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ABSTRACT

Motivation: There is growing momentum to develop statistical learn-

ing (SL) methods as an alternative to conventional genome-wide as-

sociation studies (GWAS). Methods such as random forests (RF) and

gradient boosting machine (GBM) result in variable importance meas-

ures that indicate how well each single-nucleotide polymorphism

(SNP) predicts the phenotype. For RF, it has been shown that variable

importance measures are systematically affected by minor allele

frequency (MAF) and linkage disequilibrium (LD). To establish RF

and GBM as viable alternatives for analyzing genome-wide data, it is

necessary to address this potential bias and show that SL methods do

not significantly under-perform conventional GWAS methods.

Results: Both LD and MAF have a significant impact on the variable

importance measures commonly used in RF and GBM. Dividing SNPs

into overlapping subsets with approximate linkage equilibrium and

applying SL methods to each subset successfully reduces the

impact of LD. A welcome side effect of this approach is a dramatic

reduction in parallel computing time, increasing the feasibility of apply-

ing SL methods to large datasets. The created subsets also facilitate a

potential correction for the effect of MAF using pseudocovariates.

Simulations using simulated SNPs embedded in empirical data—

assessing varying effect sizes, minor allele frequencies and LD pat-

terns—suggest that the sensitivity to detect effects is often improved

by subsetting and does not significantly under-perform the Armitage

trend test, even under ideal conditions for the trend test.

Availability: Code for the LD subsetting algorithm and pseudocovari-

ate correction is available at http://www.nd.edu/�glubke/code.html.

Contact: glubke@nd.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Genome-wide association studies (GWAS) have successfully de-

tected numerous single-nucleotide polymorphisms (SNPs) asso-

ciated with a variety of phenotypes, but the identified loci at best

explain a modest proportion of the heritable variance estimated

by twin and family studies (Manolio et al., 2009). Recent esti-

mates of the heritable variance explained by all SNPs, however,

indicate that genome-wide SNP data does offer substantial ex-

planatory power (So et al., 2011; Yang et al., 2010). This gap of

‘missing heritability’ between heritability estimates and the SNPs

detected by GWAS has led to increasing concern over the per-

formance of GWAS, with attention focused on low power due to

the multiple testing burden and small effect sizes, as well as the

omission of rare disease alleles and epistatic effects, among

other issues (Frazer et al., 2009; Maher, 2008; Moore, 2003;

Park et al., 2010).
These shortcomings of GWAS have encouraged the applica-

tion of statistical learning (SL) methods as an alternative for

analyzing genome-wide data (Ayers and Cordell, 2010; He and

Lin, 2011; Li et al., 2011a, b; Szymczak et al., 2009; Wang et al.,

2011; Wu et al., 2010). SL methods are designed specifically for

the task of identifying meaningful predictors in high-dimensional

data, relying on data-driven algorithms rather than conventional

parametric modeling. Numerous SL methods have been

proposed for use with SNP data—including random forests

(RF; Breiman, 2001), multifactor dimensionality reduction

(Ritchie et al., 2001) and the lasso (Tibshirani, 1996)—generally

with encouraging results.
RF has received significant attention in the genetics literature

(Bureau et al., 2005; Garcia-Magarinos et al., 2009; Goldstein

et al., 2010; Nonyane and Foulkes, 2008; Roshan et al., 2011;

Wang et al., 2009) with surprisingly less attention given to gra-

dient boosting machine (GBM; Friedman, 2001) despite its

similarity to RF. Both RF and GBM build an ensemble of

non-parametric prediction models, with each model constructed

iteratively using all available SNPs. GBM additionally applies

boosting to build each model with a focus of improving model

fit for cases fit poorly in the previous iteration. Importantly, the

iterative tree-building approach of RF and GBM accounts for

conditional relationships and complex causal mechanisms,

including epistasis and covariate effects, without a priori specifi-

cation. Individual SNPs are then evaluated using variable

importance measures, which quantify each SNP’s total contribu-

tion to the prediction of the phenotype (Breiman, 2001; Hastie

et al., 2009). Such variable importance measures can be used to

rank-order SNPs by importance, identifying potentially inform-

ative SNPs among genome-wide data.

Studies of RF with SNP data have yielded promising results.

Simulations suggest that RF’s power to detect causal SNPs ex-

ceeds Fisher’s exact test when epistasis is present and is still com-

parable with Fisher’s exact test when detecting main effects only*To whom correspondence should be addressed.
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(Lunetta et al., 2004). RF maintains this advantage even if many

noise SNPs are present (Bureau et al., 2005). Applying RF to

genome-wide data is feasible, though computationally burden-

some. With empirical genome-wide data, RF is capable of repli-

cating GWAS results and identifying additional candidate SNPs

(Goldstein et al., 2010).

