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Abstract
In retinal surgery, surgeons face difficulties such as indirect visualization of surgical targets,
physiological tremor and lack of tactile feedback, which increase the risk of retinal damage caused
by incorrect surgical gestures. In this context, intra-ocular proximity sensing has the potential to
overcome current technical limitations and increase surgical safety. In this paper we present a
system for detecting unintentional collisions between surgical tools and the retina using the visual
feedback provided by the opthalmic stereo microscope. Using stereo images, proximity between
surgical tools and the retinal surface can be detected when their relative stereo disparity is small.
For this purpose, we developed a system comprised of two modules. The first is a module for
tracking the surgical tool position on both stereo images. The second is a disparity tracking
module for estimating a stereo disparity map of the retinal surface. Both modules were specially
tailored for coping with the challenging visualization conditions in retinal surgery. The potential
clinical value of the proposed method is demonstrated by extensive testing using a silicon
phantom eye and recorded rabbit in vivo data.

Index Terms
Visual tracking; surgical tool tracking; stereo disparity estimation; proximity detection; stereo
microscopy; retinal surgery

I. Introduction
Sight-threatening conditions such as retinal detachment and macular holes currently require
technically challenging surgical interventions. Surgeons face several difficulties, starting
with the indirect visualization of surgical targets, physiological hand tremor and lack of
tactile feedback. In recent years, the first generation of robotic assistants has been developed
for overcoming some of the challenges in retinal surgery. For active hand tremor
cancellation and autonomous intra-operative guidance, solutions such as the SteadyHand
robot [29] and the Micron manipulator [20] have been developed. Recently, micro robots [9]
have been proposed for intra-ocular drug delivery. In addition, smart sensing tools such as
the micro force sensor in [14] and the optical coherence tomography (OCT) instrument in
[1] have been proposed for providing valuable intra-ocular measurements and active
assistance for surgeons.

In this context, computer vision techniques have the potential for providing valuable intra-
operative guidance and augmentation [10]. In this paper, we describe how the visual
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feedback provided by the stereo endoscope can be used for contactless proximity detection.
The goal is to increase surgical safety by warning surgeons when the distance between
surgical tools and the delicate intra-ocular structures is small and therefore avoid potentially
dangerous unintentional collisions. The proposed system can be used to assist surgeons
during intra-operative OCT scans [1] or in more common procedures such as vitrectomies.

Using stereo images, proximity can be detected when the difference between tool and retina
stereo disparities is small. To this end, two modules were developed: a surgical tool tracking
method and a retina disparity tracking method. In both modules, tracking is formulated as a
direct visual tracking method [4]. For coping with the challenging visualization conditions in
retinal surgery, a robust image similarity measure called the Sum of Conditional Variance
(SCV) [17] is employed. The proposed methods were tested using images from a phantom
eye and recorded in vivo rabbit experiments. In addition, a comparative study using ground-
truth motion provided by the SteadyHand robot was performed.

This paper is organized as follows. In sections 2 and 3, we describe in detail the surgical tool
tracking and retina disparity estimation modules, respectively. Section 4 describes how the
two developed modules are combined for proximity detection. Section 5 describes the
experiments conducted for validating the system. Finally, section 6 provides a conclusion
and discussion on future work directions.

II. Visual tracking of surgical tools
A. Background

In this work, we focus on tracking surgical instruments that resemble the surgical pick
shown in Figure 1. In the literature, works on surgical tool tracking can be coarsely
categorized into two classes [12]: color-based and geometry-based approaches. In color-
based approaches [8], [30], [33], tools are detected and tracked based on the color difference
between tool and background. Artificial markers are often employed. In addition to an
appearance tool model, geometry-based approaches also explore the shape of surgical tools
[16], [28], [32]. Although tracking based on geometry information is generally more
complex than color-based tracking, practical issues concerning bio-compatibility and
sterilisability related to the use of artificial markers can be avoided.

The challenges involved in tracking surgical instruments start with the illumination
conditions during surgery. Surgeons often use a hand-held light pipe to illuminate the retina
(Figure 1), causing shadows and highly variable lighting between frames. Exterior lighting
(from the operating room) and inter reflections from the microscope lenses can also cause
glares, further complicating the visual tracking task. In addition, image distortions caused by
the eye, microscope and contact lenses used during surgery are difficult to correct due to
their complexity and variability (Figure 2).

