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Abstract
We propose a novel reduced order neuronal network modeling framework that includes an
enhanced firing rate model and a corresponding synaptic calcium-based synaptic learning rule.
Specifically, we propose enhancements to the Wilson-Cowan firing rate neuron model that permits
full spike frequency adaptation seen in biological LA neurons, while being sufficiently general to
accommodate other spike frequency patterns. We also report a technique to incorporate calcium-
dependent plasticity in the synapses of the network using a regression scheme to link firing rate to
postsynaptic calcium. Together, the single cell model and the synaptic learning scheme constitute
a general framework to develop computationally efficient neuronal networks that employ
biologically-realistic synaptic learning. The reduced order modeling framework was validated
using a previously reported biophysical conductance-based neuronal network model of a rodent
lateral amygdala (LA) that modeled features of Pavlovian conditioning and extinction of auditory
fear (Li et al., 2009). The framework was then used to develop a larger LA network model to
investigate the roles of tone and shock distributions and of intrinsic connectivity in auditory fear
learning. The model suggested combinations of tone and shock densities that would provide
experimental estimates of tone responsive and conditioned cell proportions. Furthermore, it
provided several insights including how intrinsic connectivity might help distribute sensory inputs
to produce conditioned responses in cells that do not directly receive both tone and shock inputs,
and how a balance between potentiation of excitation and inhibition prevents stimulus
generalization during fear learning.
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INTRODUCTION
Biophysical or conductance-based neuron models with voltage-gated currents have been
shown to successfully reproduce membrane potential fluctuations in single neurons (Koch
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and Segev, 1998, Gerstner and Kistler, 2002, Dayan and Abbott, 2005, Sterratt et al., 2011).
However, such models present two distinct challenges: First, they invariably require long
simulation times, especially with multiple compartments and high levels of network
connectivity, and this can frustrate the process of model development. Second, the
complexity and large degrees of freedom in these models can hinder the interpretation of
and confidence in the model outputs.

Various reduced-order single cell models have been used to investigate the behavior and
properties of neuronal networks. This is because fewer parameters in such models facilitate
the process of analysis and design, and provide deeper insights into the underlying
mechanisms (Fourcaud and Brunel, 2002, Destexhe and Sejnowski, 2009, Kellems et al.,
2010, Yan and Li, 2011). Such methods have been used in neuronal networks with a variety
of adaptations (Wilson and Cowan, 1972, Benda and Herz, 2003, Chizhov et al., 2007,
Vlachos et al., 2011). The Wilson-Cowan model (Wilson and Cowan, 1972, Wilson, 1999,
Destexhe and Sejnowski, 2009) is one such two-variable single neuron model that has been
used effectively in networks such as short-term memory networks and adaptation-dependent
forgetting, mutually inhibitory winner-take-all networks, half-center oscillators for
locomotion, and cortical networks that perform visual pattern recognition. The Wilson-
Cowan model, however, does not support full frequency adaptation, i.e., the firing rate
cannot adapt to zero for a constant input.

Here we propose a novel firing rate model that implements spike frequency adaptation in
response to constant input by modifying the adaptation dynamics of the Wilson-Cowan
model. Furthermore, we propose an implementation of a calcium-dependent synaptic
learning rule (Shouval et al., 2002a, Shouval et al., 2002b, Li et al., 2009) for firing-rate
networks. Since firing-rate models do not possess the features required to explicitly post-
synaptic calcium concentration (denoted henceforth as [Ca2+]), we propose two regression
techniques to link pre- and post-synaptic firing rates to synaptic [Ca2+].

We first developed a firing rate network model to investigate if it could replicate the
findings of the detailed biophysical LA model of Li et al. (2009). The LA model of Li et al.
(2009) “learns” conditioned fear responses, much as a rodent does, when trained by the
coincident presentation of a conditioned stimulus (CS; e.g., an audible tone) and a noxious
unconditioned stimulus (US; e.g., a foot shock). An increase in pyramidal cell activity to
tone (tone response) during conditioning signifies the acquisition of this fear memory
(Romanski et al., 1993, Quirk et al., 1995, Quirk et al., 1997, Kim and Jung, 2006, Li et al.,
2009). Repeated subsequent presentation of the tone in the absence of the shock causes a
gradual decrease in the potentiated pyramidal tone responses (extinction), via formation of a
new extinction memory (Quirk, 2002, Barad et al., 2006, Quirk and Mueller, 2007, Likhtik
et al., 2008). The reduced order firing-rate network model presented here was able to capture
all the salient features of fear conditioning and extinction training, suggesting that the
essential dynamics of the detailed LA model were replicated by using the proposed reduced
order model framework. The equivalent firing rate framework was then used to develop a
larger model to obtain insights into one specific aspect of fear learning in LA that is poorly
understood presently and is difficult to investigate experimentally: the role of different tone
and shock distributions and of intrinsic network connectivity in the formation of fear and
extinction memories.

METHODS
Single cell model

The Wilson-Cowan model equations (Eq. 1; Wilson and Cowan, 1972, Wilson, 1999,
Destexhe and Sejnowski, 2009) model the steady state firing rate E of a cell in response to
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an input P using a Hill function S(P), and has been used extensively by researchers to model
network behaviors, e.g., it was used to describe the contrast-response function of striate
neurons to visual stimuli in monkeys and cats (Albrecht and Hamilton, 1982). In Equation 1,
a neuron’s spike rate (E)

(1)

converges with a time constant τE to a steady-state rate S(P) which is a function of the cell’s
synaptic input P (current in pA in our model). In S(P), M is the maximum possible firing
rate (Hz), σ is the value of the synaptic input for which the firing rate is half the maximum,
A is an adaptation variable, and the dimensionless exponent N describes the steepness of the
rise of the firing rate with increasing input. The subscript + indicates that negative
arguments are forced to zero. The model produces spike-frequency adaptation by
considering a second dynamic equation controlling the adaptation variable A. This
adaptation variable A increases with a time constant (τA>τE) in response to an increase in
the firing rate E of the cell. which decreases the instantaneous value of S(P) by effectively
increasing the half-maximal input value (Wilson, 1999).

This model has some limitations. First, even with the adaptation modeled in eq. 1, the
instantaneous value of E can never be zero if a constant input is present. For a significant
class of spiking neurons, including 61% of pyramidal cells in the rodent LA, the spike rate
adapts to zero within 400 ms of constant current injection (Faber et al., 2001). Second, the
model does not have the capability to incorporate subthreshold stimulation, i.e., it will
“spike” for all P > 0.

Enhancements to the firing rate model
To accommodate full spike-frequency adaptation, we propose the following modifications to
Eq.1. First, to accommodate subthreshold stimulation, we propose the substitution P=P’–δ,
where δ is the rheobase (minimum stimulation required to elicit firing in the biological
neuron) and P’ is the sum of the synaptic and injected input to the cell. Because of the
subscript +, S(P) = 0 for P’ < δ. Second, instead of producing adaptation via the divisive
feedback of A, the steady-state value of E is set to [S(P)–A]+, and the steady-state value of
A is set to S(P)–A(P) (see Eq. 2). Thus, with τA>τE, in response to input, the value of E
increases initially to a quasi steady-state value of S(P), but then decreases to A(P) as A
converges to S(P)–A(P). The + subscript in dE/dt was used to ensure that the firing rate did
not adapt to negative values. In Eq. 2, the expression τA (P) = τA0 + k(P−P1)+ − k(P − P2)+
allowed the adaptation rate to vary as a function of input amplitude. By using different
rheobase parameters (δS and δA) for S(P) and A(P), a firing-rate model cell response can
include a large overshoot and then adapt to E = 0 for δS < P < δA.

(2)

We next discuss how such a model can be integrated into networks with synaptic learning
rules.

Network connections and synaptic learning
Synaptic inputs in the firing rate model can be modeled in several ways (Gerstner and
Kistler, 2002). One such strategy is to assume the synaptic input P from a presynaptic cell to
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be a function of its firing rate (Wilson, 1999), and using such an approach, the combined
synaptic input to cell j was computed as Pj′ = Σ wi,jEi, where wi,j is the connection weight
from cell i to cell j and Ei is the firing rate of cell i. It is noted that other complex functions
of the firing rate can also be used in the methodology outlined.