Although these results are encouraging, further study is neces-

sary to establish RF and GBM as viable alternatives to GWAS

methods. Few studies of SL methods account for linkage disequi-

librium (LD), utilize realistic effect sizes or compare the sensitiv-

ity of the SL method to GWAS. Roshan et al. (2011) considered

more realistic LD and effect sizes but only focused on RF as a

second-stage analysis. Meanwhile, GBM merits further consid-

eration based on its strong performance relative to RF. Studies

show GBM performs even better than RF for many data types

(Caruana and Niculescu-Mizil, 2006; Hastie et al., 2009; Ogutu

et al., 2011) but evaluation of its performance with genome-wide

SNP data is still needed.
In addition, concerns have been raised about the impact of

minor allele frequency (MAF) and LD on the variable import-

ance measures used by RF and GBM to rank-order SNPs. With

respect to LD, importance scores for correlated functional SNPs

are inflated when using variable importance measures based on

the Gini criterion (Strobl et al., 2008), whereas importance scores

for functional SNPs correlated with uninformative predictors are

deflated (Nicodemus and Malley, 2009). Correlated predictors

do not induce bias in permutation-based importance measures,

though the variability of importance scores is decreased

(Nicodemus andMalley, 2009). MAFmay also influence import-

ance scores, with higher MAF being associated with higher Gini

importance values for all SNPs, and higher permutation import-

ance values for functional SNPs (Boulesteix et al., 2011). The

influence of MAF may be attributed, at least in part, to the

tendency of the RF algorithm to prefer predictors with higher

variability (Strobl et al., 2007). Taken together, such effects may

increase the difficulty of detecting disease-causing variants

located in LD blocks or with low MAF, especially when using

Gini-based importance measures.

Methods for controlling the impact of MAF and LD on vari-

able importance have been proposed. To address the effect of

LD, Meng et al. (2009) introduced a modified RF algorithm and

accompanying importance measure that account for the compe-

tition between correlated SNPs for inclusion in RF models.

Strobl et al. (2008) developed a conditional permutation

scheme for the variable importance that successfully addresses

the impact of correlated predictors. Alternatively, pseudocovari-

ates (PCVs) may be added to the data to simultaneously address

the effect of all structure in the data that are unrelated to the

phenotype (Sandri and Zuccolotto, 2008, 2010).
Although each of these methods have been demonstrated to

potentially reduce the impact of LD and MAF, all three increase

the computational burden beyond what is feasible for

genome-wide data. Meng et al. (2009) specifically note that

their method does not scale to be feasible with genome-wide

data. The current implementation of the conditional methods

proposed by Strobl et al. (2008) also have substantially larger

memory requirements than conventional RF. Correction with

PCVs is similarly infeasible, effectively doubling the size of the

data and requiring a number of replications of the analysis to

establish stable estimates.

In sum, to establish RF and GBM as viable methods for

genome-wide SNP data, it will be necessary (i) to address

concerns over the impact of LD and MAF while maintaining

computational feasibility and (ii) to provide a direct comparison

with conventional GWAS methods under realistic conditions.
In this study, we propose and evaluate a procedure designed to

reduce the impact of LD on RF, GBM or related SL methods for

genome-wide data. The proposed method creates overlapping

subsets of SNPs from a genome-wide dataset under the con-

straints that SNPs within a set are not in LD, and that each

SNPs is represented in at least a user-specified number of subsets

(see Methods). The SL method of choice can then be performed

on the subsets without concern for LD, followed by an aggre-

gation of results over subsets. Next, we show that the proposed

subsetting procedure is computationally feasible for genome-

wide data. Dividing the data into subsets makes analysis of

each piece more manageable and facilitates parallel computation

across multiple cores or on a high-performance grid for a drastic

reduction of computing time. Third, we evaluate a correction

for the impact of MAF adapted from the methods proposed

by Sandri and Zuccolotto (2008, 2010), which is computation-

ally feasible in combination with the subsetting procedure.

Specifically, in each subset, we generate a small set of independ-

ent PCVs with zero association with the phenotype, coded as

SNPs with MAF ranging from 0.01 to 0.50. Variable importance

estimates for the PCVs in each subset are aggregated to provide a

stable estimate of variable importance attributable to MAF. This

estimate can then be used to correct the importances of the em-

pirical SNPs. Finally, we provide a rigorous direct comparison of

the sensitivity of RF and GBM to the Armitage trend test (ATT;

Armitage, 1955), the test utilized most frequently in conventional

GWAS analyses (McCarthy et al., 2008; Ziegler and Konig,

2010), under realistic data conditions. Using simulated SNPs

embedded in empirical genetic data, we show that the sensitivity

of RF and GBM is broadly consistent with the ATT for SNPs

explaining as little as 1% of the phenotypic variance even under

conditions that do not leverage the advantages of RF and GBM

(i.e. a linear additive model without dominance or epistatic ef-

fects; Lunetta et al., 2004).

2 METHODS

2.1 RF/GBM analysis protocol

2.1.1 Random forests RF is a machine learning algorithm
that constructs classification or regression trees based on boot-

strap samples of the data (Breiman, 2001). Samples not used to

construct a given tree are the out-of-bag (OOB) sample. At each

node A in a tree, a random subset of the predictors of size mtry is

searched to find the predictor that partitions the data into the

subsets that are most homogeneous with respect to the outcome

variable. Thus for a case–control phenotype y, at a node A, the

RF algorithm seeks the SNP with split s that maximizes the

decrease in heterogeneity

�Iðs,AÞ ¼ IðAÞ � PðALÞIðALÞ � PðARÞIðARÞ, ð1Þ
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where AL and AR are the left and right daughter nodes result-

ing from split s, P(A) is the probability of being placed in

node A by split s, and Ið�Þ is the Gini criterion

IðAÞ ¼ 2Pðy ¼ 0jAÞPðy ¼ 1jAÞ (Hastie et al., 2009). The prob-

abilities may be weighted based on a user-specified vector of

prior probabilities classwt (Liaw and Wiener, 2002).