For coping with the challenging conditions cited above, tool tracking is formulated as a
direct visual tracking method based a robust similarity metric called Sum of Conditional
Variance (SCV) [17]. The SCV is a metric closely related to the Correlation Ratio (CR)
[21]. It was originally proposed in the medical imaging domain for registering multi-modal
images. The SCV was recently explored in the visual tracking context in [19] and it was
chosen in this specific context for its low computational requirements and invariance to
nonlinear illumination variations, which enables tracking to cope with the challenging
illumination conditions described earlier. Compared to similarity measures such as such as
Normalized Cross Correlation or Mutual Information [7] (which has been employed in our
previous work in [18]), the SCV has a significantly smaller computational complexity.
Furthermore, efficient optimization strategies can be derived for the SCV [19], allowing
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real-time tracking performance to be easily achieved without any dedicated hardware (e.g.
GPUs).

B. Visual tracking using the Sum of Conditional Variance (SCV)
Let I and T be (n×m) matrices representing the current and reference images of a surgical
tool, respectively. Let x = (x, y) be a vector containing pixel coordinates such that (x, y) ∈
{1, 2, …, m}×{1, 2, …, n}, and w(x, p) a transformation function of parameters p that maps
pixel positions x from the reference image T (x) to the current image I from the microscope:
x ↦ w(x, p). In this work, the surgical tool is tracked using a 3 DOF motion model (an
Euclidean transformation). Furthermore, the tool tip is tracked separately on both stereo
images from the microscope.

Let I ∈ [0, dI] and T ∈ [0, dT], where dI and dT are the number of possible discrete pixel
intensity values in I and T, respectively. The SCV between images I and T can be computed
as:

(1)

with:

(2)

where (.) is the expectation operator. Notice that the equation above is equivalent to the
SSD if we assume T ̂(x) =  (I(w(x, p))|T (x)) = T (x), showing that the SSD can be
considered as a specific case of the SCV.

The term T̂ is computed from the joint intensity distribution between I and T. The joint
distribution P is discrete (i.e. a dT × dI matrix), where each element P (i, j) (also called bin)
represents the probability of the intensity co-occurrence (I(w(x, p)) = i, T (x) = j) for a given
pixel x:

(3)

where q = n · m, δ(s) = 1 for s = 0, δ(s) = 0 otherwise and i ∈ [0, dI ] and j ∈ [0, dT ]. Hence,
the conditional expectation can be computed as:

(4)

where α = Σi P (i, T (x)). During tracking, the expected image T̂ is computed only once for
every incoming frame using I(w(x, p)) from the previous tracking step. This step allows T̂ to
‘adapt’ to the current illumination conditions. Notice the low computational complexity
compared to techniques that require the estimation of photometric correction parameters at
every iteration [2], [23]. The specific reference images T (x) used in equation (2) is
discussed in details in subsection D.

C. Invariance to illumination variations
Figure 3 shows a comparison between four similarity measures in different tracking
conditions. As shown in Figure 3(b), measures such as the SSD vary largely under variations
of brighness and contrast, while measures such as the NCC and the SCV remain invariant. In
fact, all similarity measures can be derived from the joint intensity distribution. For instance,
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the SSD is a measure of the probability density deviation from the diagonal elements of the
joint distribution. For this reason, it is affected by any violation of the brighness constancy
between images. On the other hand, the NCC is a measure of the affine dependency between
intensity levels on a pair of images. For this reason, it is invariant to linear variations such as
the one shown in Figure 3(b). The SCV is a measure of the deviation from the conditional
expected intensity between a pair of images. As discussed in [19], the SCV is the only
measure invariant to non-linear illumination changes. Finally, the MI is a measure of the
sparsity of the joint distribution between a pair of images. When images do not match, the
joint distribution is spread (Figure 3(c)) and similarity scores is low. Notice MI is also
robust to most types of illumination variation but the similarity score is not invariant due to
the fact that the MI penalizes by the clustering of the marginals in the joint intensity
distribution [13].

An important issue arises from the fact that distributions such as the one illustrated in Figure
3(d) obtain high similarity scores, even though they make no sense in practice. Intuitively, it
is very unlikely that bright pixels turn dark and dark pixels turn bright simultaneously in
sequential frames. In our previous work in [18], we circumvented this problem by applying
weights to the joint intensity distribution and reducing the similarity score of configurations
such as in Figure 3(d). However, the weighted MI formulation proposed in [18] cannot be
easily applied in a gradient-based optimization setting. In this work, this issue is avoided by
computing the joint distribution only once per frame. In this manner, we make the
assumption that inter-frame illumination variations are small and avoid issues with joint
distribution configurations with little physical meaning.