Synaptic plasticity—Synaptic calcium concentration, primarily due to NMDA receptor
currents, is critical for synaptic plasticity (Bliss and Collingridge, 1993, Castellani et al.,
2001, Shouval et al., 2002a, Shouval et al., 2002b). Connection weights in the model were
controlled by a calcium-based plasticity rule (Shouval et al., 2002a) used in the biophysical
LA model (Li et al., 2009). According to this rule, conductance of AMPA synapses is
modulated by post-synaptic calcium concentration [Ca2+], with the change in synaptic
weight controlled by eq. 3. Calcium enters from a variety of sources, most notably synaptic
NMDA receptor channels activated by presynaptic action potentials. Ω([Ca2+]) is a
piecewise continuous function that determines how the synaptic weight changes depending
on the depression and potentiation thresholds θd and θp: it is zero for [Ca2+] < θd, becomes
negative and reaches a minimum of −0.15 at [Ca2+] = (θd + θp)/2, and saturates at +1 for
[Ca2+] > θp.

(3)

The term η([Ca2+]) (in msec−1) is the learning rate, which ensures that weights do not decay
to zero in the absence of significant [Ca2+] elevations, and λ1 and λ2 are parameters that
control the ratio of active plasticity to weight decay. In a series of studies (Castellani et al.,
2001, Shouval et al., 2002a, Shouval et al., 2002b, Castellani et al., 2005, Castellani et al.,
2009, Shouval et al., 2010) that proposed this specific model of calcium-dependent learning,
λ2 (just λ in those studies) was taken as a linear decay constant that would help stabilize
and limit unfettered growth or decay of synaptic weights. In the original biophysical LA
model (Li et al. 2009), this was extended to two independent constants (λ1 and λ2) to allow
a greater degree of control over the rates of growth and decay of the weights, and that
strategy was likewise adopted for this study. Intrinsic synapses in LA have been shown to
support plasticity, although the experimental data are not conclusive (Pape and Pare, 2010).
As in Li et al. (2009), our network model assumes plasticity at all the intrinsic synapses.

Synaptic calcium pools—Calcium concentration in excitatory post-synaptic terminals
depends on the opening of synaptic NMDA channels after release of glutamate following
presynaptic spikes. However, NMDA currents can flow only after the voltage-dependent
magnesium block is removed by post-synaptic depolarization. To model this process in a
firing-rate framework, [Ca2+] for each connection was controlled by a first-order differential
equation with an influx function F dependent upon pre- (Epre) and post-synaptic (Epost)
firing rates, and linear decay to a baseline [Ca2+]0 of 50 nM (eq. 4). This resting [Ca2+] is
similar to that used for other neuronal models that consider calcium concentrations (Traub et
al., 1994, Migliore et al., 1995, Fransén et al., 2004, Hemond et al., 2008, Li et al., 2009).

(4)
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According to this equation, for a given combination of Epre and Epost,, [Ca2+] approaches F
+ [Ca2+]0. The time constant of [Ca2+] equilibration was 50 msec. AMPA receptors located
on interneurons in the LA are calcium-permeable (Mahanty and Sah, 1998), creating the
unique possibility that synaptic plasticity might directly lead to adjustments to [Ca2+] influx
at glutamate synapses. To consider these effects in the biophysical LA model, [Ca2+] influx
through AMPA receptors channels at interneurons was allowed to increase or decrease with
changing synaptic weight (Li et al., 2009). Here, such an effect was implemented by by
multiplication of F in Eq. 4 with the linear term f(w) = (w(t) + w’)/(w0 + w’) for such
connections. In f(w), w0 is the initial weight of the synapse, w(t) is its instantaneous weight,
and w’ was a tunable factor set as 12 for pyr-int synapses and 15 for tone-int synapses.

Calcium-dependent plasticity of inhibitory connections has been reported in the LA (Bauer
and LeDoux, 2004). The previous biophysical LA model noted that this calcium was known
to be dependent upon presynaptic firing frequency, and so modeled it as calcium release
from internal stores as a function of GABAA receptor activation (Li et al., 2009). Influx of
calcium through VGCCs in the soma of the interneuron also contributed to this calcium
elevation. Since this mechanism assumes dependence of inhibitory plasticity upon both
presynaptic and postsynaptic firing, the plasticity of inhibitory synapses in this firing-rate
model was controlled again with eq. 4, but using parameters specific to inhibitory
connections.

Network model of LA
We used the LA model developed using biological data (Li et al., 2009) as a reference point
to illustrate the development of the proposed firing rate model and its use in a network
involving [Ca2+]-dependent learning.

Single cell firing rate models—We tuned the parameters of the pyramidal cell types A,
B, and C, and the interneuron in the firing rate model so that their single cell current
injection responses matched in vitro biological data (Li et al., 2009) for 600 msec current
steps of magnitudes ranging from 0 to 800 pA in steps of 50 pA.

Network architectures—To validate the firing rate network model, we first selected the
same structure for the network model as in the biophysical LA network model (Li et al.,
2009). It consisted of eight pyramidal cells and two interneurons (Fig.1). Pyramidal cells 1–
5 were of type A, cells 6–7 of type B, and cell 8 of type C. All pyramidal cells were
reciprocally connected via excitatory synapses (green arrows in Fig.1), and were inhibited
(Black circles in Fig.1) by the two interneurons, which also inhibited each other. Tone inputs
were provided to pyramidal cells 3, 5, 7, and 8 (purple arrows), while shock inputs were
connected to cells 1, 4, 5, 7, and 8 (red arrows). Both interneurons received tone and shock
inputs. Table 1 shows the initial weights for these connections and the corresponding
parameters of Eq. 3.

We used a larger network of 75 neurons, with biological ranges of connectivity, for
obtaining the biological insights reported in the paper. Neurons were segregated into clusters
of four pyramidal cells and one interneuron. Within each cluster, pyramidal-interneuron
(pyr-int) and int-pyr connections were made with 100% probability, but no connections to or
from interneurons were made between clusters. The connectivity between pyramidal cells
was varied from 5–10% to conform to the reported sparse connectivity in biology, as
described later. Another slightly modified version of the network configuration was used to
accommodate additional tone inputs for a subsequent study related to stimulus
generalization.
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Calcium-based learning rule—We propose two strategies for determing F in the
calcium based learning rule (eqs. 3 and 4), a general one described later, and a specific one
that can be obtained using biophysical cell models. We consider the latter first since
biophysical models of the specific cells were available to us (Li et al., 2009). The
biophysical LA cell models were used to obtain F of eq. 4 as a function of Epre and Epost. To
this end, we connected pairs of biophysical LA cell models, excited both cells at specified
firing rates, and measured the resulting steady-state [Ca2+]. The resulting data were first
fitted as functions of Epost, which produced one polynomial in Epost for each value of Epre.
Then, the coefficients of these polynomials were fitted as functions of Epre. This procedure
was performed for each synapse type, i.e., pyramidal-to-pyramidal (pyr-pyr), pyramidal-to-
interneuron (pyr-int), interneuron-to-pyramidal (int-pyr), tone-to-pyramidal (tone-pyr), and
tone-to-interneuron (tone-int). For tone-pyr and pyr-pyr connections, F was multiplied by 1–
exp(−4Epre) to ensure that F = 0 for Epre = 0. For tone-int and pyr-int connections, for which
AMPA receptors are Ca2+-permeable, w’ in the function f(w) was set to 12 and 15,
respectively.

Modeling experiments—The fear training protocol used for the firing-rate LA model
was identical to that used for the biophysical LA model (Li et al., 2009). Briefly, the model
was exposed to sensitization (40 sec), conditioning (40 sec), first wait (40 sec), early
extinction (120 sec), second wait (840 sec), and late extinction (120 sec) training periods
(total time = 1200 sec). Tone inputs were presented for 500 msec at 4 second intervals
during sensitization, conditioning, and both extinction periods. Shock inputs (100 msec)
were presented at random times during the period between tone inputs in the sensitization
phase. During conditioning, shock inputs were co-presented during the final 100 msec of
each tone input. Tone and shock inputs were represented by constant increases to P’ of 200
Hz (see table 2) and non-plastic shock weights of 40. The tone and shock durations in the
model were shorter than those used in experiments (Quirk et al., 1995), and the gaps
between tones and between the various phases of the training were shortened in the model to
reduce computational times. However, the ratios of tone to shock durations and training
periods were similar. In the present model, as in the biophysical LA model (Li et al., 2009),
synaptic plasticity occurred either during short, discrete time windows during conditioning
and extinction, or gradually during waiting periods (spontaneous synaptic decay). This
compression of time thus impacts only the rates at which synaptic weights change, but not
their qualitative behavior. Hence the learning and decay rates in the model (eq. 3) represent
scaled estimates of such biological rates for synaptic weights.