On the basis of the ensemble of trees, RF provides two meas-

ures of the importance of each SNP. The Gini importance meas-

ures the average value of Equation (1) in nodes split using a given

SNP. The mean decrease in accuracy (MDA) importance is the

average decrease in accuracy in classifying the OOB sample after

permuting the given SNP (Breiman, 2002).
Analyses with RF were performed in R (R Development Core

Team, 2011) using the randomForest package (Liaw andWiener,

2002). Forests were grown to 5000 trees. The number of pre-

dictors attempted at each node, mtry, was set to 0.1 p, where

p is the number of predictors in the data. These settings are

consistent with the recommendations of Goldstein et al. (2010)

for genome-wide data. In addition, prior probabilities (classwt)

and voting thresholds (cuttoffs) were set equal to the case/control

proportions for the observed phenotype in each analysis. All

settings were chosen based on performance in pilot testing with

real and simulated data (not shown).

2.1.2 Gradient boosting machine GBM, like RF, is an ensem-
ble method based on classification and regression trees con-

structed using bootstrap samples of the data. Unlike RF,

however, each tree is fit to weighted residuals based on the pre-

vious trees in the ensemble. The contribution of each newly

added tree to the prediction is limited by a shrinkage parameter.

Similar to RF, variable importances are computed based on the

average improvement in prediction from nodes split using a given

SNP (Friedman, 2001).

Analyses with GBM were completed using the gbm package

for R (Ridgeway, 2010). As with RF, the settings for GBM were

based on pilot testing with empirical and simulated data. We

used a 0.001 shrinkage parameter, 3000 trees and limited tree

construction depth to first-order interactions.

2.2 LD subsetting algorithm

To reduce the effect of LD on variable importance, we propose

an algorithm to select overlapping subsets of SNPs prior to

analysis, such that the SNPs in each subset are in approximate

linkage equilibrium and each SNP from the genome-wide

data appears in at least a user-specified number of subsets. Sub-

sequently, subsets are analyzed separately and results are

aggregated.
The proposed algorithm creates subsets of SNPs from each

chromosome, then combines these subsets to create genome-wide

subsets. First, for chromosome c, let Dc be the N� pc data

matrix of the pc SNPs on chromosome c ordered according to

map location. To prevent order effects, begin by permuting the

columns of Dc within blocks of size b, where b is some small

positive integer. In other words, randomly permute the order of

columns 1 to b, columns bþ 1 to 2b , . . . of Dc to get the new

data matrix D�c .
To construct the zth subset for chromosome c, we first select

the SNPs associated with columns z, zþ k, zþ 2k, . . . of D�c ,

where z and k are positive integers. Selecting k subsets in this

way guarantees that every SNP inD�c is selected once. Additional

sets of k subsets can be constructed to ensure each SNP appears

in a user-specified number of subsets, requiring s sets of k subsets

to guarantee that each SNP is included in at least s subsets. The

value of k is chosen by the researcher such that k – 2b is greater

than the size (in number of SNPs) of the largest anticipated

LD block in order to ensure that the SNPs in columns

z, zþ k, zþ 2k, . . . of D�c will not be in LD. The selection of k

should be guided by using Haploview (Barrett et al., 2005) or

other software to tag LD blocks in regions known to have the

largest LD blocks (or the lowest recombination rate), and setting

k slightly larger than the number of SNPs in the largest observed

LD block.
Next, the subsets are augmented by adding additional

SNPs that are in approximate linkage equilibrium with the

initially selected SNPs, where linkage equilibrium is oper-

ationally defined by a user-specified maximum pairwise correl-

ation t. These additional SNPs are selected by searching the

intervals between the selected SNPs (e.g. columns 1 to

z� 1, zþ 1 to zþ k� 1, . . . of D�c ). Within each interval, begin

by removing from consideration SNPs that correlate above some

correlation threshold t with the previously selected SNPs before

or after the interval. For instance, for the interval from zþ 1 to

zþ k – 1, SNPs correlated with the zth or zþ kth SNPs, which

have already been selected for subset z, are removed from con-

sideration. For this study, we use a threshold of t¼ 0.1. Of the

remaining SNPs, one SNP is randomly selected to be added to

the zth subset. Any additional SNPs in the interval that correlate

with the newly selected SNP greater than the threshold t are then

removed from consideration. Continue randomly selecting SNPs

in this way until no SNPs remain below the correlation threshold

to be considered.
Once this procedure is finished, the zth subset for chromosome

c is complete. The zth genome-wide subset is then defined by the

union of the zth subset from each chromosome. Pseudocode

summarizing the full algorithm is given in Figure 1. The desired

SL method may then be run on each subset, and the importance

of a given SNP is computed as its mean observed importance

across subsets containing the SNP.

