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Summary
For high-dimensional classification, it is well known that naively performing the Fisher
discriminant rule leads to poor results due to diverging spectra and noise accumulation. Therefore,
researchers proposed independence rules to circumvent the diverging spectra, and sparse
independence rules to mitigate the issue of noise accumulation. However, in biological
applications, there are often a group of correlated genes responsible for clinical outcomes, and the
use of the covariance information can significantly reduce misclassification rates. In theory the
extent of such error rate reductions is unveiled by comparing the misclassification rates of the
Fisher discriminant rule and the independence rule. To materialize the gain based on finite
samples, a Regularized Optimal Affine Discriminant (ROAD) is proposed. ROAD selects an
increasing number of features as the regularization relaxes. Further benefits can be achieved when
a screening method is employed to narrow the feature pool before hitting the ROAD. An efficient
Constrained Coordinate Descent algorithm (CCD) is also developed to solve the associated
optimization problems. Sampling properties of oracle type are established. Simulation studies and
real data analysis support our theoretical results and demonstrate the advantages of the new
classification procedure under a variety of correlation structures. A delicate result on continuous
piecewise linear solution path for the ROAD optimization problem at the population level justifies
the linear interpolation of the CCD algorithm.
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1. Introduction
Technological innovations have had deep impact on society and on various areas of
scientific research. High-throughput data from microarray and proteomics technologies are
frequently used in many contemporary statistical studies. In the case of microarray data, the
dimensionality is frequently in thousands or beyond, while the sample size is typically in the
order of tens. The large-p-small-n scenario poses challenges for the classification problems.
We refer to Fan and Lv (2010) for an overview of statistical challenges associated with high
dimensionality.

When the feature space dimension p is very high compared to the sample size n, the Fisher
discriminant rule performs poorly due to diverging spectra as demonstrated by Bickel and
Levina (2004). These authors showed that the independence rule in which the covariance
structure is ignored performs better than the naive Fisher rule (NFR) in the high dimensional
setting. Fan and Fan (2008) demonstrated further that even for the independence rules, a
procedure using all the features can be as poor as random guessing due to noise
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accumulation in estimating population centroids in high-dimensional feature space. As a
result, Fan and Fan (2008) proposed the Features Annealed Independence Rule (FAIR) that
selects a subset of important features for classification. Dudoit et al. (2002) reported that for
microarray data, ignoring correlations between genes leads to better classification results.
Tibshirani et al. (2002) proposed the Nearest Shrunken Centroid (NSC) which likewise
employs the working independence structure. Similar problems are also studied in the
machine learning community such as Domingos and Pazzani (1997) and Lewis (1998).

In microarray studies, correlation among different genes is an essential characteristic of the
data and usually not negligible. Other examples include proteomics, and metabolomics data
where correlation among biomarkers is commonplace. More details can be found in
Ackermann and Strimmer (2009). Intuitively, the independence assumption among genes
leads to loss of critical information and hence is suboptimal. We believe that in many cases,
the crucial point is not whether to consider correlations, but how we can incorporate the
covariance structure into the analysis with a bullet proof vest against diverging spectra and
significant noise accumulation effect.

The setup of the objective classification problem is now introduced. We assume in the
following that the variability of data under consideration can be described reasonably well
by the means and variances. To be more precise, suppose that random variables representing
two classes 1 and 2 follow p-variate normal distributions: X|Y = 1 ~ p(μ1,Σ) and X|Y =
2 ~ p(μ2,Σ) respectively. Moreover, assume ℙ(Y = 1) = 1/2. This Gaussian discriminant
analysis setup is known for its good performance despite its rigid model structure. For any
linear discriminant rule

(1)

where μa = (μ2 + μ1)/2, and denotes the indicator function with value 1 corresponds to
assigning X to class 2 and 0 class 1, the misclassification rate of the (pseudo) classifier δw
is

(2)

where μd = (μ2 − μ1)/2, and Pi is the conditional distribution of X given its class label i. We
will focus on such linear classifier δw(·), and the mission is to find a good data projection
direction w. Note that the Fisher discriminant

(3)

is the Bayes rule. There is an equivalent derivation of the Fisher discriminant, which does
not involve Gaussian assumptions. We would skip it for now, and come back to this point
when we extend our method to multi-class learning scenarios. There are two fundamental
difficulties in applying the Fisher discriminant whose missclassification rate is

(4)

The first difficulty arises from the noise accumulation effect in estimating the population
centroids (Fan and Fan, 2008) when p is large. The second challenge is more severe:
estimating the inverse of covariance matrix Σ when p > n (Bickel and Levina, 2004). As a
result, much previous researches focus on the independence rules, which act as if Σ is
diagonal. However, correlation matters!

Fan et al. Page 2

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To illustrate this point, consider a case when p = 2. These two features can be selected from
the original thousands of features, and we can estimate the correlation between two variables
with reasonable accuracy. Let

where ρ ∈ [0, 1) and μd = (μ1, μ2)T. Without loss of generality, assume |μ1| ≥ |μ2| > 0. The
misclassification rate of Fisher discriminant depends on

(5)

Note that

Therefore, when μ1μ2 < 0,  for all ρ ∈ [0, 1). On the other hand, when μ1μ2 > 0,

Δp(ρ) decreases on , and increases on . Notice that when ρ → 1, Δp → ∞
regardless of signs for μ1μ2, which in turn leads to vanishing classification error. On the
other hand, if we use independence rule (also called naive Bayes rule), the optimal
misclassification rate

(6)

depends on , which is monotonically decreasing for ρ ∈ [0, 1), with the

limit  that is smaller than unity when μ1 and μ2 have the same sign.
Hence, the optimal classification error using the independence rule actually increases as
correlation among features increases.