Noisy background inputs—In the biophysical model, random synaptic potentials were
provided to each cell via non-specific synaptic connections to simulate the effects of
background firing, producing low spontaneous firing rates in each cell. This background
activity was previously determined to be critical in the observed spontaneous recovery of
fear in behavioral experiments (Quirk et al., 1995, Quirk et al., 1997, Quirk, 2002) due to the
resulting low amplitude increases to [Ca2+] (Quirk et al., 1997, Quirk, 2002, Quirk and
Mueller, 2007, Li et al., 2009). It was not feasible to impose a low, constant firing rate (e.g.,
E = 1–2 Hz) in single cells, because as shown below in Results, the strong, transient impact
of individual spikes on postsynaptic [Ca2+] was not captured with such a constant low firing
rate. Instead, in the firing-rate LA model brief (10 msec), random additions of synaptic
“input” (increases to P in eq. 2) were issued to each cell to produce periodic, spontaneous
firing rate increases. These events were able to produce periodic postsynaptic [Ca2+]
fluctuations that influenced synaptic weight change. Spontaneous inputs to each cell were
modeled with a poisson process using the randomizing feature of the “NetStim” object in
NEURON with average rates of 1 Hz for pyramidal cells and 8 Hz for interneurons to
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reproduce the higher rates of LA interneurons (Quirk et al., 1995, Quirk et al., 1997).
Additionally, such events were also added to tone inputs at an average rate of 1 Hz.

Quantification of tone responses—Estimates of individual cell spiking in response to
tone input were obtained by integrating the time-varying firing rate over the first 400 msec
of tone presentation (to exclude shock responses) using the sum Σ E(t)Δt (Wilson, 1999).

Simulation hardware and software
All simulations were performed using serial NEURON (Carnevale and Hines, 2006) on the
University of Missouri Beowulf supercluster LEWIS. Simulations were run on single cores
in batch mode. Analysis of simulation results in the 75 cell LA networks was performed on
LEWIS using MATLAB 7.10 (R2010a). Further data analysis was performed on a Windows
XP SP 3 Home workstation using MATLAB 7.0 (R14) (The Mathworks, 2004).

RESULTS
Single cell output

Figure 2 shows the firing rates of the four biophysical LA model cell types and the
corresponding reduced order models in response to the various current amplitudes, as
described in methods. The responses of these cells can be divided into three categories: i)
subthreshold responses with small currents, i.e., no spike case or ‘silent’ case; ii) transient
responses for moderate currents, i.e., firing was elicited at the onset but not sustained; and
iii) sustained responses for high currents, i.e., spikes were ‘sustained’ throughout the
duration of the current injection. In pyramidal cell type A, responses were silent below 200
pA, transient from 200 – 500 pA, and sustained above 500 pA. In pyramidal cell type B,
responses were silent below 150 pA, transient from 150 – 450 pA, and sustained above 450
pA. In pyramidal cell type C, responses were silent below 150 pA, transient from 150 – 300
pA, and sustained above 300 pA. The interneuron produced sustained firing for all current
injections above 50 pA. Table 2 shows the parameters used in eq. 2 to reproduce the
resulting firing rates for each cell type, computed as the reciprocal of inter-spike interval
(ISI).

Post-synaptic [Ca2+]
To incorporate [Ca2+]-dependent learning in the firing-rate model, we first stimulated pairs
of biophysical models at fixed firing rates and recorded the resulting synaptic [Ca2+]. These
data were then fit as functions of presynaptic (Epre) and postsynaptic (Epost) firing rates of
the connected cells for use in the firing-rate model.

Excitatory synapses—For excitatory connections, themaximum steady-state [Ca2+] was
approximately 1.0 µM, which was reached with higher firing rates, and the minimal value
was the resting value of 50 nM (as cited in Methods) for Epre = 0. This maximal calcium
concentration was necessarily determined by the NMDA receptor channel conductance used
in the original biophysical LA model (Li et al. 2009), but this value was inspired by a
theoretical model of NMDA receptor dependent plasticity (Shouval et al., 2002a), for which
a threshold concentration for LTP production was suggested to be in the sub-1.0 µM range.
For Epre > 0 (because non-zero presynaptic firing is required to trigger synaptic current),
steady-state [Ca2+] consistently increased for elevated Epre or Epost. However, increases in
Epre typically caused a smaller increase in calcium when Epost was already high (data not
shown). This effect was most prominent for the tone-pyr connection, for which the [Ca2+]
was nearly independent of presynaptic firing rates above 25 Hz. In contrast, this effect was
least prominent for the pyr-pyr connections, for which steady-state [Ca2+] increased from
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0.25 to 0.75 µM with Eost = 0 Hz over the range of Epre values tested, and it saturated to 1.05
µM for Epre = 125 Hz.

Inhibitory Synapses—Calcium-dependent plasticity at inhibitory synapses differs from
that at excitatory synapses (see Methods), and the biophysical LA model captured such
differences (Li et al., 2009). In the biophysical LA model, calcium current through voltage
gated calcium channels (VGCCs) contributes to the calcium pool of inhibitory synapses.
Thus, in contrast to excitatory synapses, [Ca2+] elevations can occur in the absence of
presynaptic firing (Epre = 0). In the biophysical LA inhibitory synapse model, [Ca2+] at
inhibitory synapses reached 0.5 µM for Epre=0 for high Epost. The maximum observed
[Ca2+] for inhibitory synapses was also significantly higher than for excitatory synapses
(nearly 2.0 µM), owing to the contribution of influx through postsynaptic VGCCs. However,
despite these differences, the steady-state calcium concentration for inhibitory synapses
showed the same characteristic upward trend as excitatory synapses in which both increases
in pre- and postsynaptic firing rates contributed to elevated concentrations.

Synaptic calcium fits—As described in Methods, steady-state [Ca2+] for each synapse
type was fit as a function of Epre and Epost. Accordingly, for each tested value of Epre, a
different [Ca2+] curve was fit as a function of Epost, typically by polynomials of order 3 or
less. Because this procedure resulted in a unique polynomial for each value of Epre, the
coefficients of these polynomials were in turn fit as polynomials of Epre, yielding [Ca2+] for
each synapse as a two-dimensional function of Epre and Epost. In matrix form, this equation

is , where K is the matrix of fitted coefficients, and E⃑pre and E⃑post are vectors
of the pre- and post-synaptic firing rates raised to descending powers. As an example, for the

pyr-int synapse, K is a 3×2 matrix, . An
exception was the excitatory tone-pyr synapse, in which the coefficients of the polynomial
FCa = K1Epost + K0 were better fit by rational functions of Epre. These equations, as well as
the coefficients of the matrix K for each type of synapse, are listed in Table 3.

Alternative general model—In practice, calcium concentration might not always be
easily obtained from either in vitro cells or biophysical cell models. However, it is not
uncommon for synaptic plasticity to be quantified in real synapses as a function of spike
frequencies of both input stimulation and in the post-synaptic cell (Ishida et al., 1997,
Sjöström et al., 2001). Using the biophysical single-cell model, we discovered certain
features of [Ca2+] that were consistent across all synapse types, and we suggest a
fundamental rule for synaptic calcium that uses these findings to more directly relate
synaptic plasticity to pre- and post-synaptic firing rates. These features are summarized as
follows: i) [Ca2+] was zero for Epre=0 and non-zero for Epost=0; ii) [Ca2+] saturated near 1
µM for large values of Epre and Epost; iii) For Epre > 0 and Epost > 0, further increases to
Epost cause larger increases to [Ca2+] than do increases to Epre. Given these observations, in
the absence of biological values for [Ca2+], we propose an alternative and more general
strategy to incorporate [Ca2+]-dependent learning by modeling calcium influx F (of eq.4)
using the structure in eq. 5.

(5)

In eq. 5, [Ca2+]P is the peak calcium concentration, with a suggested range from θp to 2×θp
(here, θp was 0.6–0.7 µM, and a reasonable [Ca2+]P value would be 1.0 µM); K is the
desired ratio of the peak value of F with Epost set to 0 to the absolute peak of F, with a
suggested range of 0.1 to 0.5 (here, a value of 0.33 would be appropriate); and kpre and kpost
are constants that set the slope of F in the Epre and Epost dimensions, with suggested ranges
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of 1–5 sec−1 and 10–30 sec−1, respectively. By using the more general eqs. 4 and 5,
networks could be developed with synaptic learning based directly on spike frequency,
without the need for information about [Ca2+].