Fig. 1. Pseudocode for the LD subsetting algorithm
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2.3 Correction of importances with PCVs

Sandri and Zuccolotto (2010) proposed correcting variable im-

portances by augmenting the data with PCVs, a second copy of

the original predictor variables with the rows permuted to dis-

rupt any association with the outcome variable while maintain-

ing the structure among the predictors. The observed variable

importance of the PCVs across a number of replications provides

an estimate of the importance due to the structure of the pre-

dictors. The importance of each PCV can then be subtracted

from the importance of the corresponding predictor to estimate

the importance of the given predictor that is due to association

with the outcome variable.
The LD subsetting algorithm does not itself address the issue

of MAF but it does provide an opportunity to adapt the ap-

proach of Sandri and Zuccolotto (2010) to estimate and correct

for the importance due to MAF while maintaining computa-

tional feasibility for genome-wide data. For each subset from

the LD subsetting algorithm, independent PCVs are generated

from Bin ð2, piÞ, where the pi are evenly spaced on [0.01, 0.50] at

intervals of 0.001 to fully capture the range of MAF values in

GWAS data. These 491 PCVs are then appended to the subset of

SNP data and analyzed with the selected SL method. After all

subsets are analyzed, the importances are averaged to produce a

single variable importance for each PCV.
Next, a loess regression curve is fit to the observed variable

importances of the PCVs to estimate the expected importance at

each MAF. The loess curve is selected to provide a smooth esti-

mate without requiring specification of the non-linear relation-

ship between MAF and variable importance (Supplementary

Fig. S1). In this way, we obtain expected importances due to

the effect of MAF only for MAF values in [0.01, 0.50].
The expected importance at each MAF can then be used

to correct the importances that are observed when using RF

or GBM. Specifically, for a given SNP with MAF m, subtract

the expected importance at m, as estimated by the loess curve,

from the observed importance for the SNP. The remaining im-

portance for the SNP can be attributed to association with the

phenotype.

Finally, to account for differences in the variability of the im-

portance measure attributable to MAF, the corrected import-

ance of the SNP is scaled by the standard deviation across

subsets of the importance of the PCV with pi closest to the

MAF m. This is analogous to constructing a z statistic, with

the PCVs providing an estimate of the mean and standard devi-

ation for the null distribution of variable importances condi-

tional on MAF. The resulting corrected variable importance

may then be used to compare SNPs as usual.

Note that our proposed implementation of PCVs differs from

Sandri and Zuccolotto (2010) on two key points. First, we gen-

erate PCVs as a small number of random binomial variables with

varying MAFs, rather than using permuted rows from the data.

This modification is justifiable because after LD subsetting the

only known problematic structure in the data is variation in

MAF. Second, we profit from the fact that we can include the

small set of PCVs in each LD subset instead of having to perform

multiple replications with the full data to get a stable estimate of

the effect of MAF, allowing us to maintain computational feasi-

bility for genome-wide data.

2.4 Embedding simulated SNP in empirical data

For this study of the impact of LD and MAF on variable im-

portance, we simulate data for a SNP in LD with a range of

MAF values. Specifically, we use an iterative procedure to simu-

late a SNP that correlates with an existing empirical SNP at a

given correlation � and with a specified MAF. By embedding the

simulated SNP in empirical SNP data, we are able to maintain a

realistic data structure for the simulation studies. A different

option would be to use one of the empirical SNPs and generate

a phenotype value, but such an approach gives less control on

LD and MAF and would require different locations of the target

SNP for the different simulation settings.
To generate the simulated SNP, a continuous variable is gen-

erated first by adding noise drawn from Nð0,�2Þ to an existing

empirical SNP with complete data. Quantile thresholds based on

the desired MAF, under the assumption of Hardy–Weinberg

equilibrium, are applied to the continuous variable to create dis-

crete SNP data. The correlation between the generated SNP and

the existing SNP is controlled by adjusting �2 for the noise.

Decreasing �2 increases LD with the empirical SNP, whereas

increasing �2 has the reverse effect. Adjustments to �2 are

made iteratively until the observed LD and MAF are within

0.01 of the desired values.
The possible correlation between a pair of SNPs is bounded by

the difference in MAF. As a result, it is not possible to generate

data for a wide range of values of MAF that still have a high

correlation � with a single empirical SNP. Using formulas from

Biswas and Hwang (2002), it is possible to establish the upper

bound for � at the population level for two SNPs with given

MAFs. In finite samples, it is possible to achieve correlations

that are somewhat higher than these bounds, but limitations

are still present (Supplementary Information). As a result,

some combinations of MAF and LD are omitted from simula-

tions involving correlation with the empirical SNP, which has

MAF m¼ 0.286, limiting the consideration of �¼ 0.9 to only

simulated SNPs with MAF m¼ 0.3.

3 RESULTS

3.1 Evaluation of LD subsetting algorithm

As a baseline measurement of the impact of LD and MAF on

variable importance in RF and GBM, both RF and GBM were

used to analyze data containing a simulated SNP embedded in a

3000 SNP region of empirical data on N¼ 2235 individuals from

a published study of hair morphology (Medland et al., 2009). An

LD map of the 3000 empirical SNPs is shown in Supplementary

Figure S2.
The simulated SNP was generated with one of four levels of

LD (i.e. correlation �¼ 0, 0.3, 0.6, 0.9 with the neighboring em-

pirical SNP) and one of five levels of MAF (m¼ 0.05, 0.1, 0.2,

0.3, 0.5). LD and MAF levels were fully crossed, excluding con-

ditions where data generation is not possible (see Methods). A

case/control phenotype unrelated to the SNPs was generated

with a probability 0.36 of being a case. Resulting variable im-

portance measures from RF and GBM were collected for 250

replications for each combination of LD and MAF. Replications

with invalid data generation were discarded.

2618

R.Walters et al.