D. Optimization
The direct visual tracking problem can therefore be written as the problem of finding the
transformation parameters p that minimize the SCV:

(5)

In our work, we decouple the estimation of the parameters p due to the geometry of the
tracked tool. For estimating the 3 transformation parameters, tracking is divided into two
stages:

1. Gradient-based tracking - the tool rotation and vertical translation component are
estimated using the Efficient Second-Order Minimization (ESM) [4]. For this step,
the reference image T (x) shown in Figure 4(a) is used.

2. Brute force search - For an accurate estimation of the tool tip position, a search
along the tool shaft is performed at discrete 0.25 pixel steps (see illustration in
Figure 4(b)).

This decoupling has shown to be necessary in practice for a more accurate tool tip
estimation. The specific appearance models for the tool in each step above were chosen to
represent a dark shaft on a bright background and were designed to avoid possible tracking
lock onto specific background patterns. Since we use the SCV, tracking can adapt to
different illumination conditions and the reference images T (x) in Figure 4 remain constant
across all experiments. Notice also that different reference images T (x) are used in the two
optimization steps described above.

Finally, another advantage of the SCV over measures such as NCC or MI is the fact that
efficient optimization techniques such as the ESM can be easily derived for the SCV. In the
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case of the NCC and MI, a Newton optimization method with a constant Hessian must be
employed [7], which has a considerably slower convergence speed compared to the ESM
[19].

E. Handling scale changes
In practice, significant changes in tool scale occur very seldom when tracking inside the eye.
However, a method for coping with slight changes in the tool scale in the images can
increase tracking stability. For this purpose, we adopt a method similar to the scale
estimation in mean-shift tracking [5]: a discrete variation of ±1px in the tool shaft diameter
is applied to the reference tool image. The SCV between the modified template T (x) and the
most recent warped image I(w(x, p)) is computed and template size that yields the smallest
SCV score is used for tracking in the next incoming frame.

III. Retina disparity tracking
A. Background

Depth estimation from stereo images is a classic computer vision problem [22]. Given a
rectified stereo rig [11], relative depth can be recovered by estimating the horizontal
disparity between stereo images. Furthermore, if the camera calibration parameters of the
stereo rig are known, then 3D information can be inferred from the estimated stereo
disparity. In our work, we avoid the complex problem of calibrating the microscope cameras
and identifying lens model parameters by working only with stereo disparities.

In retinal surgery, stereo disparity estimation is made difficult by the same issues mentioned
in the previous section: lens distortions and significant image blur. Under such disturbances,
methods based on matching of salient image features [26] have limited performance. On the
other hand, direct visual tracking methods (also known as template-based methods) perform
better due to the fact that disparity is estimated using texture information from a large region
of the image. This allows the disparity estimation to function in cases where only low
frequency texture components are available in the images.

Compared to similar visual-based tracking systems for endoscopic surgery [25], [31], the
simpler geometry of the retinal surface offers certain advantages: simpler disparity map
parameterizations can be employed and tracking is less affected by the complex illumination
conditions.

B. Method
For detecting proximity between the surgical tool and the retina, the accurate estimation of a
disparity map of the retina is required. To this end, a region of interest in the left camera
image is selected as template (see Figure 5). Only the central region on the image is
considered where the estimation of the retinal surface disparity is not severely affected by
lens distortions. Here we consider that the surgical microscope cameras are mechanically
rectified (see Appendix 1 for more details). The objective is to estimate the parameters d of
the horizontal disparity warping that best align the the selected template R to the right
camera image Ir:

(6)

Notice the difference between the disparity transformation function wd(x, d) above and the
tool transformation function w(x, p) used in section II-B. The Sum of Squared Differences
(SSD) is used as similarity measure between images and the minimization problem above is
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solved using the Efficient Second-Order Minimization (ESM). Due to the relatively simple
geometry of the retinal surface, robust image similarity measures such as the SCV are not
required because differences in the illumination conditions between cameras are negligible.