The above simple example shows that by incorporating correlation information, the gain in
terms of classification error can be substantial. Elaboration on this point in more realistic
scenarios is provided in Section 2. Now it seems wise to use at least a part of covariance
structure to improve the performance of a classifier. So there is a need to estimate the
covariance matrix Σ. Without structural assumptions on Σ, the pooled sample covariance Σ̂
is one natural estimate. But for p > n, it is not considered as a good estimate of Σ in general.
We are lucky here because our mission is not constructing a good estimate of the covariance
matrix, but finding a good direction w that leads to a good classifier. To mimic the optimal
data projection direction Σ−1μd, we do not adopt a direct plug-in approach, simply because it
is unlikely that a product is a good estimate when at least one of its components is not.
Instead, we find the data projection direction w by directly minimizing the classification
error subject to a capacity constraint on w. From a broad spectrum of simulated and real data
analysis, we are convinced that this approach leads to a robust and efficient sparse linear
classifier.
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Admittedly, our work is far from the first to use covariance for classification; support vector
machines (Vapnik, 1995), for example, implicitly utilize covariance between covariates.
Another notable work is “shrunken centroids regularized discriminant analysis” (SCRDA)
(Guo et al., 2005), which calls for a version of regularized sample covariance matrix Σ̂reg,

and soft-thresholds on . Shao et al. (2011) consider a sparse linear discriminant
analysis, assuming the sparsity on both the covariance matrix and the mean difference vector
so that they can be regularized. They show that such a regularized estimator is
asymptotically optimal under some conditions. However, to the best of our knowledge, this
work is the first to select features by directly optimizing the misclassification rates, to
explicitly use un-regularized sample covariance information, and to establish the oracle
inequality and risk approximation theory.

There is a huge literature on high dimensional classification. Examples include principal
component analysis in Bair et al. (2006) and Zou et al. (2006), partial least squares in
Nguyen and Rocke (2002), Huang (2003) and Boulesteix (2004), and sliced inverse
regression in Li (1991) and Antoniadis et al. (2003).

The rest of our paper is organized as follows. Section 2 provides some insights on the
performances of naive Bayes, Fisher discriminant and restricted Fisher discriminants. In
Section 3, we propose the Regularized Optimal Affine Discriminant (ROAD) and variants of
ROAD. An efficient algorithm Constrained Coordinate Descent (CCD) is constructed in
Section 4. Main risk approximation results and continuous piecewise linear property of the
solution path are established in Section 5. We conduct simulation and empirical studies in
Section 6. A short discussion is given in Section 7, and all proofs are relegated to the
appendix.

2. Naive Bayes and Fisher Discriminant
To compare the naive Bayes and Fisher discriminant at the population level, we assume
without loss of generality that variables have been marginally standardized so that Σ is a
correlation matrix. Recall that the naive Bayes discriminant has error rate (6) and the Fisher

discriminant has error rate (4). Let . Denote by  the

eigenvalues and  eigenvectors of the matrix Σ. Decompose

(7)

where  are the coefficients of μd in this new orthonormal basis . Using the
decomposition (7), we have

(8)

The relative efficiency of Fisher discriminant over naive Bayes is characterized by Δp/Γp.
By the Cauchy-Schwartz inequality,

The naive Bayes method performs as well as the Fisher discriminant only when μd is an
eigenvector of Σ.
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In general, Δp/Γp can be much larger than unity. Since Σ is the correlation matrix,

. If μd is equally loaded on ξj, then the ratio

(9)

More generally, if  are realizations from a distribution with the second moment σ2,
then by the law of large numbers,

Hence, (9) holds approximately in this case. In other words, the right hand side of (9) is
approximately the relative efficiency of the Fisher discriminant over the naive Bayes. Now
suppose further that half of the eigenvalues of Σ are c and the other half are 2−c. Then, the
right hand side of (9) is (c−1+(2−c)−1)/2. For example when the condition number is 10, this

ratio is about 3. A high ratio translates into a large difference in error rates:  for

independence rule is much larger than  for Fisher discriminant. For example,

when , we have 30.9% and 6.7% error rates respectively for the naive Bayes and
Fisher discriminant.

To put the above arguments under a visual inspection, consider a case in which p = 1000,

 with μs = (1, 1, 1, 1, 1, 2, 2, 2, 2, 2)T and Σ equals the equi-correlation matrix
with pairwise correlation ρ. The vector μd simulates the case in which 10 genes out of 1000
express mean differences. Figure 1 depicts the theoretical error rates of the Fisher
discriminant and the naive Bayes rule as functions of ρ.

It is not surprising that the Fisher discriminant rule performs significantly better than the
naive Bayes as ρ deviates away from zero. The error rate of the naive Bayes actually
increases with ρ, whereas the error rate of the Fisher discriminant tends to zero as ρ
approaches 1. This phenomenon is the same as what was shown analytically through the toy
example in Section 1. To mimic Fisher discriminant by a plug-in estimator, we need to
estimate Σ−1μd with reasonable accuracy. This mission is difficult if not impossible. On the
other hand, imitating a weaker oracle is more manageable. For example, when the samples
are of reasonable size, we can select the 10 variables with differences in means by applying
a two-sample t-test. Restricting to the best linear classifiers based on these s = 10 variables,
we have the optimal error rate

where the classification rule is δwR and . The performance of this oracle
classifier is depicted by the sub-Fisher (10 features) in Figure 1. It performs much better
than the naive Bayes method. One can also employ the naive Bayes rule to the restricted
feature space, but this method has exactly the same performance as the naive Bayes method
in the whole space. Thus, the restricted Fisher discriminant outperforms both the naive
Bayes method with restricted features and the naive Bayes method using all features.
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Mimicking the performance of the restricted Fisher discriminant is feasible. Instead of
estimating a 1000 × 1000 covariance matrix, we only need to gauge a 10 × 10 submatrix.
However, this restricted Fisher rule is not powerful enough, as shown in Figure 1. We can
improve its performance by including 10 most correlated variables to each of those selected
features to further account for the correlation effect, giving rise to a 20-dimensional feature
space. Since the variables are equally correlated in this example, we are free to choose any
10 variables among the other 990. The performance of such an enlarged restricted Fisher
discriminant is represented by sub-Fisher (20 features) in Figure 1. It performs closely to the
Fisher discriminant which uses the whole feature space, and it is feasible to implement with
finite samples.

3. Regularized Optimal Affine Discriminant

The misclassification rate of Fisher discriminant is , where .
However, for high dimensional data, it is impossible to achieve such a performance
empirically. Among other reasons, the estimated covariance matrix Σ̂ is ill-conditioned or
not invertible. One solution is to focus only on the s(≪ p) most important features for
classification. Ideally, the best s features should be the ones with the largest Δs among all

 possibilities, where Δs is the counterpart of Δp when only s variables are considered.
Naive search for the best subset of size s is NP-hard. Thus, we develop a regularized method
to circumvent these two problems.