Given a null phenotype, any observed systematic differences in

variable importance can be attributed to MAF and to LD with

the neighboring SNP. The effect of LD and MAF were tested

using the non-parametric Kruskal–Wallis analysis of variance

due to the skewed distribution of variable importances

(Kruskal and Wallis, 1952). Significant results imply that the

variable importances from the tested conditions do not have

the same population distribution.
Replicating the findings of Boulesteix et al. (2011), a highly

significant effect of MAF on the RF Gini importance of the

simulated SNP is observed at each level of LD (Table 1).

GBM produces very similar results. Although not previously es-

tablished, the similarity of GBM importance measures to RF

makes this result unsurprising.
In addition, a highly significant effect of LD on the RF Gini

importance is observed at each level of MAF. Strong effects for

GBM and the RF MDA importance are also observed when

m¼ 0.3 (Table 1). The observed effect is likely stronger here

due to the inclusion of the higher LD condition �¼ 0.9, which

can only be considered for MAF m¼ 0.3 due to the restrictions

on correlation for binomial variables (see Methods). Plots of the

median importance for GBM for each condition clearly suggest a

trend toward a similar effect for other levels of MAF (Fig. 2a),

though the corresponding Kruskal–Wallis tests are non-

significant. Similar trends are observed for RF (Supplementary

Figs S3a and S4a).

3.1.1 Improvement from LD subsetting algorithm Applying

the proposed LD subsetting algorithm to the simulated data

with s¼ 1 set of k¼ 300 subsets results in a drastic reduction

in the effect of LD on the resulting aggregated importances for

GBM and RF. Importantly, the process of aggregating results

from the subsets does not favor any given SNPs based on the

number of subsets containing the SNP (Supplementary Informa-

tion). After correcting for multiple testing, the Kruskal–Wallis

test shows no significant effect of LD for GBM. Note also that

large effects of MAF are still observed (Table 1). The improve-

ment due to subsetting is especially evident at the m¼ 0.30 level.

Plots of the median variable importance in each condition

similarly show no systematic trend related to LD (Fig. 2b).

Dramatic improvements are also observed for RF

(Supplementary Table S1 and Figs S3b and S4b).

3.2 Impact on computational feasibility

In addition to reducing the effect of LD, the LD subsetting

algorithm facilitates distribution of the analysis across a grid

environment. For example, using a single core on a server with

Dual Six-Core AMD Opteron Model 2431CPUs, RF requires

over 19h and 3.5 GB of RAM to complete an analysis of chro-

mosome 22 from the complete empirical data (30 218 SNPs). In

contrast, the subsets created by the subsetting algorithm can each

be analyzed with RF with 1.3GB of RAM in �44min. Creating

the subsets themselves requires 30 min and 1.8 GB of RAM, and

negligible resources are required to aggregate the final results. If

a grid environment is available to process 50 of the k¼ 300

Table 1. Kruskal–Wallis test for the effect of LD and MAF on the variable importance of null SNPs

Effect Condition df RF Gini RF MDA GBM GBMþ subsetting GBMþPCVs

x2 P x2 P x2 P x2 P x2 P

MAF �¼ 0.0 4 962.4 51� 10�10 2.1 7.1� 10�1 148.0 51� 10�10 381.7 51� 10�10 18.5 9.8� 10�4

�¼ 0.3 4 1008.6 51� 10�10 3.5 4.8� 10�1 222.6 51� 10�10 399.7 51� 10�10 8.8 6.6� 10�2

�¼ 0.6 4 1074.4 51� 10�10 3.5 4.8� 10�1 206.1 51� 10�10 355.1 51� 10�10 22.7 1.5� 10�4

LD m¼ 0.05 2 342.8 51� 10�10 21.2 2.5� 10�5 2.8 2.5� 10�1 0.5 7.6� 10�1 0.1 9.5� 10�1

m¼ 0.10 2 195.7 51� 10�10 5.4 6.8� 10�2 3.1 2.1� 10�1 6.4 4.2� 10�2 0.7 7.1� 10�1

m¼ 0.20 2 162.0 51� 10�10 1.8 4.2� 10�1 9.3 9.7� 10�3 0.2 9.1� 10�1 0.7 7.2� 10�1

m¼ 0.30 3 596.0 51� 10�10 26.3 8.3� 10�6 52.4 51� 10�10 1.6 6.6� 10�1 1.1 7.7� 10�1

m¼ 0.50 2 75.2 51� 10�10 0.9 6.5� 10�1 0.1 9.6� 10�1 2.7 2.6� 10�1 2.7 2.6� 10�1

Significance test results are given for uncorrected variable importances in RF and GBM, as well as for the GBM importance with LD subsetting and with PCVs. Results show

the similar impact of MAF and LD on the RF Gini and GBM importances, the reduced effect of LD after subsetting, and the reduced effect of MAF after correction with

PCVs. Tests are performed for the simple effect of MAF at a given LD �, and for the simple effect of LD at a given MAF m. With Bonferroni corrections for family-wise

�¼ 0.05, P-values for the effect of MAF51.7� 10�2, and P-values for the effect of LD51� 10�2 indicate significant effects.

Fig. 2. Median observed GBM variable importance by LD and MAF.