Conditioned tone responses—Figure 3 shows the changes in tone responses of the
network during the training protocol. These results were averaged for the five cells (cells 1,
4, 5, 7 and 8) whose responses increased (‘conditioned’) during conditioning. The responses
of both interneurons decreased during sensitization, but increased during conditioning and
during both phases of extinction, contributing to the decrease of pyramidal cell activity
(‘extinction’). These results are consistent with those observed in the biophysical LA model
(Li et al., 2009), which in turn are consistent with biological observations of individual LA
cells (Quirk et al., 1995, Quirk et al., 1997).

Synaptic potentiation and depression—Synaptic inputs and weight changes occur
continuously during network activity in the firing-rate model, while such events are
organized into discrete events in the biophysical model. Hence, the weights will have to be
suitably adjusted for use in a firing rate model. We found that the initial tone-pyr weights
had to be decreased from 10.0 to 5.0, and tone-int weights reduced from 3.0 to 2.5
(compared to that in the biophysical model of Li et al., 2009). Initial inhibitory weights had
to be reduced from 5.0 to 2.0 for int-pyr connections and from 3 to 1 for int-int connections.
Initial excitatory pyr-pyr and pyr-int weights were left unchanged at 1.5 and 1.0,
respectively. Additionally, the active learning factor (λ1) had to be reduced from 2.5 to 1.5
for pyr-pyr synapses, from 2.0 to 0.6 for int-pyr synapses, from 2.0 to 0.5 for pyr-int
synapses, and from 1.0 to 0.5 for tone-int synapses. The active learning factor for tone-pyr
synapses (15.0) could be left unchanged.

Figure 4 shows that the trends and values of the firing-rate model synaptic weights matched
those obtained from the biophysical model very well. Tone-pyr connections to those
pyramidal cells that received both tone and shock potentiated during conditioning and
depressed during extinction in both models. Tone-int connections potentiated during
sensitization, conditioning, and extinction periods. Int-pyr connections in both the
biophysical and firing-rate LA models also potentiated during sensitization, conditioning,
and extinction, contributing to the reduced pyramidal cell activity at the end of extinction.
Plasticity of pyr-int and pyr-pyr connections depended upon the input connections to the
pre- and postsynaptic cells. Pyr-int weights potentiated if the presynaptic cell received shock
inputs and depressed otherwise (fig. 4C). Pyr-pyr weights potentiated and depressed in a
complex manner that was dependent both upon the combination of direct inputs to the pre-
and postsynaptic cells as well as secondary inputs from network connections (fig. 4D). In
general, weights between cells that received both tone and shock inputs potentiated the most,
while weights between cells that received no inputs, especially weights to postsynaptic cells
that received no shock input, only depressed. As in the biophysical LA model, the higher
spontaneous activity of interneurons caused a higher rate of decay for intpyr and tone-int
than for the tone-pyr and pyr-pyr weights, permitting the spontaneous recovery of fear seen
in behavioral experiments (Quirk, 2002).

These observations are consistent with the putative behavior of LA neurons in which
coincident and convergent neutral and noxious stimuli are associated (fear conditioning),
eventually causing the neutral stimulus to elicit similar neural reaction as the noxious
stimulus. Repeated presentation of the neutral stimulus without the noxious stimulus
(extinction) reinforces inhibition of the fear response, creating a new memory, rather than
erasing the original fear memory (Quirk, 2002). During the interval between extinction
trials, spontaneous recovery of fear occurred by the weakening of the extinction memory,
which decays faster than the fear memory (Li et al., 2009).
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Performance—Using serial NEURON software (Carnevale and Hines, 2006) on the
University of Missouri beowulf supercluster, the biophysical LA network model simulation
took 4.5 hours to run the full conditioning and extinction protocol with recovery. To run the
same protocol using the proposed firing rate model took only 2.5 minutes. Since brain
circuits involve numerous neurons, e.g., the rat LA contains approximately 58,000 cells
(Tuunanen and Pitkänen, 2000), the savings in computational time using the proposed firing
rate model would be considerable if realistic neuron densities are used in future models.

Application of the model to gain insights into encoding of fear memories in LA
Biological data showed that 45–55% of LA pyramidal neurons were responsive to the CS
(tone), and 25–35% exhibit potentiated responses following a typical experimental fear
conditioning protocol (Quirk et al., 1995, Quirk et al., 1997). These biological observations
suggest two possibilities: i) LA pyramidal neurons receive extensive tone and shock inputs,
or, ii) they receive sparse tone and shock inputs which are then amplified by intrinsic
connections to indirectly provide sufficient activation to a large proportion of principal cells
in the network. However, the ‘density’ of tone and shock inputs in LA is not presently
known. Similarly, data are only beginning to emerge about intrinsic excitatory connectivity
within LA. As a demonstration of the utility of the firing-rate modeling framework, we
tested a range of tone and shock densities using a larger LA network under conditions. We
first scaled up the network size from 8 pyramidal cells and 2 interneurons to 60 pyramidal
cells and 15 interneurons with the neurons segregated into groups of five (four pyramidal
cells and one interneuron each, to represent the ratio seen in biology; McDonald, 1984),
within which pyr-int and int-pyr connections were made with 100% probability. No
connections to or from interneurons were made between such groups. Intrinsic excitatory
interconnectivity is estimated to be much less than 10% (D. Paré, personal communications;
Samson and Paré, 2006). Also, a large-scale cortical model was developed and validated
using 9% short-range connectivity (Izhikevich et al., 2004). Since our model is a scaled
down version of the biological LA, the connectivity had to be correspondingly increased
(Dyhrfjeld-Johnsen et al., 2007), and so we selected 5–10% as the range for intrinsic
connectivity. As cited, biological details about tone and shock densities are not available
presently and so we varied those from 0–100%.

In summary, we sought to study the role of intrinsic connectivity in transmitting and
amplifying sensory inputs, when the tone and shock densities varied. Towards this end, we
ran several model experiments by varying excitatory connections linking pyramidal cells in
the range of 5–10%, and with input-pyr (both tone-pyr and shock-pyr), and input-int (both
tone-int and shock-int) connectivities varying from 0 to 100%. In each experiment, the
model was exposed to the fear conditioning protocol (see methods) through the end of the
first extinction phase (240 sec), and we analyzed the effect of intrinsic connectivity and tone
and shock densities on two characteristics of individual cells: (i) tone responsiveness, and
(ii) conditioning, as described below.

Model experiments were performed using 120 different 75-cell LA networks and this
permitted us to study a total of 7200 pyramidal cell and 1800 interneuron motifs with
varying numbers of afferent tone and shock inputs, and intrinsic inputs. The tone responses
of these cells through fear conditioning and the end of first extinction were assessed, and the
cells were classified according to their tone responses. Simulations of each network through
the end of first extinction took about 5 minutes on serial NEURON, and we estimated the
run time for the comparative conductance-based model as 9 hours.

Neuron classification based on tone responses and learning—Several distinct
categories of cell types could be identified based on their responses:
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Tone-responsive pyramidal cells were those cells whose firing-rate output was equivalent to
the production of a total of at least 5 spikes during either sensitization, conditioning, or first
extinction phases. Thus, a cell not considered tone-responsive during sensitization could be
considered tone-responsive on the basis of its tone responses after conditioning. Of the total
pyramidal cells classified, 61% were tone responsive. Interneurons were similarly classified
as tone-responsive using a threshold activity of 25 because of the significantly higher firing
rates of interneurons.

Conditioned pyramidal cells were those tone-responsive cells whose summed tone responses
during the last 5 trials (tone presentations) of conditioning and first 5 trials of extinction
were at least 50% higher than the value during the first 10 trials of sensitization. Based on
this criterion, 52% of pyramidal cells conditioned, constituting 78% of tone responsive
pyramidal cells.

Extinguished pyramidal cells were those conditioned cells whose summed tone responses
during the last 10 trials of first extinction were at least 25% lower than the responses during
the last 5 trials of conditioning and first 5 trials of extinction. Only 6% of pyramidal cells
extinguished, constituting 13% of all conditioned cells.

Non-learning pyramidal cells were those tone-responsive, but non-conditioned cells whose
summed tone responses during the last 10 trials of first extinction were between 75% and
125% of the summed tone responses during the first 10 trials of sensitization. About 9% of
pyramidal cells were non-learning, constituting 14% of tone-responsive cells.

Additionally, two other cell types were identified based on their tone responses. These cells
were observed in low proportions (<3%), and so they are mentioned solely for completeness.

Fast-extinguished pyramidal cells were those extinguished cells whose summed tone
responses during the first 5 trials of extinction were at least 50% lower than those during the
last 5 trials of conditioning. These cells exhibited conditioned tone responses, and extinction
was established almost immediately during the beginning of the extinction training phase.
Only a small portion of extinguished cells (2.5%) exhibited this behavior.

