.g., patients who require transplantation) rather than a combined outcome (e.g., cardiac 

transplantation and all-cause mortality), then these approaches may be adopted.

In our case study, we used all observed data to derive the composite marker and 

subsequently to evaluate its accuracy in predicting censored survival outcomes based on a 

time-dependent ROC curve, which may provide an overly optimistic estimate of predictive 

accuracy. For example, in the context of binary outcomes, estimation of a composite marker 

based on a logistic regression model followed by estimation of the corresponding ROC 

curve from the same dataset may lead to bias in the predictive accuracy of the composite 

marker, but the bias vanishes at a rate proportional to the sample size.29 In our case study, 

the sample size was sufficiently large (n = 1125). Alternatively, analysts could consider a 

jackknife approach in which the composite marker and its corresponding time-dependent 

ROC curve are computed across datasets, each of which is formed by leaving out one or 

more observations from the original dataset. For large datasets, computational approaches 

based on cross-validation are also available to ameliorate the potential for bias.30 Of course, 

external validation is only available when the prediction rule or classifier is applied to an 

independent dataset.

We used R (R Development Core Team, Vienna, Austria) and various extension packages to 

analyze the data in our case study and to perform the simulation study. We fit Cox 

regression models using the survival31 package, fit (partly parametric) additive survival 

models using the timereg32,33 package, and estimated time-dependent ROC curves using the 

survivalROC34,35 package. Limited software is available to implement risk reclassification 

methods. Therefore, in the Supplementary Material we provide R code to estimate the NRI 

in the context of censored survival outcomes using simulated data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Estimated time-dependent ROC curves for transplant-free survival at one year: ST2 (`

') the composite marker for NT-proBNP and SHFM (` '); and the 

composite marker for ST2, NT-proBNP, and SHFM (` ').
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Figure 2. 
Simulation results for time-dependent ROC curves for Z alone (` '), for the sub-

optimal linear combination of X and Z (` '), and for the optimal combination of X 

and Z (` ') in settings (1) and (2). Summaries presented as the average estimated 

AUC across 1000 iterations (`AUC') and the average standard error obtained as the average 

standard deviation of estimates from 200 bootstrap samples (`SE').
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Figure 3. 
Diagnostics to evaluate linearity for the Cox regression model used to derive the composite 

marker for ST2, NT-proBNP, and SHFM: Smoothing spline with 4 degrees of freedom (`

').
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Table 2

Simulation results for the improvement in predictive accuracy associated with a biomarker X for the sub-

optimal linear combination of X and Z and for the optimal combination of X and Z in settings (1) and (2). 

Summaries presented as the average estimate across 1000 iterations (`Mean') and the average standard error 

obtained as the average standard deviation of estimates from 200 bootstrap samples (`SE'); p value obtained 

from a hypothetical two-sided, one-sample z test based on average estimate and average standard error.

Mean (SE) p

Setting (1): M = 1.0X + 1.5X2 + 1.0Z

 Difference in AUC

  {X, Z} versus {Z} 0.038 (0.028) 0.18

  {X,X2,Z} versus {Z} 0.168 (0.030) < 0.01

 NRI

  {X, Z} versus {Z} 7.3% (13.5%) 0.59

  {X,X2,Z} versus {Z} 37.7% (8.3%) < 0.01

Setting (2): M = 0.5X + 0.5Z + 1.5X × Z

 Difference in AUC

  {X, Z} versus {Z} 0.043 (0.030) 0.16

  {X,Z,X × Z} versus {Z} 0.183 (0.043) < 0.01

 NRI

  {X, Z} versus {Z} 19.3% (28.9%) 0.50

  {X,Z,X × Z} versus {Z} 41.3% (10.7%) < 0.01

Stat Methods Med Res. Author manuscript; available in PMC 2014 January 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

French et al. Page 21

Table 3

Comparison of p values from each simulated dataset for the optimal and sub-optimal combination of X and Z 

in settings (1) and (2); p values were obtained at each iteration from a two-sided, one-sample z test based on 

the estimated NRI, the estimated difference in AUC, and their corresponding bootstrap standard errors.

(a) Setting (1), {X, Z} versus {Z}

NRI

AUC p ≥ 0.05 p < 0.05 Total

p ≥ 0.05 769 31 800

p < 0.05 130 70 200

Total 899 101 1000

(b) Setting (1), {X,X2,Z} versus {Z}

NRI

AUC p ≥ 0.01 p < 0.01 Total

p ≥ 0.01 0 0 0

p < 0.01 20 980 1000

Total 20 980 1000

(c) Setting (2), {X, Z} versus {Z}

NRI

AUC p ≥ 0.05 p < 0.05 Total

p ≥ 0.05 615 141 756

p < 0.05 148 96 244

Total 763 237 1000

(d) Setting (2), {X,Z,X × Z} versus {Z}

NRI

AUC p ≥ 0.01 p < 0.01 Total

p ≥ 0.01 11 27 38

p < 0.01 85 877 962

Total 96 904 1000
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