Observed median importance is shown for GBM with (a) no correction,

(b) LD subsetting and (c) LD subsetting and PCVs. The skewed distri-

bution of importances makes SEs uninformative, so error bars instead

indicate observed upper and lower quartiles. Differences within a value of

MAF suggest an effect of LD, and differences at a correlation � suggest

an effect of MAF
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subsets in parallel, using LD subsets with RF yields a 75% re-
duction in the time required to complete the analysis, and a 49%

reduction in the maximum RAM required. Even greater reduc-
tions are observed for GBM, shrinking the computational

burden from 10h and 4.3GB of RAM for the full chromosome
to 7min and 0.5GB of RAM per subset, yielding a 57% reduc-

tion in the maximum RAM requirement and a 89% reduction in
total computing time in a grid environment with 50 parallel

cores. Supplementary Table S2 details these results.

3.3 Addition of PCVs

The subsets created by the LD subsetting algorithm offer an

opportunity to include PCVs. Since there are �50 000 SNPs in
each subset when 300 subsets are produced for genome-wide data

containing �2million SNPs, 491PCVs are a modest addition
with a negligible impact on the computational burden.
Given the similar performance of RF and GBM, and the

larger computational burden of RF, we focus on evaluating
PCVs with GBM. Table 1 reports the results of 250 replications

of GBM with the PCV correction. Although a significant effect
of MAF remains at �¼ 0 and �¼ 0.6, the magnitude of the effect

is drastically reduced (Fig. 2c). Note that the negative GBM
importances are an artifact of the positively skewed distribution

of importances; using PCVs to center the mean importance of a
SNP with no effect at zero yields a negative median for the

skewed distribution. SNPs with a true effect are still expected
to have positive importances (see Section 3.4).

3.4 Sensitivity to functional SNPs

The results thus far show a reduction of the influence of LD and
MAF on the variable importance for SNPs with no association

with the phenotype. To model the effect of LD and MAF on
variable importance for functional SNPs, three sets of 28 simu-

lated SNPs were embedded in the 3000SNP region used previ-
ously. The three sets were generated with MAF m¼ 0.1, 0.3 and

0.5, respectively, and embedded avoiding disruption of LD
blocks in the empirical data.

Each set of 28SNPs contains three LD blocks of four SNPs
each with �¼ 0.9, three LD blocks with �¼ 0.5 and one block

with �¼ 0. The LD and MAF conditions used here differ from
the previous simulation to provide a less complex setting while

still covering a full range of LD and MAF values. Among the 28
simulated SNPs, there are six functional SNPs, jointly explaining

9% of the variance in a continuous outcome variable, which is
then dichotomized to a case/control phenotype. Specifically,

within each set of SNPs, x1, . . . ,x28, SNPs x1, x13 and x25,
each explain 2% of the variance in the continuous outcome,

and x5, x17 and x26 each explain 1% of the variance
(Supplementary Fig. S5). This design fully crosses effect size by

LD within each set of 28 SNPs, crossed by MAF for the three
sets.

We focus our analysis on the functional SNPs with the more
realistic effect size of 1% variance explained (x5, x17 and x26).

Results for tag SNPs and the remaining functional SNPs are
available in the Supplementary Information. In addition to test-

ing the effect of MAF and LD on the resulting variable import-
ances, we also consider the sensitivity of each method to identify

functional SNPs. Since RF and GBM do not include formal

significance testing, we define the detection rate as the proportion
of replications in which the observed importance for a given

functional SNP exceeds the highest observed importance

among the simulated non-effect SNPs.

3.4.1 Uncorrected RF and GBM To again establish a base-
line, variable importances from RF and GBM were collected for

250 replications without the LD subsetting algorithm or PCVs.
Figure 3a illustrates the resulting median GBM importance

values for the simulated SNPs (for RF see Supplementary Figs

S6a and S7a). Comparing the three functional SNPs suggests a

strong effect of LD, with lower importance given to the SNPs in
strong LD. The effect of LD is significant for GBM and the RF

Gini importance according to the Friedman test and approaches

significance for the RF MDA importance (Table 2). The Fried-

man test, a non-parametric equivalent of the repeated measures
analysis of variance, is applied here due to the skewed distribu-

tion of the importances and the dependence among the import-

ances of SNPs together in a replication (Friedman, 1937).
The results also seem to suggest a modest effect of MAF for

each functional SNP, but the effect is only significant for the RF

Gini importance. Unexpectedly, lower variable importance is
observed for functional SNPs with high MAF (Fig. 3a) com-

pared with the higher importance observed for null SNPs with

high MAF (Fig. 2a). Further analysis, however, suggests this is

an artifact of the differing magnitude of the regression coeffi-
cients required to maintain equal effect sizes while varying MAF

(Supplementary Information).

Table 3 reports the detection rates for GBM, along with exact
95% confidence intervals for the proportion as defined by

Clopper and Pearson (1934). Corresponding results for RF are

reported in Supplementary Table S3. The raw values are of little

interest but yield a basis for comparison with other methods.