Desensitized pyramidal cells were those tone-responsive, non-conditioned cells whose
summed tone responses during the last 10 trials of first extinction were at least 50% lower
than those recorded during the first 10 trials of sensitization. Only 1% of tone-responsive
pyramidal cells desensitized.

Of the 7200 pyramidal cells analyzed, 180 were discarded due to seizure-like activity in 3 of
120 networks (see below). Of the remaining 7020 cells, 3652 conditioned (52%) and 3368
did not condition (48%). Of the conditioned cells, 1785 received both tone and shock inputs
(25.4% of the total); 886 received only shock (12.6%); 661 received only tone (9.4%); and
320 received neither tone nor shock (4.5%). Of the non-conditioned cells, 679 received only
shock (9.7%); 1185 received only tone (16.9%); and 1463 received neither tone nor shock
inputs (21.4%).

We analyze below how direct sensory inputs into a pyramidal cell interacted with those
conveyed indirectly via intrinsic connectivity to shape the tone responsiveness of the cell. It
is noted that changes in synaptic weights continue to occur throughout the training protocol
(see figure 4 for representative plots). These synaptic weight changes will be influenced by
the numbers of intrinsic and direct tone- and shock-information carrying afferents to the cell.
So, both the synaptic weight changes and the numbers of afferents considered contribute to
the tone responsiveness and conditioning of the cell, although we separate out only the
numbers of afferents for analysis here.
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Tone responsiveness of pyramidal cells depends upon both input and
intrinsic connectivity—The density of tone or shock inputs in LA is not presently
known, i.e., it is not clear what fraction of LA cells receive tone inputs and what fraction
receive shock inputs. To shed light on what might be possible densities, we first investigated
whether the proportion of tone-responsive cells observed in LA networks was closely tied to
the proportion of cells receiving direct tone input. Figure 5A shows the proportions of tone-
responsive cells compared to the proportions of tone-receiving cells in the 120 simulated LA
networks. Without exception, every pyramidal cell receiving tone was also found to be tone
responsive. With tone-pyramidal cell input connectivity below 20%, very few cells that did
not receive tone became tone responsive. However, for tone input above 20%, many cells
were found that did not receive tone, but were tone responsive. For tone input above 75%,
nearly all cells were tone responsive. This non-linear relationship clearly suggests that tone
responsiveness in these LA networks was a function not only of direct tone input, but also
intrinsic connections within the network.

In order to identify differences between tone-responsive and non-tone-responsive cells that
do not receive tone, we first looked for potential relationships between excitatory intrinsic
connectivity and tone responsiveness of pyramidal cells within the 120 LA network models.
Figure 5B shows the proportion of tone-responsive pyramidal cells that did not receive tone
in each LA network compared to the pyr-pyr connectivity in that particular network. Over
the range of intrinsic connectivities studied (5–10%), a moderate positive correlation was
observed (r = 0.32). This result suggests that the overall pyramidal cell connectivity does
affect tone-responsiveness of pyramidal cells; however, such connectivity is unlikely to be
the sole determining factor for such amplification of the tone responses in the LA network.

Because overall levels of excitatory interconnections did not adequately explain the
generation of tone-responsive pyramidal cells that did not receive direct tone, we next
assessed the inhibitory impact of tone-responsive interneurons on pyramidal cell tone
responsiveness. For each network model, figure 5C shows the proportion of tone responsive
pyramidal cells (coded by color) as a function of both tone-responsiveness among
interneurons and the level of direct tone input to pyramidal cells. For interneuron tone
responsiveness below 60%, tone responsiveness among pyramidal cells was typically high
(75% or higher). In contrast, high interneuron tone-responsiveness (e.g., above 75%)
produced networks with pyramidal cell tone responsiveness varying between 0–100%. In
particular, for tone input to pyramidal cells between 20–60% and interneuron tone
responsiveness above 60%, LA networks were most often produced with pyramidal cell tone
responsiveness within biological ranges of 45–55%. Higher tone responsiveness among
interneurons might allow greater flexibility of tone responsiveness among pyramidal cells in
the network, i.e., for LA networks with low interneuron tone responsiveness, nearly all
pyramidal cells were tone responsive. In contrast, for LA networks with very high
interneuron tone responsiveness, the level of pyramidal cell tone responsiveness varied
considerably. This feature likely results from the limited reach of interneurons, but not
pyramidal cells; pyramidal cells connect to the entirety of the network, allowing tone
responsive pyramidal cells to excite other pyramidal cells. However, interneurons only
inhibit local pyramidal cells, and so tone-responsive interneurons affected far fewer
pyramidal cells in comparison.

Finally, to explore the role of cell-specific connections, rather than network-wide
connectivity, on individual cell behavior, we investigated the properties of the connections
received by pyramidal cells that did not receive tone and were or were not tone-responsive.
To explore this, we computed the number of ‘adjusted’ indirect tone inputs received by each
pyramidal cell that did not receive tone, from among the cells in the 120 LA network
models. The number of adjusted indirect tone inputs was computed as the number of pyr-pyr
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connections received from tone-receiving pyramidal cells minus the number of connections
received from tone-receiving interneurons. Consequently, inhibitory connections from tone-
receiving interneurons were subtracted from the total indirect excitatory tone input. Thus, a
cell receiving −1 indirect tone inputs received no excitatory connections from tone-receiving
cells, but one inhibitory connection from a tone-receiving interneuron. Figure 5D shows the
number of adjusted indirect tone inputs received by non-tone-receiving pyramidal cells that
were tone-responsive versus those that were not. On average, pyramidal cells that received
more than one indirect tone input were much more likely to be tone responsive than were
those that received one or fewer indirect tone inputs. On a cell-by-cell basis, intrinsic pyr-
pyr connections as a whole correlated modestly with the generation of tone-responsive
pyramidal cells that did not receive direct tone input. The analysis also suggests that tone-
receiving pyramidal cells are indeed able to generate more tone-responsive pyramidal cells
by projections to cells that do not receive tone.

Indirect tone and shock inputs supplement direct inputs in conditioning
pyramidal cells—Next, we investigated the combinations of inputs that caused pyramidal
cells to exhibit tone responses that were also conditioned, i.e., had tone responses after
conditioning that were 50% higher than tone responses during sensitization. Expectedly, all
pyramidal cells that received both tone and shock inputs conditioned. However, only 49% of
conditioned cells received both tone and shock inputs; 18% received only tone input, 24%
received only shock, and 9% received neither. Figure 6A shows the relationship between the
proportion of pyramidal cells receiving both tone and shock in a network and the proportion
of conditioned cells. For a few networks (fewer than 3%) the proportion of conditioned cells
was smaller than the proportion of cells receiving both tone and shock (data not shown).
Inspection of the behavior of cells in these networks revealed that recurrent excitation was
sufficiently high (and feedback inhibition sufficiently low) to produce seizure-like activity,
and all cells activated strongly throughout all phases of the conditioning protocol. These
cells were flagged as “non-conditioned” because their tone responses during late
conditioning and early extinction were not at least 50% higher than tone responses during
sensitization; indeed, near-maximal firing-rates were encountered in all cells of these
networks even during sensitization, before conditioning had taken place. Because networks
exhibiting such behavior were few in number (< 3%), these seizure-producing LA network
models were omitted from further consideration. Figure 6A shows that among the remaining
LA networks, if more than 15% of the pyramidal cells received tone and shock, then
considerably more pyramidal cells conditioned. This trend mirrored that of tone
responsiveness among pyramidal cells (fig. 5A), i.e., intrinsic connectivity amplified the
transmission of tone throughout the network. Similarly, fear conditioning was also amplified
through the network.