3.1. ROAD
Recall that by (2), minimizing the classification error W(δw) is the same as maximizing
wTμd/(wTΣw)1/2, which is equivalent to minimizing wTΣw subject to wTμd = 1. We would
like to add a penalty function for capacity control. There are many ways to do
regularization; for the literature on penalized methods, refer to LASSO (Tibshirani, 1996),
SCAD (Fan and Li, 2001), Elastic net (Zou and Hastie, 2005), MCP (Zhang, 2010) and
related methods (Zou, 2006; Zou and Li, 2008). As our primary interest is classification
error (the risk of the procedure), an L1 constraint ‖w‖1 ≤ c is added for regularization, so the
problem can be recast as

(10)

We name the classifier δwc (·) the Regularized Optimal Affine Discriminant(ROAD). The
existence of a feasible solution in (10) dictates

(11)

When c is small, we obtain a sparse solution and achieve feature selection using covariance

information. When , the L1 constraint is no longer binding and δwc
reduces to the Fisher discriminant, which can be denoted by δw∞ (= δF). Therefore we have
provided a family of linear discriminants, indexed by c, using from only one feature to all
features. In some applications such as portfolio selection, the choice of c reflects the
investor’s tolerance upper bound on gross exposure. In other applications, when the user
does not have a such a preference, the choice of c can be data-driven. To accommodate both
application scenarios, we propose a coordinate descent algorithm (Section 4) to implement
our ROAD proposal.

Fan et al. Page 6

J R Stat Soc Series B Stat Methodol. Author manuscript; available in PMC 2013 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3.2. Variants of ROAD
At the sample level, NSC (Tibshirani et al., 2002) and FAIR (Fan and Fan, 2008) both use
shrunken versions of standardized mean difference to find the s features. In the same spirit,
we consider the following Diagonal Regularized Optimal Affine Discriminant(D-ROAD)

, where

(12)

The D-ROAD will be compared with NSC (Tibshirani et al., 2002) and FAIR (Fan and Fan,
2008) in the simulation studies, and all these independence based rules will be compared
with ROAD and its two variants defined below.

A screening-based variant (to be proposed) of ROAD aims at mimicking the performance of
sub-Fisher (10 features) in Figure 1. A fast way to select features is the independence
screening, which uses the marginal information such as the two-sample t-test. We can also
enlarge the selected feature subspace by incorporating the features which are most correlated
to what have been chosen. This additional variant of ROAD tracks the performance of sub-
Fisher (20 features) in Figure 1. We will refer to the two variants of ROAD as S-ROAD1
and S-ROAD2. More description of these procedures, along with their theoretical properties
and numerical investigations, will be detailed in Sections 5 and 6.

A hint of the rationale behind including correlated features that do not show a difference in
means between the two classes, is revealed through the two-feature example in the
introduction. Suppose μ2 = 0. Then, by (5), the power of the discriminant using two features

is , whereas with the first feature alone the

misclassification rate is . Therefore when the correlation |ρ| is large,
using two correlated features is far more powerful than employing only one feature, even
though the second feature has no marginal discrimination power. More intuition is granted
by this observation: at the population level, the best s features are not necessarily those with
largest standardized mean differences. In other words, with the two class Gaussian model in
mind, when Σ is the correlation matrix, the most powerful s features for classification are not
necessarily the coordinates of μd with largest absolute values. This is illustrated by the next
stylized example.

Let X|Y = 0 ~ (μ1,Σ) and X|Y = 1 ~ (μ2,Σ), where μ1 = (0, 0, 0)T, μ2 = (4, 0.5, 1)T, and

Suppose the objective is to choose 2 out of 3 variables for classification. If we rank features
by marginal information, for example by the absolute value of standardized mean
differences, then we would choose the 1st and 3rd features. On the other hand, denote μd,ij
the mean difference vector for features i and j, Σij the covariance matrix of features i and j,

then the classification power using features i and j depends on . Simple
calculation leads to
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Hence the most powerful two features for classification are not the 1st and 3rd.

3.3. Extension to Multi-Class
In this section, we outline an extension of ROAD to multi-class classification problems.
Suppose that there are K classes, and for j = 1,⋯, K, the jth class has mean μj and common

covariance Σ. Denote the overall mean of features by . Fisher’s reduced rank
approach to multi-class classification is a minimum distance classifier in some lower
dimensional projection space. The first step is to find s ≤ K−1 discriminant coordinates

 that separate the population centroids  the most in the projected space

. Then the population centroids μj ’s and new observation X are both
projected onto  The observation X will be assigned to the class whose projected centroid is
closest to the projection of X onto  Note that it is usually not necessary to compute all K
−1 discriminant coordinates whose span is that of all K population centroids; the process can
stop as long as the projected population centroids are well spread out in 

We adopt the above procedure for multi-class classification. However, the large-p-small-n
scenario demands regularization in selecting discriminant coordinates. Indeed, in the

Fisher’s proposal the first discriminant coordinate  is the solution of

(13)

where B = ΨTΨ, and the jth column of ΨT is (μj − μa). Note that a multiple of B is the

between-class variance matrix. The second discriminant coordinate  is the maximizer of

wTBw/(wTΣw) with constraint , and the subsequent discriminant coordinates are
determined analogously.

Since solving (13) is the same as looking for the eigenvector of Σ−1/2BΣ−1/2 corresponding
to the largest eigenvalue, diverging spectrum and noise accumulation have to be considered
when we work on the sample. To address these issues, we regularize w as in the binary case,

(14)

whose solution is the first regularized discriminant coordinate . The second regularized

discriminant coordinate is obtained by solving (14) with additional constraint .
Other regularized discriminant coordinates can be found similarly. With these s (≤ K − 1)
regularized discriminant coordinates, the classifier is now based on the minimum distance to

the projected centroids in the s-dimensional space spanned by .

4. Constrained Coordinate Descent
With a Lagrangian argument, we reformulate problem (10) as

(15)

In this section, we propose a Constrained Coordinate Descent (CCD) algorithm that is
tailored for solving our minimization problem with linear constraints. Optimization (15) is a
constrained quadratic programming problem and can be solved by existing softwares such as
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MOSEK. Although these softwares are well regarded in practice, they are slow for our
application. The structure of (15) could be exploited in order to obtain a more efficient
algorithm. In line with the LARS algorithm, we will exploit the fact that the solution path
has a piecewise-linear property.