3.4.2 LD subsetting algorithm As observed for null SNPs,

introducing LD subsetting reduces the impact of LD on variable
importance for functional SNPs (Fig. 3b). With LD subsetting,

the effect of LD on variable importance is non-significant after

Fig. 3. GBM variable importance for functional SNPs. Median GBM

variable importance using (a) uncorrected importance, (b) LD subsetting

and (c) LD subsetting with PCVs. The skewed distribution of import-

ances makes SEs uninformative, so error bars instead indicate observed

upper and lower quartiles. Comparison of the plots shows the reduced

impact of LD after LD subsetting and the increased impact of MAF

when including PCVs
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correction for multiple testing (Table 2). LD subsetting also in-

creases the relative importance of tag SNPs in LD with a func-

tional SNP, reducing the downward pressure on the importance

of SNPs in a strong LD block (Supplementary Fig. S8). Similar

results are observed for RF (Supplementary Table S4).
Investigation of the detection rates for GBM with and without

LD subsetting shows LD subsetting markedly improves detec-

tion of the functional SNPs in LD blocks. In exchange, there is a

modest decrease in the detection rate for SNPs not in LD, espe-

cially at low MAF (Table 3). For RF, LD subsetting improves

detection rates for the MDA importance but significantly im-

pairs detection of functional SNPs with low MAF when using

the Gini importance (Supplementary Table S3), likely due a

strengthened effect of MAF.

3.4.3 PCV correction Although the effect of MAF on the
importance of effect SNPs after LD subsetting is non-significant

(Table 2), the inclusion of PCVs to correct for MAF may still be

desirable to at least partially address the impact of MAF on the

importance of null SNPs. As before, the computational burden

of RF leads us to focus on the results for GBM.
Figure 3c depicts the resulting GBM variable importances

after inclusion of PCVs. Although the effect of LD remains

non-significant, there is a strong, significant effect of MAF on

the importances (Table 2). This result is unsurprising given that

the trend of GBM variable importances associated with MAF

works in the opposite direction for functional SNPs compared

with non-effect SNPs. By adjusting the importance to account

for the inflated importance of non-effect SNPs with high MAF,

the PCV correction strengthens the trend toward lower import-

ance for functional SNPs with high MAF values. As before, the

resulting trend in variable importances may be interpreted as

reflecting the magnitude of regression coefficients rather than a

direct effect of MAF (see Supplementary Information).

The impact of including PCVs on the detection rate is more

limited. Analyses using GBM with PCVs show slightly higher

Table 2. Friedman test for effect of LD and MAF on the variable importance of functional SNPs

Effect Condition RF Gini RF MDA GBM GBMþ subsetting GBMþPCVs

x2 P x2 P x2 P x2 p x2 p

MAF �¼ 0.9 11.9 2.6� 10�3 7.0 3.0� 10�2 1.7 4.2� 10�1 0.6 7.5� 10�1 21.5 2.1� 10�5

�¼ 0.5 13.8 1.0� 10�3 7.0 3.0� 10�2 7.9 1.9� 10�2 2.3 3.1� 10�1 21.8 1.9� 10�5

�¼ 0.0 14.6 6.8� 10�4 13.3 1.3� 10�3 1.1 5.7� 10�1 1.5 4.7� 10�1 44.2 2.5� 10�10

LD m¼ 0.1 17.6 1.5� 10�4 1.0 6.1� 10�1 17.7 1.4� 10�4 1.4 5.0� 10�1 0.5 7.8� 10�1

m¼ 0.3 32.0 1.1� 10�7 0.5 8.0� 10�1 17.7 1.4� 10�4 6.5 3.9� 10�2 0.7 6.9� 10�1

m¼ 0.5 12.7 1.7� 10�3 5.0 8.2� 10�2 19.6 5.6� 10�5 0.3 8.4� 10�1 4.5 1.0� 10�1

Tests are performed for the simple effect of MAF at a given LD �, and for the simple effect of LD at a given MAF m. All tests have df¼ 2. With Bonferroni corrections for

family-wise �¼ 0.05, P-values51.7� 10�2 indicate significant effects.

Table 3. Functional SNP detection rate by method, LD �, and MAF m

m Method Detection rate (95% confidence interval)

�¼ 0.9 �¼ 0.5 �¼ 0

0.1 GBM 0.79 (0.74–0.84) 0.86 (0.81–0.90) 0.89 (0.85–0.93)

GBM Sub 0.88 (0.84–0.92) 0.90 (0.86–0.93) 0.85 (0.80–0.89)

GBM PCV 0.88 (0.84–0.92) 0.92 (0.88–0.95) 0.87 (0.82–0.91)

ATT 0.90 (0.86–0.94) 0.92 (0.88–0.95) 0.94 (0.90–0.97)

0.3 GBM 0.80 (0.74–0.88) 0.82 (0.76–0.86) 0.88 (0.84–0.92)

GBM Sub 0.88 (0.83–0.91) 0.89 (0.84–0.92) 0.87 (0.82–0.91)

GBM PCV 0.83 (0.78–0.88) 0.81 (0.76–0.86) 0.86 (0.82–0.90)

ATT 0.92 (0.88–0.95) 0.92 (0.88–0.95) 0.90 (0.85–0.93)

0.5 GBM 0.78 (0.72–0.83) 0.83 (0.78–0.88) 0.85 (0.80–0.89)

GBM Sub 0.87 (0.82–0.91) 0.86 (0.81–0.90) 0.84 (0.79–0.89)

GBM PCV 0.84 (0.79–0.89) 0.82 (0.76–0.86) 0.77 (0.71–0.82)

ATT 0.90 (0.86–0.94) 0.93 (0.89–0.96) 0.94 (0.90–0.96)

‘Detection’ in each replication is defined as importance (or test statistic) for a functional SNP greater than the highest observed importance among simulated

SNPs unassociated with the phenotype. Results are given for the ATT, uncorrected GBM importance, GBM with LD subsetting, and GBM with PCVs,

showing that in most cases the detection rate for GBM-based methods is within sampling error of the ATT. Proportions are out of 250 replications. Values in

bold have confidence intervals that overlap the confidence interval for the detection rate of the ATT.
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detection rates for SNPs with low MAF, and a moderate
decrease in detection rates for SNPs with higher MAF, but the

difference is generally within sampling variation (Table 3).