For defining the horizontal warping function wd(x, d), certain assumptions about the
geometry of the retinal surface must be made. We have tested four models which have been
previously used in the literature: a cubic B-spline deformable model with 16 control points
[6], [18], a 6 DOF quadratic model [24], a 3 DOF affine model and a simple 1 DOF
translation model. A comparative analysis was conducted using phantom eye from Figure 1
and results can be found in Appendix 1. In practice, we have observed that due to the
shallow depth of field of microscopic lens and other disturbances that cause loss of visual
information, the estimation of a disparity map with a large number of degrees of freedom is
prone to error. Furthermore, surgeons often place a contact lens on top of the patient’s eye
during surgery for a magnified view of the retina, which narrows the field of view to 15–40
degrees. For this reason, a 1 DOF model is adopted in our system (i.e. disparity is modeled
as a horizontal translation). Notice that in this work we assume that the surgical microscope
cameras are mechanically rectified, which allows us to consider perspective distortions
between stereo images negligible.

C. Occlusion maps
Another issue that must be taken into consideration in the estimation of the retina disparity
map is the occlusion by surgical tools. Since the surgical tool has a different stereo disparity
than the retinal surface, the corresponding pixels on both stereo images must be detected and
removed from the retina disparity computation in equation (6) to avoid errors. To this
purpose, we use the tool position estimated by the tool tracking module for creating an
‘occlusion map’. An example of a typical occlusion map is given in Figure 6, where pixels
marked in black correspond to the surgical tool. Let the pixels belonging to the retinal
surface on both left and right images be denoted by Al and Ar, respectively. Equation (6) can
be rewritten as:

(7)

where A = Al ∩ Ar. The set A can be easily estimated by a logical AND operation between
the occlusion maps from left and right images (Figure 6(c)).

IV. Proximity detection
Proximity between the surgical tools and the retinal surface can be detected when the
difference between tool and retina disparities is small (below a certain threshold). By
working only with pixel disparity, we are able to avoid the extremely complex task of
modeling and identifying the microscope and eye lens distortion parameters. A schematic
overview of the system is given in figure 7.

A. Defining safety limits
In the proposed system, the disparity difference threshold for a safe distance between tools
and retina is manually defined by the surgeon. This distance is defined in pixels and can be
adjusted manually according to the desired safety level. Although the diameter of the
surgical tool shaft can be used as reference for an approximated conversion between pixels
and millimeters, this reference for convertion only holds for each image individually since
the baseline for the stereo cameras is unknown. Therefore, in order to define a meaninful
safety limit for proximity warnings, the ratio r between disparity and millimeters must be
estimated. Notice this ratio is different than the conversion between pixels and millimeters
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in each individual image mentioned earlier. The ratio r can be achieved by performing a
known motion parallel to the left camera axis (recall the left camera center is taken as
reference). In Sections V-A3 and V-B we describe in details how we estimate this ratio
using the SteadyHand robot [29].

B. Measuring proximity detection confidence
For additional safety, a measure of detection confidence is necessary for warning surgeons
that the quality of the visual feedback is too low for reliable proximity detection. This is
done by analyzing three confidence measures: η1, η2 and η3. Measures η1, η2 come from
the tool tracking module, while η3 is a measure from the disparity tracking module. If any of
the scores falls below a specific threshold, the proximity detection system is suspended and
a message is shown to the user warning that no reliable proximity detection is possible at the
moment.

From the tool tracking module, the confidence score η1 corresponds to the smallest
normalized cross correlation (NCC) score between expected and current warped images of
the tool, T̂(x) and I(w(x, p)) respectively, computed for left and right images. The NCC is
chosen in this context because it is a bounded measure (η1 ∈ [−1, 1]). Notice this specific
NCC score computed for η1 uses the expected template T ̂(x) from the SCV instead of the
reference image T (x). The measure η2 is defined as the vertical difference between the
estimated tool tip position on both stereo images. If η2 rises above a certain threshold ε2,
tracking is suspended. In a similar fashion to η1, η3 is obtained by computing the NCC score
between R(x) and Ir(wd(x, d) in the disparity map estimation. In practice, tracking is
suspended if η1 or η3 are below respective thresholds ε1 and ε3. In such events, tool
tracking must be manually re-initialized. In practice, the threshold values were empirically
chosen as ε1 = ε3 = 0.4 and ε2 = 5 pixels. In the next section, these practical issues are
discussed in detail.

V. Experiments
Experiments are divided into three parts. First, we analyze tool tracking performance under
illumination variations, partial occlusions and rapid motions. A comparison between the
SCV and the standard SSD is also provided. We also perform an evaluation of the tool
tracking accuracy using the SteadyHand robot. Next, we evaluate the performance of the
retina disparity map estimation method. Finally, we evaluate the efficiency of the proposed
proximity detection system.