In the compressed sensing literature, it is common to replace an affine constraint by a
quadratic penalty. We borrow this idea and consider the following approximation to (15):

(16)

In practice, we replace Σ by the pooled sample covariance Σ̂ and μ by the sample mean
difference vector μ̂d. By Theorem 6.7 in Ruszczynski (2006), we have

Note that we do not have to enforce the affine constraint strictly, because it only serves to
normalize our problem. In the optimization problem (16), when λ = 0, the solution w̃0,γ is
always in the direction of Σ−1μd, the Fisher discriminant, regardless of the value of γ. In
addition, this observation is confirmed in the data analysis (Section 6.2) by the insensitivity
of choice for γ. Therefore we hold γ as a constant in practice.

We solve (16) by coordinate descent. Non-gradient algorithms seem to be less popular for
convex optimization. For instance, the popular textbook Convex Optimization by Boyd and
Vandenberghe (2004) does not even have a section on these methods. Coordinate descent
method is an algorithm, in which the p search directions are just unit vectors e1, ⋯, ep,
where ei denotes the ith element in the standard basis of ℝp. These unit vectors are used as
search directions in each search cycle until some convergence criterion is met. If the
objective function is convex but non-differentiable, the coordinate descent algorithm might
gets trapped in a nonstationary point. However, this is not a problem in our case. Although
the objective function is not strictly convex, it is strictly convex in each of the coordinates.
Combining with the fact that the non-differentiable part of the objective function is
separable, either Theorem 4.1 or Theorem 5.1 of Tseng (2001) guarantees that coordinate
descent algorithms converge to local minima. Moreover, since since all directional
derivatives exist, every coordinate-wise minimum is also a local minimum. A similar study
on the convergence of the coordinate descent algorithm can be found in Breheny and Huang
(2011).

What makes the coordinate-descent algorithmparticularly attractive for (16) is that there is
an explicit formula for each coordinate update. For a given γ, fix τ and K, then do the
optimization on a grid (of log-scale) of λ values: τλmax = λK < λK−1 < ⋯ < λ1 = λmax. The
λmax is the minimum λ value such that no variables enter the model; this is analogous to the
minimum requirement on c in (11). In our implementation, we take τ = 0.001 and K = 100.
The problem is solved backwards from λmax. When λ = λi+1, we use the solution from λ =
λi as the initial value. This kind of “warm start” is very effective in improving
computational efficiency.

Consider a coordinate descent step to solve (16). Without loss of generality, suppose that w̃j
for all j ≥ 2 are given, and we need to optimize with respect to w1. The objective function
now becomes
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When w1 ≠ 0, we have

By simple calculation (Donoho and Johnstone, 1994), the coordinate-wise update has the
form

where S(z, λ) = sign(z)(|z| − λ)+ is the soft-thresholding operator.

In each coordinate update, the computational complexity is p). A complete cycle through
all p variables costs p2) operations. From our experience, CCD converges quickly after a
few cycles if “warm start” is used for the initial solution. Let C denote the average number
of cycles until convergence for each λ. Then our algorithm CCD enjoys computational
complexity CKp2). This is compared with the Fisher discriminant, where matrix inversion
alone costs at least p2.376) operations (the Coppersmith-Winograd algorithm), though we
should emphasize here that our algorithm has no ambition to fully recover the Fisher
discriminant (this task is infeasible anyway). The D-ROAD can be similarly implemented by
replacing the covariance matrix with its diagonal.

5. Asymptotic Property
5.1. Risk Approximation

Let ŵc be a sample version of wc in (10),

(17)

The fact that Σ̂ is only positive semi-definite leads to potential non-uniqueness of ŵc. Now,
we have three different classifiers:

. The first two are
oracle classifiers, requiring the knowledge of unknown parameters μ1, μ2 and Σ, while the
third one is the feasible classifier, ROAD, based on the sample. Their classification errors
are given by (2). Explicitly, the error rates are respectively W(δw∞) [see (4)], W(δwc), and
W(δ̂wc). By (2), an obvious estimator of the misclassification rate of δ̂wc is

(18)

Two questions arise naturally:
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i. how close is W(δ̂wc), the misclassification error of δ̂wc, to that of its oracle
W(δwc)?

ii. does Wn(δ̂wc) estimate W(δ̂wc) well?

Theorem 1 addresses these two questions. We introduce an intermediate optimization
problem for convenience:

Theorem 1. Let sc = ‖wc‖0, , and ŝc = ‖ŵc‖0. Assume that , ‖Σ̂ −
Σ‖∞ = Op(an) and ‖μ̂d − μd‖∞ = Op(an) for a given sequence an → 0. Then, we have

and

where  and dn = bn ∨ (ŝcan).

Remark 1. In Theorem 1, ‖·‖∞ is the element wise super-norm. When Σ̂ is the sample

covariance, by Bickel and Levina (2004), ; hence we can take

. The first result in Theorem 1 shows the difference between the
misclassification rate of δ̂wc and its oracle version δwc; the second result says about the error
in estimating the true misclassification rate of ROAD.

Remark 2. In view of (2), one intends to choose a w that makes wTΣw small and wTμd large.
A compromise of these dual objectives leads to a utility function

as a proxy of the objective function (2) for a fixed ξ. For any ξ > 0, the optimal choice w* ∈
argmin U(w) leads to the Fisher discriminant rule. Consider also the regularized versions

where Û (w) is the utility function with Σ and μd estimated by Σ̂ and μ̂d. Then, it is easy to
see the following utility approximation: for any ‖w‖1 ≤ c

and
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Remark 3. The most prominent technical challenge of our original problem (10) is due to
different dualities of penalization problems. For the population version (10), it can be
reduced, by the Lagrange multiplier method, to the utility U(w) optimization problem in
Remark 2 with a given ξ > 0, while for the sample version (17), it can be reduced to the
utility Û (w) optimization problem with a different ξ̂. Therefore, the problem is not the same
as the utility optimization problem in Remark 2: ξ̂ is hard to bound. In fact, it is much harder
and yields more complicated results.

We now show how different the data projection direction in the regularized oracle can be
from that in the Fisher discriminant. To gain better insight, we reformulate the L1 constraint
problem as the following penalized version:

(19)

The following characterizes its convergence to the Fisher discriminant weight w∞ as λ →
0.