If amplification of tone responsiveness by intrinsic excitatory connectivity assists in the
generation of pyramidal cells that learn conditioned fear, then it may be that conditioned
cells that do not receive direct tone input do receive strong indirect tone, and conditioned
cells that do not receive direct shock receive strong indirect shock. To test this possibility,
we investigated the number of indirect tone and shock inputs (i.e., the number of excitatory
connections received from cells receiving direct tone or shock inputs, respectively) by
conditioned and non-conditioned cells that themselves lacked direct tone or direct shock.
Adjusted indirect tone inputs were again computed as described previously: the number of
pyr-pyr connections received from tone-receiving pyramidal cells minus the number of int-
pyr connections received from tone-receiving interneurons. Adjusted indirect shock inputs
were computed in the same manner. After training, the pyramidal cells were divided into
conditioned and non-conditioned cells, and we investigated the distributions of inputs to
each of these populations to explain why some conditioned while others did not. Figure 6B
shows a comparison of the adjusted indirect inputs received by non-conditioned (6B1) and
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conditioned (6B2) pyramidal cells that received only direct shock. The comparison shows an
obvious trend in which conditioned cells received higher numbers of indirect shock inputs
and somewhat higher numbers of indirect tone inputs than did non-conditioned cells.
Interestingly, cells receiving only shock were more often converted from non-conditioned to
conditioned cells by indirect shock than by indirect tone. However, the majority of
conditioned cells receiving only shock also received one or more adjusted indirect tone input
and zero or more adjusted indirect shock inputs. In the previous biophysical LA model (Li et
al., 2009), it was observed that LTP of pyr-pyr synapses occurred only for connections
between pyramidal cells that were strongly activated by shock. This provides the insight that
that while a non-zero level of indirect tone input was necessary to produce conditioned
responses in pyramidal cells that did not receive direct tone, strong indirect shock input
caused pyr-pyr connections targeting such cells to more readily potentiate.

Figure 6C shows a similar comparison of adjusted indirect inputs received by conditioned
and non-conditioned cells that instead received direct tone, but not shock. Again,
conditioned cells in this sub-population (fig. 6C2) generally received more indirect tone and
shock inputs than did non-conditioned cells (fig. 6C1). Similar to the trend seen for non-
conditioned cells receiving only shock (fig. 6B1), the majority of non-conditioned cells
receiving only direct tone (fig. 6C1) received fewer than one adjusted indirect tone input and
between 0–3 adjusted indirect shock inputs. However, a majority of conditioned cells in this
category (fig. 6C2) received between 0–3 indirect tone inputs and between 1–5 indirect
shock inputs. This difference suggests that for these cells, shock input, either direct or
indirect, was required for conditioning, but the presence of strong indirect tone input
supported direct tone to more often convert non-conditioned to conditioned cells. For
completeness, we also separately analyzed the set of networks (N = 20 LA networks) whose
pyramidal cell tone-responsiveness was within biologically ranges (35–65%), and the results
(data not shown) were qualitatively identical to those described above.

To summarize, the results of these model experiments show that pyramidal cells that receive
both direct tone and shock inputs are almost assured to exhibit conditioned tone responses as
a result of fear conditioning. These data also suggest that indirect inputs can supplement
direct input to allow cells that do not receive convergent tone and shock to nevertheless
condition. However, the results show that in addition to indirect pairing of tone and shock,
conditioned cells were most often produced by the further addition of indirect inputs of the
same type (e.g. indirect tone inputs received by a cell receiving direct tone, but not shock).
Panels B1 and B2 of Figure 6 B do indicate a clear correlation between conditioned and
non-conditioned cells and the absolute numbers and types of direct and indirect inputs they
receive. However, there is some overlap. Panels B1 and B2 show cells that received direct
shock and no direct tone. Of these, consider cells that received 1 adjusted indirect tone input
and 1 adjusted indirect shock input in both the panels. Grid block (3,3) of panel B1 shows
that about 6% did not condition. However, grid block (3,3) of panel B2 indicates that 5% of
conditioned cells did receive the same distribution of indirect inputs. As cited earlier, the
reason for this is possibly the difference in synaptic weights (due to training) of the afferents
to these cells in the two cases. Although not performed here, this illustrates how the effects
of synaptic changes on tone responsiveness and conditioning could be analyzed.

Intrinsic connectivity selectively supports stimulus generalization—The results
above show that conditioning to a particular tone caused some of the pyr-pyr synapses to
potentiate in addition to the tone-pyr synapses. Would potentiation of the pyr-pyr synapses
interfere with tone specificity for auditory fear, i.e., would this cause tone of a different pitch
to elicit potentiated fear responses resulting in stimulus generalization? Experiments have
shown the existence of a stimulus generalization gradient in which the fear response is
highest for the original CS but decreases with increasingly dissimilar novel stimuli (for

Ball et al. Page 14

Neuroscience. Author manuscript; available in PMC 2013 November 08.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



review, see Honig and Urcuioli, 1981). Furthermore, using lesion studies involving the
auditory cortex, Armony et al. (1997) showed that stimulus generalization can be supported
by plastic changes in LA alone.

We investigated specificity to tones and stimulus generalization and the underlying intrinsic
plasticity in such cases using the firing rate model. For this we considered typical
configuration motifs found in the network. For example, consider a pair of cells, cell A
(receiving tone and shock) and cell B (receiving only shock). It would be expected that the
synapse from cell A to cell B would potentiate. As described above, this potentiated
connection may subsequently cause higher tone response in cell B despite the lack of direct
tone input. However, this could be offset by potentiation of both feedback and feedforward
inhibition on cell B that might occur in parallel. As another example, consider a different
cell pair motif with cell C (receiving shock as well as an unconditioned tone input, i.e. an
auditory input of different pitch) and cell D (receiving only shock). As with cells A and B,
the synapse from cell C to cell D would be expected to potentiate due to both cells receiving
direct shock input. Similar to the previous case, presentation of the unconditioned tone
would be expected to produce a conditioned response in cell D because of the potentiated
synapse linking them. Potentiation of the inhibitory sub-circuits converging onto cell D
could again modulate the increase in cell D tone responses. Both of these situations
constitute varying degrees of stimulus specificity and generalization that could arise due to
synaptic plasticity in the LA.

To study these issues, we used five different tone inputs (CSs 1–5) and one shock. To evenly
accommodate the larger number of CSs, we used a 100-cell network with 80 pyramidal cells
and 20 interneurons. The same clustering configuration was used, but each cluster consisted
of 8 pyramidal cells and 2 interneurons as in the original 10-cell LA network (fig. 7a).
Pyramidal cells were connected to one another within and across cell clusters with 10%
probability. All five CSs and the US targeted 50% of the pyramidal cells and all of the
interneurons. CS1 was co-presented with the US, and so is termed CS1/+ or just CS+. For
this experimental design, the CSs and US were connected in a pattern that satisfied two
criteria: First, the cells targeted by CS2–CS5 overlapped in a graded manner with those
targeted by CS1/+. Specifically, CS2 targeted 75% of the cells targeted by CS1; CS3
targeted 50%; CS4 targeted 25%; and CS5 targeted 0% (fig. 7a). Because of the complete
lack of overlap between CS1 and CS5, CS5 is also termed CS5/− or just CS−. Second, each
CS targeted an identical number of cells of each type (pyramidal cells of types A, B, C).
This choice ensured that no CS preferentially targeted a disproportionate number of highly
excitable cells. The overall design ensured the best balance among the naïve responses to
each CS. To produce baseline fear conditioning that resembled that observed in the 75-cell
network, we had to reduce plasticity scaling factors (λ1) for pyr-pyr and pyr-int synapses to
0.3 and 0.15, respectively. This change was needed because each pyramidal cell received
two inhibitory connections rather than only one as in the 75-cell network. Each simulation of
this network required 30 minutes.

We followed the protocol in Lissek et al. (2008) and conditioned the network to CS+
(coinciding with the US) and to CS− (unreinforced). This protocol consisted of a test phase
to assess response amplitudes to each CS, followed by a habituation phase similar to that
used above, but during which CS+ and CS− were alternated, and the total habituation time
was doubled to account for the extra CS. After habituation, conditioning continued as
before, but again with alternating CS+ and CS− (the latter not co-presented with US).
Another test phase followed conditioning. During both test phases, synaptic plasticity was
disabled, and the five CSs were presented 10× each in alternating fashion, and the average
response to each CS was recorded. Since the focus was on fear generalization, the extinction
phase was not considered in this study. Figure 7b1 shows the average pyramidal cell
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responses to each CS before habituation and after conditioning (the number of spikes was
calculated from firing rate as described in Methods). As expected, a significant increase in
fear response was observed after conditioning upon presentation of CS+. However, no
significant stimulus generalization was observed, i.e., responses to all other CSs were at or
below pre-conditioning levels. In other words, while LTP of pyr-pyr connections seems to
support conditioning to a specific CS+ by linking direct tone-receiving cells with direct-
shock receiving cells (and vice versa), appropriate inhibitory LTP ensured that responses to
non-conditioned CSs were not enhanced, and thus preserved specificity to the original CS+.