For acquiring images, two Grasshopper 20S4C cameras (Point Grey, Canada) coupled to a
Carl Zeiss OPMI MD stereo microscope acquiring 1600×1200 pixel images at 30fps were
used. The acquired images are converted to 8-bit grayscale (dI = dT = 256). Since the retina
does not occupy the entire full resolution microscopic image, we crop a 500×500 pixel
region of interest on the images containing the visible retina by intensity thresholding. The
proposed proximity detection system has been developed in C++ using OpenCV and the
CISST library developed at JHU [15]. The system runs on a Dell Precision PC with a
multicore Xeon 2.13GHz Processor at framerate.

A. Tool tracking performance
Next, we evaluate the accuracy of the tool tracking method proposed in Section II. The size
of the tool reference images T (shown in steps 1 and 2 of Figure 4) was defined as 150×120
and 10 × 50 pixels, respectively. These specific sizes were chosen according to the image
resolution and remain constant for all experiments. All experiments were conducted on
stereo images, unless mentioned otherwise.
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1) Phantom experiments—The eye phantom is used to evaluate the performance of the
proposed tool tracking method under three aspects: illumination variations, partial
occlusions and fast tool motions. Figure 8 shows tool tracking under challenging
illumination conditions. It is important to highlight that tracking must also be robust to
occlusions caused by the tool shadow when the tool is close to the retinal surface. A tracking
performance comparison between the SCV and the SSD can be found in the supplementary
videos for the sequence in Figure 9. As shown in the videos, tracking using SSD eventually
fails due to large illumination variations.

Although rapid tool motions are not expected during real surgeries, we analyze the proposed
tool tracking method performance in these conditions on images extracted from a single
camera. At every new frame, the gradient descent step is initialized using the tool position in
the previous image. In practice, the SCV convergence radius is only as large as the tool
shaft. If large inter-frame displacements occur and the tool shaft position in the previous and
current images do not overlap, tracking may converge to a local minimum.

An important information from tool tracking is the vertical difference between the tracked
tool tips on both left and right cameras. Ideally, the vertical difference between both cameras
should be zero but since no stereo constraints are imposed, inconsistent results may occur.
Figure 9 illustrates the vertical difference for the tracking experiments shown in Figure 8.
The error plot indicates that even though no tracking constraints are imposed, the vertical
difference η2 is usually much smaller than the safety threshold ε2 = 5 pixels (section IV-B).
However, inconsistent results can be detected in t = 53.0s, when the difference is above 10
pixels. This is caused by an error in the estimation of the tool tip in the left camera image
(Figure 9(top)). In such cases, tracking is suspended and must be manually re-initialized.

In case of tracking loss, the surgeon must move the tool to a pre-defined region in the center
of the eye for tracking to be manually initialized. This practical side of the system can be
improved by incorporating a surgical tool detector such as [27] for reestablishing tracking in
the event of a failure.

2) Experiments with in vivo data—The proposed tool tracking method has been applied
to several image sequences extracted from an in vivo experiment conducted on a rabbit eye.
A 2kg Dutch Belted rabbit was chosen for the experiment and a lensectomy and vitrectomy
were performed prior to the image acquisition. A flat 30 degree contact lens (Dutch
Ophthalmic) was placed on top the cornea to eliminate optical effects of the cornea. In
comparison, the rabbit eye is about 70% of the diameter of a human eye and furthermore, in
this specific experiment the rabbit pupil was not fully dilated (due to an inflammation of the
iris). This is slightly compensated by a lensectomy to increase the field of view inside the
eye. Despite of these difficulties, the proposed tracking method is capable of accurately
retrieving the tool tip position, even in presence of large illumination variations, clutter and
unmodeled changes in the tool appearance (see Figure 10).

3) Experiments with the SteadyHand robot—For a quantitative evaluation of the tool
tracking performance, we compared the a known motion executed by the SteadyHand robot
(1.0 μm precision [29]) with the estimated motion in pixels. We used the setup shown in
Figure 11 for simulating the phantom eye optics while avoiding trocart contact forces which
compromise the precision of the robot motion. In the experimental setup, the robot base is
approximately parallel to the imaging plane of the stereo microscope.