Theorem 2. Let s be the size of the set {k : (Σ−1μd)k ≠ 0}. Then, we have

where  is the normalized Fisher discriminant, optimizing (19) with λ
= 0.

5.2. Screening-based ROAD (S-ROAD)
Following the idea of Sure Independence Screening in Fan and Lv (2008), we pre-screen all
the features before hitting the ROAD. The advantage of this two-step procedure is that we
have a control on the total number of features used in the final classification rule. A popular
method for independent feature selection is the two-sample t-test (Tibshirani et al., 2002;
Fan and Fan, 2008), which is a specific case of marginal screening in Fan and Lv (2008).
The sure screening property of such a method was demonstrated in Fan and Fan (2008),
which selects consistently the features with different means in the same settings as ours.

Once the features are selected, we can hit the ROAD, producing the vanilla Screening-based
Regularized Optimal Affine Discriminant (S-ROAD1):

1. Employ a screening method to get k features.

2. Apply ROAD to the k selected features.

In the first step, we use the t-statistics as the screening criteria and determine a data-driven
threshold. This idea is motivated by a FDR criterion for choosing marginal screening
threshold in Zhao and Li (2010). A random permutation π of {1, ⋯, n} is used to decouple
Xi and Yi so that the resulting data (Xπ(i), Yi) follow a null model, by which we mean that
features have no prediction power for the class label. More specifically, the screening step is
carried out as follows:

i. Calculate the t-statistic tj for each feature j, where j = 1, ⋯, p.

ii. For the permuted data pairs (Xπ(i), Yi), recalculate the t-statistic , for j = 1, ⋯, p.
(Intuitively, if j is the index of an important feature, |tj | should be larger than most
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of , because the random permutation is meant to eliminate the prediction power
of features.)

iii. For q ∈ [0, 1], let ω(q) be the qth quantile of . Then, the selected
set is defined as

The choice of threshold is made to retain the features whose t-statistics are significant in the
two sample t-test. Alternatively, if the user knows his k, (due to budget constraints, etc.),
then he can just rank |tj|’s and choose the threshold accordingly.

The S-ROAD1 tracks the performance of oracle procedures like sub-Fisher (10 features) in
Figure 1. The feature space gotten by step (1) can be expanded by including those features
which are most correlated with what have already been selected. This additional variant, S-
ROAD2, aims at achieving the performance of sub-Fisher (20 features) type of procedure in
Figure 1.

To elaborate on the theoretical properties of S-ROAD1, assume with no loss of generality
that the first k variables are selected in the screening step. Denote by Σk the upper left k × k
block of Σ and μk the first k coordinates of μd. Let

The quantities β̂c and  are defined similarly to ŵc and  (defined right before Theorem

1). Then denote by . The next two theorems
can be verified along lines similar to Theorems 1 and 2. Hence, the proofs are omitted.

Theorem 3. If , and λmin(Σk) ≥ δ0 > 0,
then we have

and

where .

This result is cleaner than Theorem 1, as the rate does not involve sc and ŝc: they are simply
replaced by the upper bound k. Accurate bounds for sc and ŝc are of interest for future
exploration, but they are beyond the scope of this paper.

Theorem 4. Let  where Mk is the subspace in Rp with the

last p − k components being zero, and . Then we have
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5.3. Continuous Piecewise Linear Solution Path
We use the word “linear” when referring to “affine”, in line with the status quo in the
statistical community. Continuous piecewise linear paths are of much interest to statisticians,
as the property reduces the computational complexity of solutions and justifies the linear
interpolations of solutions at discrete points. Previous well known investigations include
Efron et al. (2004) and Rosset and Zhu (2007). Our setup differs from others mainly in that
in addition to a complexity penalty, there is also an affine constraint. Our proof calls in point
set topology, and is purely geometrical, in a spirit very different from the existing ones. In
particular, we stress that the continuity property is intuitively correct, but it is far from a
trivial consequence of the assumptions. The authors also believe that the claim holds true
even if the p−1 dimensional affine subspace constraint is replaced by more generic ones,
though the technicality of the proof must be more involved.

Theorem 5. Let μd ∈ ℝp be a constant, and Σ be a positive definite matrix of dimension p ×
p. Let

then wc is a continuous piecewise linear function in c.

Proposition 1. W(δwc) is a Lipschitz function in c.

Proof. Recall that

By Theorem 5 and the fact that composition of Lipschitz functions is again Lipschitz, the
conclusion holds.

6. Numerical Investigation
In this section, several simulation and real data studies are conducted. We compare ROAD
and its variants S-ROAD1 (Screening-based ROAD version 1), S-ROAD2 (Screening-based
ROAD version 2) and D-ROAD (Diagonal ROAD) with NSC (Nearest Shrunken Centroid),
SCRDA (Shrunken Centroids Regularized Discriminant Analysis), FAIR (Feature Annealed
Independence Rule), NB (Naive Bayes), NFR (Naive Fisher Rule, which uses the
generalized inverse of the sample covariance matrix), as well as the Oracle.

In all simulation studies, the number of variables is p = 1000, and the sample size of the
training and testing data is n = 300 for each class. Each simulation is repeated 100 times to
test the stability of the method. Without loss of generality, the mean vector of the first class
μ1 is set to be 0. We use five-fold cross-validation to choose the penalty parameter λ.
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6.1. Equal Correlation Setting, Sparse Fixed Signal
In this subsection, we consider the setting where Σi,i = 1 for all i = 1, ⋯, p and Σi,j = ρ for all

i, j = 1, ⋯, p and i ≠ j, and take μ2 to be a sparse vector: , where 1d is a length
d vector with all entries 1, 0d is a length d vector with all entries 0, where the sparsity size is
s0 = 10. Also, we fix γ = 10 in (16) for this simulation. Sensitivity of the performance due to
the choice of γ will be investigated in the next subsection.

The solution paths for ROAD and D-ROAD of one realization are rendered in Figure 2. It is
clear from the figure that, as the penalty parameter decreases (index increases), both ROAD
and D-ROAD use more features. Also, the cutoff point for D-ROAD, where the number of
features starts to increase dramatically, tends to come later than that for ROAD.