To further explore the role of intrinsic plasticity in stimulus generalization, we investigated
the question of how differing levels of intrinsic plasticity might affect stimulus
generalization. This was motivated by behavioral experiments that reported differences in
stimulus generalization gradients between healthy subjects and those exhibiting anxiety
disorders (Lissek et al., 2010). That is, fearful responses to CSs that are similar, but not
identical to the CS+ are more strongly suppressed in healthy subjects compared to patients
with anxiety disorders. Impairment of intrinsic plasticity within the LA is a possible
mechanism by which such a phenomenon could be generated. To investigate this, we varied
the scaling factors of LTP induction in the pyr-pyr, pyr-int and int-pyr connections. Figure
7b2 shows the responses to each CS in this network when plasticity of the int-pyr and pyr-
int synapses was impaired. Specifically, the scaling factor for learning in these synapses was
reduced to 0.05, a factor that was 4-fold and 6-fold smaller than their respective nominal
values. In contrast to the results in Figure 7b1, significant stimulus generalization was
observed in this case; CS2–CS5 produced responses that potentiated compared to pre-
conditioning levels in proportion to their overlap with CS+. Specifically, the response to
CS2 showed the most potentiation and responses to CS5 potentiated the least. Thus, the
stimulus generalization gradient expanded to include stimuli that were more similar to the
CS+.

Finally, we hypothesized that if a reduction of plasticity in int-pyr and pyr-int synapses can
reveal the stimulus generalization gradient, changes to LTP of pyr-pyr synapses should then
modulate the shape of that gradient. Figures 7b3–b4 show the stimulus generalization
gradient associated with reducing the scaling factor of pyr-pyr plasticity by different
amounts (fig 7b3: 1.1; fig 7b4: 0.7; the nominal value in fig. 7b1–b2 was 1.5). The results
revealed tight control over the generalization gradient by differing strengths of pyr-pyr LTP
induction. Lowering pyr-pyr LTP sharpened the gradient, limiting potentiation to primarily
the response to CS+. Note that the conditioned spiking responses are considerably higher in
figures 7b2–b4 because of the absence of the inhibitory LTP seen in the control case. For the
control case, a balance exists between excitatory and inhibitory learning during
conditioning. Blocking LTP in the feedback inhibitory circuit offsets that balance in the
direction of excitation. This point is emphasized by the fact that the pre-conditioning values
are the same across control and impaired cases in fig. 7b. In general, with a network
configuration that produced the desired amount of conditioning-related response potentiation
to CS+, modest changes to the strength of the synaptic plasticity in the LA itself was able to
considerably modulate stimulus generalization.

To investigate the underlying intrinsic plasticity that might implement tone specificity and
generalization, we investigated the two typical cell pair motifs described earlier. These were
representative of the typical configurations found within the network.

The synapse linking cell 42 (receiving CS1 and US) to cell 45 (receiving US, but not CS1) is
representative of the case in which impairment of inhibitory LTP facilitated potentiation of
conditioned responses to CS1/+ in cells that did not receive direct CS1 input. The response
of cell 45 to CS1/+ was unchanged by conditioning in the control case (producing < 1 spike
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both before and after conditioning). However, with only impaired inhibitory LTP (fig 7b2),
its response to CS1/+ potentiated considerably as a result of conditioning (from < 1 spike to
11 spikes). Two pathways connect these two cells: A direct excitatory synapse, and feed-
forward inhibition through local interneurons 49 and 50. In both the control and impaired
inhibitory LTP cases, the excitatory connection potentiated strongly (77% control; 82%
impaired case). However, in the control condition, the feed-forward inhibitory pathway
potentiated much more than in the impaired inhibitory LTP case. This effect was seen both
in the pyr-int synapses from cell 42 to cells 49/50 (62% LTP in the control, 8% in the
impaired case), as well as the int-pyr synapses from cells 49/50 to cell 45 (35% LTP in the
control, −15% in the impaired case). Cell 45 did not receive direct CS1 input, and the
synapse from CS1 to cell 42 potentiated similarly in both cases (121% control, 111%
impaired case). Thus, biasing local synaptic plasticity toward excitation contributed to the
spread of conditioned responses to CS1/+.

As the second example case, the synapse linking cell 86 (receiving CS3 and US) to cell 81
(receiving CS1 and US, but not CS3) is representative of the case in which impairment of
inhibitory LTP facilitated generalization of conditioning by CS1+/US pairing to other CSs.
As expected, the response of cell 81 to CS1/+ potentiated in both cases. In contrast, the
response of cell 81 to CS3 potentiated only in the impaired inhibitory LTP case (pre-
conditioning: < 1 spike; post-conditioning: < 1 spike in control, 19 spikes with impaired
inhibitory LTP). Again, the excitatory connection from cell 86 to cell 81 potentiated strongly
in both cases (91% control; 98% impaired case); but the feed-forward inhibitory pathway
through local interneurons (cells 89 and 90) potentiated much more in control (pyr-int: 74%
LTP control, 9% impaired case; int-pyr: 35% LTP control, −12% impaired case). The input
synapse from CS3 to cell 86 did not potentiate in either case (< 1% change), indicating that
these generalization mechanisms operated independently of tone inputs to the LA. Thus,
impairment of inhibitory LTP also contributed to the generalization of conditioned responses
to unconditioned stimuli.

It is important to note that the synapses described for the above examples were not the only
connections involved in learning, and the aggregate activity of the network would also play
a role and needs to be studied. However, many such pairs selected at random revealed
similar results. Additionally, the trends of LTP in other synapses targeting cells in such pairs
were consistent with the idea that biasing intrinsic plasticity toward excitation can impair
specificity and reveal stimulus generalization.

In summary, potentiation of both feedback and feed-forward inhibition in the nominal LA
network precluded non-specific conditioning effects and stimulus generalization. However,
impairment of LTP in the intrinsic connections supporting inhibition, but not their base
strengths (which preserve the fear conditioning properties of the network), revealed stimulus
generalization similar to that observed experimentally (Lissek et al., 2008, Lissek et al.,
2010). Changes to the efficacy of LTP in excitatory synapses linking LA pyramidal cells
were able to further modulate the stimulation generalization features.

DISCUSSION
This study contributes to two different areas. First, a novel computational methodology was
proposed by extending the Wilson-Cowan firing-rate model (1999) to incorporate full spike
frequency adaptation and a non-zero rheobase. In addition to these enhancements to single-
cell dynamics, a methodology is also proposed to incorporate a form of biologically realistic
synaptic learning for network models using such cells. This modeling framework required
only a fraction of the biological complexity and simulation time (<1%) that was needed for
the biophysical LA model (Li et al. 2009). Second, the utility of the modeling framework
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was illustrated by obtaining biological insights related to encoding of fear in the rodent LA
during Pavlovian fear conditioning. Model experiments showed how afferent and intrinsic
connectivity in LA contributed to auditory fear conditioning.

Novel method for designing firing model networks with [Ca2+]-dependent synaptic learning
Firing rate model—Our work improves upon the Wilson-Cowan firing-rate model
(Wilson and Cowan, 1972, Wilson, 1999, Destexhe and Sejnowski, 2009) by
accommodating full spike frequency adaptation and a non-zero rheobase. Benda and Herz
(2003) propose a universal model of spike frequency adaptation based on the specific
dynamics of ion currents that typically produce adaptation. The equations presented here
constitute a similar adaptation of a firing rate model. The proposed model is sufficiently
versatile for learning networks containing cells with a variety of firing characteristics such
as bursting, resonance, or anti-accommodation. Development of a firing rate model using the
proposed reduced order modeling framework can summarized as follows:

i. As a first step, obtain initial and steady-state firing rates for the cell in response to a
series of input current steps. Inter-spike interval plots are commonly reported in
single-cell electrophysiological studies, and so these data exist for many cell types.

ii. The data obtained in (i) are then fit to Hill equations as functions of the magnitude
of the input current, shown in eq. 2 as S(P) and A(P) for two datasets. Forms other
than the Hill equation can be used to provide a better fit in other scenarios. The data
from (i) will have a rheobase that should be appropriately incorporated into the
chosen form of the function.

iii. The approximate time constant τA with which the firing rate transitions from one
dataset to the next is then measured. This time constant might vary for different
input current magnitudes and even between datasets, and the function can be easily
selected to take care of this variation. For instance, the fear learning example case
used a piece-wise continuous function for τA(P) that increased linearly between the
two inflection points P1 and P2.

Finally, the nonlinear differential equations for the single cell model (eq. 2) can be simulated
using any differential equation solver such as MATLAB (The Mathworks, 2004) or using
customized software written in a programming language such as C/C++.