In the first experiment, the robot moved the tool to 8 points in space corresponding to the
corners of a 1.0 × 1.0 × 2.0 mm cube. The estimated tool tip motion and disparity in pixels is
plotted in Figure 12(top). The left camera image is used as reference for the disparity
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computation. The two 1.0 × 1.0 mm cube facets τ1 and τ2 defined by points (p1, .., p4) and
(p5, .., p8) respectively, are parallel to the robot base and camera plane. For assessing the
accuracy of the retrieved motion, we measured the distance in pixels between the adjacent
corners from each facet parallel to the camera plane. As suggested in section IV-A, the
diameter of the surgical tool shaft is used as reference for an approximated conversion
between pixels and millimeters. In the experiment, the tool shaft size in pixels and
millimeters is equal to 0.5 mm and 10 pixels, respectively, which yields a ratio of 20 pixels
per millimeter. The converted average and standard deviation of the estimated distance
between corners is 1.03 mm and 0.3 mm, respectively. Even though these results indicate
that high precision and sub-milimeter accuracy can be achieved using the proposed method,
it is still not accurate enough for tasks such as vein cannulation [3], which require higher
accuracy (under 200 μm). A possible solution to this problem is to increase the camera
resolution for increasing tracking robustness to disturbances caused by partial occlusions
and distortions or increase magnification via microscope zoom. As indicated in Table I, the
points belonging to the same plane have roughly the same stereo disparity. This is expected
since the described motion is small. It is also important to highlight the noticeable difference
in disparity between planes τ1 and τ2, which indicates that small variations in depth can be
easily detected from the difference in stereo disparity. Taking the average disparity
difference between the two planes, the disparity to millimeters ratio r introduced in Section
IV-A in this experiment is approximately 5.35 px/mm.

In the second experiment, we recomputed the disparity to millimeters ratio r by performing
five 1.0 mm steps parallel to the the left camera axis. Confirming the ratio found in the
previous experiment, the results plotted in Figure 12(bottom) show a ratio r of
approximately 5.24 px/mm.

B. Retina disparity tracking performance
For evaluating the accuracy of the retina disparity estimation proposed in Section III, we
vary the relative distance from a planar surface to the microscope and measure the variations
in pixel disparity (see Figure 13). In all experiments in this section, the template image R(x)
(Figure 5) is a 100×100 pixel window centered on the left camera image, for avoiding large
lens distortions. We varied the distance from ±0.5 cm in 1.0 mm intervals. From the plot in
Figure 13, we can observe that very small depth variations can be easily detected from the
stereo disparity values (as in the experiments described earlier in this section). Furthermore,
the plot shows the relationship between disparity and depth is approximately linear (r = 5.3
pixels per millimeter for the given displacement interval). Notice the estimated ratio is
consistent with the disparity difference between planes τ1 and τ2 in Table I. It is important
to notice that the total displacement in this experiment was 1 cm, which is very large in the
context of retinal surgery. Due to the shallow depth of field of the surgical microscope,
images are blurry in the extremes of the displacement interval. However, the disparity
estimation is still able to provide accurate results. This is an advantage of using direct
methods, which allow the disparity estimation to function in cases where only low frequency
texture components are available in the images.

C. Proximity detection
For demonstrating its practical value, the two modules developed in this paper were
combined for detecting proximity between the surgical tool and the retinal surface. The
proximity threshold was set to 10 pixels in the phantom and rabbit experiments (which
corresponds to 2.0 mm using the estimated ratio r in section V-B).

Using the phantom eye, detection efficiency was assessed using a surgical pick with a built-
in 2DOF force sensor [14] for providing contact forces as ground-truth data. As expected,
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the force sensor readings (the norm of forces applied on the tool shaft) shown in Figure 15
coincide with the proximity warnings given by the proposed proximity detection method.

The proposed system also provides consistent proximity detection results on experiments
conducted using recorded in vivo rabbit data (see Figure 14 and supplementary videos).
Since no force information is available for the in vivo experiments, a visual evaluation of the
detection results is performed using the tool shadow, which is a cue often used by surgeons
as means of detecting proximity between tool and retina during the surgical procedure. It is
important to highlight the fact that in comparison to the tool shadow, the proposed method
has the advantage of working with all types of illumination sources (e.g. chandeler lights)
and does not dependent on the relative position between the light pipe and retinal surface.
The proposed system also has the potential to assist in surgical training, reducing the time
required for novice surgeons to learn to estimate the distance between tool and retina.