The simulation results for the pairwise correlations ranging from 0 to 0.9 are shown in
Tables 1 and 2. We would like to mention that the results for NFR (Naive Fisher Rule) are
not included in these (and the subsequent) tables because the test classification error is
always around 50%, i.e., it is about the same as random guess. Also in the tables are the
screening-based versions of the ROAD. S-ROAD1 refers to the vanilla version where we
first apply the two-sample t-test to select any features with the corresponding t-test statistic
with absolute value larger than the maximum absolute t-test statistic value calculated on the
permuted data. S-ROAD2 does the same except for each variable in S-ROAD1’s pre-
screened set, it adds an additional variable which is most correlated with that variable.
Figure 3, a graphical summary of Table 1, presents the median test errors for different
methods. We can see from Table 1 and Figure 3 that the oracle classification error decreases
as ρ increases. This phenomenon is due to a similar reason to the two-dimensional showcase
in the introduction. When ρ goes to 1, all the variables contribute in the same way to boost
the classification power. ROAD performs reasonably close to the Oracle, while working
independence based method such as D-ROAD, NSC, FAIR and NB fail when ρ is large. The
huge discrepancy shows the advantage of employing the correlation structure. Since
SCRDA also employ the correlation structure, it does not fail when ρ is large. However,
ROAD still outperforms SCRDA in all the correlation settings. S-ROAD1 and S-ROAD2
both have misclassification rates similar to that of ROAD. It is worth to emphasize that the
merits of the screening based ROADs mainly lie in the computation cost, which is reduced
significantly by the pre-screening step.

The ROAD is a very robust estimator. It performs well even when all the variables are
independent, in which case there could be a lot of noise for fitting the covariance matrix.
Table 1 indicates that ROAD has almost the same performance as D-ROAD, NSC and FAIR
under the independence assumption, i.e. ρ = 0. As ρ increases, the edge of ROAD becomes
more substantial. In general, the ROAD is recommended on the grounds that even with
pairwise correlation of about 0.1 (which is quite common in microarray data as well as
financial data), the gain is substantial.

Another interesting observation is that the D-ROAD performs similarly to NSC and FAIR in
terms of classification error. An intuitive explanation is that they are all “sparse”
independence rules. NSC uses soft-thresholding on the standardized sample mean
difference, and its equivalent LASSO derivation can be found in Wang and Zhu (2007).
FAIR selects features with large marginal t-statistics in absolute values, while D-ROAD is
another L1 penalized independence rule, whose implementation is different from NSC.

Table 2 summarizes the number of features selected by different classifiers. Note that
ROAD mimics Fisher discriminant coordinate Σ−1μd, which has p = 1000 nonzero entries
under our simulated model. Therefore, the large number of features selected by ROAD is
not out of expectation.
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6.2. The Effect of γ
Under the settings of the previous subsection, we look into the variation of the ROAD
performance as γ changes. In Table 3, the number of active variables varies; however, the
median classification error remains about the same for a broad range of γ values. The reason
is that the cross validation step chooses the “best” λ according to a specific γ. Therefore, the
final performance remains almost unchanged. Since our primary concern is the classification
error, we fix γ = 10 for simplicity in the subsequent simulations and in the real data
analysis.

6.3. Block Diagonal Correlation Setting, Sparse Fixed Signal
In this subsection, we follow the same setup as in Section 6.1 except that the covariance
matrix Σ is taken to be block diagonal. The first block is a 20 × 20 equi-correlated matrix
and the second block is a (p − 20) × (p − 20) equi-correlated matrix, both with pairwise
correlation ρ. In other words, Σi,i = 1 for all i = 1, ⋯, p, Σi,j = ρ for all i, j = 1, ⋯, 20 and i ≠
j, Σi,j = ρ for all i, j = 21, ⋯, p and i ≠ j, and the rest elements are zeros. As before, we
examine the performances of various estimators when ρ varies. The percentage for testing
error and the number of selected features in the estimators are shown in Tables 4 and 5,
respectively.

In this block-diagonal setting, we have observed similar results to those in Section 6.1:
ROAD and S-ROAD2 perform significantly better than the other methods. One interesting
phenomenon is that S-ROAD1 does not perform well when ρ is large. The reason is that the
current true model has 20 important features, and by looking only at marginal contribution,
S-ROAD1 misses some important variables, as shown in Table 4. Indeed, because those
features have no expressed mean differences, it does not fully take advantage of highly
correlated features. In contrast, S-ROAD2 is able to pick up all the important variables,
takes advantage of correlation structure, and leads to a sparser model than the vanilla
ROAD. In view of the results from this simulation setting and the previous one, we
recommend S-ROAD2 over S-ROAD1.

6.4. Block-Diagonal Negative Correlation Setting, Sparse Fixed Signal
In this subsection, we again follow a similar setup as in Section 6.1. Here, the covariance
matrix Σ is taken to be block diagonal with each block size equals to 10. Each block is an
equi-correlated matrix with pairwise correlation ρ = −0.1. In other words, Σ = diag(Σ0, ⋯,
Σ0), where Σ0 is a 10 × 10 equi-correlated matrix with correlation −0.1. Here,

 and the sparsity size is s0 = 10. As before, we examine the
performances of various estimators when ρ varies. The percentage for testing error and the
number of selected features in the estimators are shown in Table 6.

6.5. Random Correlation Setting, Double Exponential Signal
To evaluate the stability of the ROAD, we take a random matrix Σ as the correlation
structure, and use a signal μ whose nonzero entries come from a double exponential
distribution. A random covariance matrix Σ is generated as follows:

i. For a given integer m (here we take m = 10), generate a p × matrix Ω where Ωi,j ~
Unif(−1, 1). Then the matrix ΩΩT is positive semi-definite.

ii. Denote cΩ = mini(ΩΩT)ii. Let Ξ = ΩΩT + cΩI, where I is the identity matrix. It is
clear that Ξ is positive definite.

iii. Normalize the matrix Ξ to get Σ whose diagonal elements are unity.
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For the signal, we take μ to be a sparse vector with sparsity size s = 10, and the nonzero
elements are generated from the double exponential distribution with density function

Table 7 summaries the results. It shows that even under random correlation setting and
random signals, our procedure ROAD still outperforms other competing classification rules
such as SCRDA, NSC and FAIR in terms of the classification error.