3.4.4 Armitage trend test To establish the usefulness of SL
methods for genome-wide data, it is important to compare

their performance to conventional methods. Since the current

simulations rely on the same additive genetic model assumed
by the ATT, we do not anticipate that RF and GBMwill provide

any improvement over the detection rate of the ATT. Instead, we

hope to show that even under ideal circumstances for the ATT,

little sensitivity is lost by using RF and GBM, such that RF and

GBM may improve sensitivity to epistatic and non-additive ef-

fects without substantial sacrifices of sensitivity to additive
effects.

Comparison of the detection rates for GBM with the ATT

indicates that in most conditions the difference between the
two methods is within the range of sampling variation, especially

when LD subsetting is used (Table 3). Indeed, there is a strong

visual similarity between the pattern of observed P-values for the

ATT and the corresponding variable importances from GBM

with LD subsetting (Supplementary Figs S8b and S9). Results
for RF are somewhat weaker (Supplementary Table S3). Note

that in order to maintain a fair comparison, we define detection

for the ATT by treating the test statistic as an analog to the

variable importance rather than requiring statistical significance.

In sum, it appears GBM, with the aid of LD subsetting, does not

substantially under-perform the ATT, even under ideal circum-
stances for the ATT.

4 DISCUSSION

SL methods such as RF and GBM are a viable alternative to

conventional parametric testing of individual SNPs in a GWAS.

However, there are valid concerns over the impact of LD and

MAF on variable importance measures that must be addressed.

In response, this study presents an integrated approach to mean-
ingfully reduce the effect of LD and MAF on variable import-

ance in RF and GBM.

The results of this study show that the proposed subsetting
algorithm can successfully reduce or eliminate the effect of LD

on the variable importance measures of RF and GBM. The pro-

cess of aggregating results over the subsets is not biased by the

number of subsets containing a given SNP and, in many cases,

may aid the detection of effect SNPs. In particular, the use of LD
subsetting can be expected to aid RF and GBM is identifying

effect SNPs within LD blocks. Since LD subsets are constructed

prior to analysis, the procedure could also be applied to other SL

methods.
Importantly, GBM provides detection rates for the functional

SNPs within sampling variation of detection rates for the ATT.

This result for GBM is especially encouraging given that this

study uses an additive genetic model that precisely matches the

type of effect anticipated by the ATT. SL methods may be
expected to provide substantial improvement over the ATT for

detecting correlated effect SNPs and SNPs with non-additive and

epistatic effects (Garcia-Magarinos et al., 2009). Alternatively,

RF and GBMmay act as an initial screen to reduce genome-wide

data to a set of candidate SNPs small enough to make thorough

modeling of their complex relationships feasible using penalized

regression or other appropriate methods (Ayers and Cordell,

2010).
The LD subsetting approach also facilitates the introduction

of PCVs, as proposed by Sandri and Zuccolotto (2010), which

may potentially be used to correct for the effect of MAF on

variable importance measures. The proposed PCV correction

evaluated in this study provides a marked reduction in the

effect of MAF on non-effect SNPs. Caution is necessary in

applying PCVs, however, given a moderate effect of MAF re-

mains and the effect of MAF on the importance of functional

SNPs may be magnified, with uncertain implications

(Supplementary Information). Still, PCVs at minimum provide

the option of emphasizing sensitivity to SNPs with low MAF,

which may contain the majority of heritable variance for some

phenotypes, such as high-density lipoprotein (HDL) cholesterol

(Park et al., 2011), and can be difficult to detect with conven-

tional methods (Wang et al., 2005). Finally, in addition to PCVs

numerous covariates for comorbid disorders, environmental fac-

tors and other influential variables may be included in the ana-

lysis with a much lower computational cost than for popular

GWAS software (Shabalin, 2012).
A number of factors may be considered in seeking to improve

the approaches evaluated by this study. More careful tuning of

the metaparameters for the LD subsetting algorithm, including

the selection of k, b and t, may enhance the effectiveness of the

correction. Alternative methods to improve the use of PCVs to

correct for the effect of MAF may also be explored. The correc-

tion proposed here is only one possible application of PCVs;

other versions may improve the effectiveness of PCVs or carry

different advantages tailored to the preferences of the researcher.

Finally, these results show strong results for GBM that are con-

sistent with the more widely known RF; additional work should

be performed to evaluate GBM as a viable tool for analyzing

genome-wide data, especially given its lighter computational

burden.
Although our approach does not fully eliminate the impact of

LD and MAF on variable importance measures, the proposed

corrections provide a satisfying improvement. Importantly, LD

subsetting also facilitates analysis in a parallel environment, im-

proving the computational feasibility of these methods for

genome-wide data. Continuing efforts to establish the validity,

reliability and feasibility of SL methods such as RF and GBM

with genome-wide data will be crucial to establishing these meth-

ods as viable alternatives to conventional GWAS analyses.
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