VI. Conclusion and future work
In this paper we propose a vision-based proximity detection method for retinal surgery. The
system complements recently developed smart surgical tools, increasing surgical safety by
avoiding unintentional collisions between surgical tools and retina. It comprises two major
components: a surgical tool tracking module and a retina disparity tracking module. Both
modules have been specifically tailored to cope with the challenging visualization conditions
in retinal surgery. Extensive experimentation with phantom and in vivo rabbit data attest the
practical value of the proposed method in a real clinical scenario.

Future work will focus on incorporating stereo constraints to the tracking of surgical tools
for improving tracking stability and cross checks for increasing the accuracy of the retina
disparity map estimation. Currently, we are working on incorporating methods for
automatically detecting the surgical tools in the microscopic images for automatic tracking
initialization. We are also working on improving the appearance model of surgical tools for
coping with more complex appearance changes and expanding the tool tracking module for
tracking surgical tools with more complex geometrical models such as forceps and cutters.
Finally, we are studying the replacement of the visual warning currently displayed on the
screen by an auditory warning message to reduce the cognitive load for the surgeon.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
(Bottom) Surgical tools inside the human eye and the eye phantom used in the experiments.
(Top) Visualization through the microscope.
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Fig. 2.
Typical images of a surgical tool tip (hypodermic needle 25ga) during experiments with an
eye phantom.
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Fig. 3.
(a) The joint intensity distribution of an image with itself (b) illumination changes (c)
misaligned images (d) an image with its inverse. The x and y axes correspond to intensity
bins of the reference and target images, respectively.
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Fig. 4.
(a) Gradient-based estimation of tool rotation and vertical translation (b) Brute force search
along tool shaft for estimating the tool tip position. Notice different reference images T (x)
are used in each specific optimization step.
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Fig. 5.
The disparity map of the retinal surface is estimated using a direct method. Notice that only
the central eye region on the image is considered.
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Fig. 6.
The position of the surgical tools estimated by the tool tracking module is used for creating
an occlusion map and removing pixels corresponding to the tool from the disparity map
estimation. (a) left and right camera images of the tool and retina (b) tool tip position and
scale available from the tool tracking module (c) occlusion maps, where pixels
corresponding to the tool are marked in black.
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Fig. 7.
A schematic overview of the proximity detection method.
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Fig. 8.
Left camera images showing tracking of surgical tools under challenging illumination
conditions in a phantom human eye. The solid line indicates the tracked portion of the tool.
On the bottom, the current warped image I(w(x, p)) and expected template T̂(x) for the tool
shaft, respectively. Notice also the change in tool length in the expected templates.
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Fig. 9.
(Top) The large vertical difference at t = 53.0s indicated in the plot is caused by an error in
the tool tip estimation in the left camera image. (Bottom) Vertical difference between
tracked tool tip in left and right images.
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Fig. 10.
The proposed method tracking method for estimating the tool position in images from an in
vivo experiment conducted on a rabbit eye. The solid line indicates the tracked portion of
the tool.
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Fig. 11.
Setup for the comparative experiments using the SteadyHand robot.
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Fig. 12.
(Top) The estimated tool tip motion and disparity in pixels for experiments using the
SteadyHand robot. (Bottom) Second experiment using the SteadyHand robot for estimating
the disparity to millimeters ratio.
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Fig. 13.
Measuring pixel disparities as a function of depth using the proposed disparity tracking
module. As shown in the plot, the relationship between disparity and depth is roughly linear
and small variations in depth can be easily detected from the stereo disparity values.
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Fig. 14.
(Top) The tool tip and retina stereo disparities in a rabbit eye. (Bottom) the absolute
difference between stereo disparities and the chosen proximity threshold (10 pixels).
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Fig. 15.
(Top) The difference between tool tip and retina stereo disparities in the phantom eye (the
proximity threshold shown in dashed is set to 10 pixels). (Bottom) The norm of forces
applied on the tool shaft overlaid on the proximity warnings estimated by the proposed
method.
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Table I

Pixel coordinates and stereo disparity for points highlighted in Figure 12.

x y disparity

τ1

p1 240.7 155.2 19.0

p2 245.0 135.0 19.2

p3 265.0 139.5 19.0

p4 260.7 159.2 19.0

τ2

p5 238.5 161.7 15.5

p6 243.5 142.2 17.0

p7 261.7 146.5 16.5

p8 258.2 165.5 16.5
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