6.6. Real Data
Though the ROAD seems to perform best in a broad spectrum of idealized experiments, it
has to be tested against reality. We now evaluate the performance of our newly proposed
estimator on three popular gene expression data sets: “Leukemia” (Golub et al., 1999),
“Lung Cancer” (Gordon et al., 2002), and “Neuroblastoma data set” (Oberthuer et al., 2006).
The first two data sets come with predetermined, separate training and test sets of data
vectors. The Leukemia data set contains p = 7, 129 genes for n1 = 27 acute lymphoblastic
leukemia (ALL) and n2 = 11 acute myeloid leukemia (AML) vectors in the training set. The
test set includes 20 ALL and 14 AML vectors. The Lung Cancer data set contains p = 12,
533 genes for n1 = 16 adenocarcinoma (ADCA) and n2 = 16 mesothelioma training vectors,
along with 134 ADCA and 15 mesothelioma test vectors. The Neuroblastoma data set,
obtained via the MicroArray Quality Control phase-II (MAQC-II) project, consists of gene
expression profiles for p = 10, 707 genes from 251 patients of the German Neuroblastoma
Trials NB90–NB2004, diagnosed between 1989 and 2004. We analyzed the gene expression
data with the 3-year event-free survival (3-year EFS), which indicates whether a patient
survived 3 years after the diagnosis of neuroblastoma. There are 239 subjects with the 3-year
EFS information available (49 positives and 190 negatives). We randomly select 83 subjects
(19 positives and 64 negatives, which are about one third of the total subjects) as the training
set and the rest as the test set. The readers can find more details about the data sets in the
original papers.

Following Dudoit et al. (2002) and Fan and Fan (2008), we standardized each sample to zero
mean and unit variance. The classification results for ROAD, S-ROAD1, S-ROAD2,
SCRDA, FAIR, NSC and NB are shown in Tables 8, 9 and 10. For the leukemia and lung
cancer data, ROAD performs the best in terms of classification error. For the neuroblastoma
data, NB performs best, however, it makes use of all 10,707 genes, which is not very
desirable. In contrast, ROAD has a competitive performance in terms of classification error
and it only selects 33 genes. Although SCRDA has a close performance, the number of
selected variables varies a lot for the three data set (264, 2410, 1). Overall, ROAD is a
robust classification tool for high-dimensional data.

7. Discussion
With a simple two-class gaussian model, we explored the bright side of using correlation
structure for high dimensional classification. Targeting directly on the classification error,
ROAD employs un-regularized pooled sample covariance matrix and sample mean
difference vector without suffering from curse of dimensionality and noise accumulation.
The sparsity of chosen features is evident in simulations and real data analysis; however, we
have not discovered intuitively good conditions on Σ and μd, such that a certain desirable
sparsity pattern of ŵc follows. We resolve a part of the problem by introducing screening-
based variants of ROAD, but the precise control of the sparsity size is worth for further
investigation. Furthermore, we can explore the conditions for the model selection
consistency.
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In this paper, we have restricted ourselves to the linear rules. They can be easily extended to
nonlinear discriminants via transformations such as low order polynomials or spline basis
functions. One may also use the popular “kernel tricks” in the machine learning community.
See, for example, Hastie et al. (2009) for more details. After the features are transformed,
we can hit the ROAD. One essential technical challenge of the current paper is rooted in a
stochastic linear constraint. The precise role of this constraint has not been completely
pinned down. Extension of the theoretical properties from binary case to multi-class is also
interesting for future research.
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A. Proofs

A.1. Proof of Theorem 1
We now show first part of the theorem. Let f0(w) = wTμd/(wTΣw)1/2, f1(w) = wT μ̂d/
(wTΣw)1/2, and f2(w) = wT μ̂d/(wT Σ̂w)1/2. Then, it follows easily that

where . We now bound both terms
separately in the following two steps.

Step 1(bound Λ1): For any w, we have

(20)

Since  maximizes f1(·), it follows that

(21)

and similarly noticing wc maximizing f0(·), we have

(22)

Combining the results of (21) and (22) and using (20), we conclude that

By the Lipschitz property of Φ,
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Step 2(bound Λ2): Note that  and ŵc both are in the set {w : wTμd = 1, ‖w‖1 ≤ 1}.
Therefore, by definition of minimizers, we have

Consequently,

(23)

By the same argument, we also have

(24)

Combination of (23) and (24) leads to

Let g(x) = Φ(x−1/2). The function g is Lipschitz on (0,∞), as g′(x) is bounded on (0,∞).

Hence, . Thus,

We now prove the second result of the Theorem. Since , we
have

(25)

By (20), (25), and the first part of the Theorem, we have
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This completes the proof of Theorem.

A.2. Proof of Theorem 2
Let wλ = w∞ + γλ. Then, from the definition of wλ, we have

(26)

where . In the last statement, we used the fact
that

We write γ for γλ for short in what follows.

By (26), we have f(γ) ≤ f(0) = 0. This implies that

On the other hand, . Bringing the upper and lower bound of R(γ)
together, we conclude that

The proof is now complete.
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A.3. Proof of Theorem 5
By the positive definiteness of Σ, Σ−1 and  are also positive definite. Let υ = Σ1/2w, then
the transformation v ↦ w is linear. Define

where μ̄d = Σ−1/2μd. It is enough to show that vc is piecewise linear in c.

Let Ωc = {v : ‖Σ−1/2v‖1 ≤ c} and S = {v : vT μ̄d = 1}. When c is small, the solution set is ∅
when c is large, the constraint Ωc is inactive. Denote by “a” the smallest “c” such that Ωc ⋂ S
≠ ∅, and by “b” the smallest such that vc are the same for all c ≥ b. Hence we are interested
in c ∈ [a, b], when changes in c actually affects the solution.

Let P be the projection of the origin O onto the hyperplane S in the p dimensional space. Let

where  denotes an i-dimensional face of Ωc, i.e.,  represents a vertex,  an edge, and

 a facet. It is clear that ℱc is a finite set.

Define a mapping φ : [a, b] → ℤ × ℤ, where φ(c) = (i, j) such that i)  and ii) i is
minimal. By definition, this mapping is single valued.

For any c0 ∈ (a, b], denote Dc0 = {(i, j)|∀ε > 0, ∃c ∈ [c0 − ε, c0) s.t. φ(c) = (i, j)}. The set

Dc0 is non-empty because the collection  is finite. Then the theorem
follows from compactness of [a, b] and Lemma 2, Remark 4 and Lemma 3.

Lemma 1. ∀c0 ∈ (a, b], ∃ε > 0 such that ∀(i, j) ∈ Dc0 and ∀c ∈ (c0 − ε, c0), ,

where  is the projection of P onto , and  denotes the i-dimensional affine space

in which  embeds, and  is the interior of , where the topology is the natural

subspace topology restricted to .

Proof. Fix c0 ∈ (a, b]. For any (i, j) ∈ Dc0 and ε̄ > 0, by the definition of Dc0, there exists c′
∈ [c0 − ε̄, c0) such that φ(c′) = (i, j). The minimality of i in the definition for φ implies that

, which in the interior of . Therefore, . By arbitrariness of

ε̄, ∃(cn) ↗ c0 such that  for all n.

It can also be shown that  is connected: let

. For any  is on the line segment with

endpoints  because  are parallel affine subspace in ℝp. Let

, then it is a cone. Since , we have
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. Then, . Hence, ∃εij > 0 such that for all c ∈

[c0 − εij, c0), . Take ε = min(i,j)∈Dc0
 εij, the claim follows.

Lemma 2. ∀c0 ∈ (a, b], Dc0 is a singleton, and ∃ε′ > 0 such that vc is linear in c on (c0 − ε′,
c0).

Proof. Fix c0 ∈ (a, b]. We claim that for some (i, j) ∈ Dc0, there exists positive ε′(≤ ε that

validates Lemma 1) such that for any c ∈ (c0 − ε′, c0), . Assume that the claim is not
correct, then pick any (i, j) ∈ Dc0, there exists a sequence {ck} (ck ≠ ck′ if k ≠ k′)

converging to c0 from the left s.t. . Without loss of generality, take {ck} ⊂ (c0 − ε,

c0). Lemma 1 implies that . If , we would have . Hence

. By finiteness of the index pairs in ℱc, there exists (i′, j′) ≠ (i, j) such that φ(c) =
(i′, j′) for c ∈ {ckl}, where {ckl} is some subsequence of {ck}. This implies (i′, j′) ∈ Dc0,

which together with Lemma 1 implies  for c ∈ {ckl}. Therefore

for c ∈ {ckl}.

On the other hand, because (i, j) ∈ Dc0, there exist infinitely many c′ ∈ (c0 − ε, c0) such that

. Therefore,

changes signs infinitely many times on (c0 − ε, c0). This leads to a contradiction because

 are both linear functions of c. Hence, the conclusion holds.

To show that Dc0 is a singleton, suppose it has two distinct elements (i, j) and (i′, j′). We

have shown that  for all c in a left neighborhood of c0 (not including c0).

Also we have  by Lemma 1. This can be true only when 
(or vice versa), but then i < i′, contradicting with minimality in definition of Dc0.

Remark 4. Similarly, ∀c0 ∈ [a, b), ∃ε′ > 0 such that vc is linear in c on (c0, c0 + ε′).

Lemma 3. vc is a continuous function of c on [a, b].

Proof. The continuity follows from two parts i) and ii).

i. ∀c0 ∈ [a, b), ∃ε > 0 such that vc is continuous on [c0, c0 + ε). Indeed, let

We know that the mapping  is linear and hence continuous on (c0, c0
+ ε) for some small ε > 0. It only remains to show that the mapping is right
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continuous at c0. Notice here  for c ∈ (c0, c0 + ε). Let . It is

clear that . Because L ∈ Ωc0 ∩ S, . This inequality has to take

the equal sign because h(·) is monotone decreasing, and  as c

approaches c0 from the right. Because vc0 is unique, .

ii. ∀c0 ∈ (a, b], ∃ε > 0 such that vc is continuous on (c0 − ε, c0]. Again, it remains to

show that there is no jump at c0. Let (ic0, jc0) = φ(c0). Clearly .

Introduce a notion of parallelism of affine subspaces in ℝp. We denote , if

only by translation,  becomes a subset of S (or vice versa in other situations);

use the notation  otherwise.

If , for c in some left neighborhood of c0,  exists and .

Note , and  as c approaches c0 from the left.

Since h(·) is monotone decreasing, obviously . This shows
the left continuity of h at c0. Suppose Dc0 = {(i, j)}, then we know on a left

neighborhood of c0 (not including c0), . Let , then E ∈ Ωc0 ∩

S. Note that  for all c in c0’s left neighborhood, so we have

. On the other hand,  by the definition of .
Also, consider the uniqueness of distance minimizing point in Ωc0 ∩ S to origin

, and hence vc has left continuity at c0.

If , ∃Q ∈ Ωc0−ε/2 ∩ S such that . When c goes from c0 − ε/2 to

c0, there exists a point Qc ∈ Ωc ∩ S moving on the line segment from Q to .

Therefore, h(·) is left continuous at c0. Replace  by Qc in the previous
paragraph, the left continuity of vc at c0 follows from the same argument.
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Fig. 1.
Misclassification rates of Fisher discriminant, naive Bayes and restricted Fisher rules (10
and 20 features, respectively) against ρ.
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Fig. 2.
Solution Path for ROAD (left panel) and D-ROAD (right panel). Equal correlation setting (ρ
= 0.5), Sparse Signal (s0 = 10) as in Section 6.1.
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Fig. 3.
Median classification error as a function of ρ in the equi-correlation matrix. Sparse μd as in
Section 6.1.
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Table 3

Equal correlation setting; signals all equal to 1; s0 = 10. Results for different γ.

ρ = 0 ρ = 0.5 ρ = 0.9

Median classification error (in percentage)

ROADγ=0.01 5.8(1.2) 2.7(0.6) 0.2(0.2)

ROADγ=0.1 6.0(1.2) 2.0(0.6) 0.2(0.1)

ROADγ=1 6.0(1.3) 2.0(0.6) 0.0(0.1)

ROADγ=10 6.0(1.2) 2.0(0.6) 0.0(0.0)

ROADγ=100 6.2(1.2) 2.3(0.6) 0.0(0.1)

ρ = 0 ρ = 0.5 ρ = 0.9

Median number of nonzeros

ROADγ=0.01 14.0(19.2) 129.5(42.5) 657.0(179.6)

ROADγ=0.1 14.0(19.6) 137.0(37.6) 773.5(103.2)

ROADγ=1 16.5(22.9) 139.0(37.9) 514.0(39.7)

ROADγ=10 16.0(24.2) 138.5(38.2) 151.5(8.0)

ROADγ=100 22.0(16.1) 114.5(9.4) 94.0(9.6)
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