Calcium-dependent synaptic learning—We further propose a method to incorporate a
form of calcium dependent learning (eqs. 3 and 4) and propose two different implementation
schemes:

i. A general implementation applicable for a large class of synapses is to model F of
eq. 4 as a function of Epre and Epost as shown in eq.5. We propose specific ranges
for the parameters in the equations in Results. Eqs. 3 and 4, with F(.) substituted for
eq. 5, thus provides a general implementation that can be easily modeled.

ii. Another implementation of the learning rule would be to obtain synaptic [Ca2+]
from an existing biophysical model (e.g., LA model in (Li et al., 2009), and use
such data to determine parameter values for the learning rule.

Under these assumptions, networks with [Ca2+]-dependent plasticity can be constructed and
investigated with a variety of properties and structures. Furthermore, synaptic plasticity is
often examined in biological systems by stimulating neurons at fixed firing rates (Ishida et
al., 1997, Sjöström et al., 2001); a more straight-forward learning rule could be employed to
relate synaptic plasticity (dW/dt) directly to pre- and post-synaptic firing rates (see eq. 3).
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Network models—The firing rate model can be used to develop network models as
illustrated using the fear conditioning experiment. It is noted that synaptic rules that are not
dependent on calcium can also be used, so long as they can be modeled as functions of the
firing rates.

Insights into [Ca2+]-dependent synaptic learning
The NMDA receptor, via the mechanism of transmitter-driven synaptic currents and
voltage-dependent magnesium block, has been proposed as a mechanism for Hebbian
learning by coincidence detection (Bliss and Collingridge, 1993). Calcium influx through
such NMDA receptors engages a postsynaptic cascade that increases or decreases synaptic
efficacy by acting at AMPA receptor channels. By investigating NMDA-dependent calcium
dynamics in LA cell models, it was discovered here that the long-lived NMDA currents in
the LA allow the opening of “windows” of learning opportunity at synaptic terminals in
response to even a single presynaptic spike. This assertion is supported by the steady-state
[Ca2+] measured for varying Epre and Epost. For a given value of Epost, Epre > 0 allowed
calcium influx (and therefore, synaptic learning), but further increases to Epre did not
significantly increase steady-state [Ca2+] compared to increases in Epost. Therefore, the
specific presynaptic firing rate was not as important as the post-synaptic firing rate for
synaptic learning, as long as Epre > 0. This phenomenon has important implications for
NMDA-dependent learning. It suggests that a relatively weak neural representation of a
stimulus may be easily incorporated into an existing activity pattern and “learned” by
exploiting a window of opportunity that even a single spike might create.

Amplification of sensory input by intrinsic network might be relevant for learning
conditioned fear

Using reduced connectivity akin to those seen biologically, the 75-cell LA
model corroborates the principles of LA learning observed in the biophysical
10-cell model—The acceleration of simulation throughput provided by the firing-rate
framework allowed exploration of questions using a larger LA network structure that would
be prohibitive using biophysical models. Experiments were performed that incorporated
biologically realistic connectivity in which connection densities among pyramidal cells were
between 5–10% (D. Paré, personal communications), and the tone and shock densities were
varied from 0 to 100%. Despite considerable changes to the structure of the network, these
randomly generated LA networks consistently learned conditioned fear and extinction
memories by using the same NMDA receptor-dependent synaptic plasticity as in the
biophysical model network (Li et al., 2009).

Intrinsic excitatory connections conditionally amplify sensory input in the LA
network—The model predicts that intrinsic excitation among pyramidal cells can serve to
“amplify” sensory inputs to the LA. Such amplification can occur despite relatively low
connectivity among pyramidal cells (5–10%). For low tone input density to pyramidal cells,
only those cells directly receiving tone were tone responsive, but higher tone input density
produced many tone responsive cells that did not receive direct tone (fig. 5). Investigating
the intrinsic connections to these cells revealed that such cells typically received at least two
“indirect” tone inputs. Higher tone input density also increases the chances of pyramidal
cells receiving indirect tone input; thus, intrinsic excitatory synapses “amplify” sensory
input. Specifically, we found that LA networks possessing biological ranges of tone-
responsive pyramidal cells (between 45–55%, e.g., Quirk et al., 1995, 1997) were most often
generated when tone input to pyramidal cells was moderate (20–60%) and interneuron tone
responsiveness was above 60% (fig. 5C). Thus, we predict that in order for the LA to
“control” tone responsiveness in the network, a majority of interneurons must respond to
sensory input; specifically, at least 60% of interneurons must respond to the conditioned
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stimulus (tone), either through direct tone stimulation, or through indirect tone stimulation
due to excitation by pyramidal cells receiving direct tone. For our network, this prediction
depends on the assumption that at least two connections from cells receiving tone are
required to activate a cell that does not receive tone. If excitatory connections among
pyramidal cells are strong enough for a single intrinsic connection to fire its postsynaptic
target, then the tone input density that would be required to produce tone amplification
would be significantly lower, i.e., amplification could conceivably occur for any tone input
density greater than 0%. Conversely, weak connections among pyramidal cells would
instead increase the level of tone input density that would be required to produce such
amplification. For survival purposes, it might be advantageous for thalamic sensory inputs to
be able to activate a larger portion of the LA neurons even with low input density, because
high tone responsiveness increases the probability that conditioned (tone) and unconditioned
(shock) stimuli will converge on a single cell, either directly or indirectly, and this is critical
for fear learning (survival).

Mixed indirect inputs to principal cells supplement direct input to produce
conditioned responses—The model predicts that the amplification of tone
responsiveness by excitatory interconnections among pyramidal cells in the LA can serve to
maximize the number of LA pyramidal cells that respond to CS (tone) or US (shock)
stimuli. We found that the number of cells that exhibited conditioned responses was greatly
increased if the tone and shock input densities were above 15% (fig. 6A). Furthermore, cells
that did not receive both tone and shock input could display conditioned tone responses if
sufficient indirect tone and/or shock inputs were received through the intrinsic circuitry.
Interestingly, this pattern of connectivity did not simply favor indirect inputs of the absent
type, i.e., indirect tone (or shock) to cells receiving only direct tone (or shock) was sufficient
to condition them (fig. 6B,C).

For the connection strengths used, our results suggest that robust fear conditioning can be
achieved if two activated intrinsic excitatory synaptic connections are sufficient to fire a
third cell. Such strong intrinsic excitation within the network, while potentially useful for
sensory amplification, might be detrimental to normal function if recurrent excitation,
without adequate feedback inhibition, causes seizure-like activity. Note however, that the
majority of pyramidal cells in the LA are strongly adaptive, meaning that depolarization of
these cells typically produces a few spikes in a short time frame (e.g., less than 100 msec)
followed by quiescence (Faber et al., 2001). It is plausible that such spike-frequency
adaptation is a resilient trait that protects the LA from runaway neural excitation.

Stimulus generalization in LA is controlled by differential plasticity of
inhibitory and excitatory connections—Experimental investigation of the
underpinnings of stimulus generalization to tones after auditory fear learning led to the
conclusion that neither the auditory cortex (Armony et al., 1997), nor the thalamic inputs
(Antunes and Moita, 2010) are necessary for such generalization. This implies that the
amygdala is sufficient to control stimulus generalization and discrimination in this case. An
extension of our modeling study of intrinsic plasticity within LA led to the finding that rates
of plasticity in specific LA synapses were important in determining the level of stimulus
generalization. Specifically, the model predicts that impairment of plasticity in synapses
supporting feedback and feed-forward inhibition in the LA, i.e., lowered inhibitory
transmission, results in significant generalization even when the naïve efficacy of those
synapses is normal. In support of this finding, Shaban et al. (2006) showed that mice with a
genetic ablation of GABAB(1a) generalize fear conditioning to previously unconditioned
tones. Their in vitro study also showed that addition of a GABAB antagonist results in
homosynaptic LTP at the cortical afferents that is independent of the activity of thalamic
afferents or of the postsynaptic cell. However, as the authors note, in light of evidence
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suggesting that the auditory cortex is not necessary for stimulus discrimination, a
relationship between the observed in vitro findings of enhanced cortico-amygdala plasticity
and the behavioral finding of increased stimulus generalization becomes less likely.
Considering that GABAB receptor activation is necessary for LTP at inhibitory synapses
(Komatsu, 1996), and these experimental results provide support for our finding that
impaired inhibitory plasticity increases stimulus generalization. Furthermore, our model
suggests a more local relationship between inhibitory transmission and stimulus
generalization, independent of potentiation at thalamic or cortical afferents to the LA.
Although the role of inhibition within the LA after conditioning is not well understood
(reviewed in Pape and Pare, 2010), it is believed that plasticity of inhibition may be very
heterogeneous and dependent on the exact sub-circuits recruited by the conditioning
protocol (D. Paré, personal communications).

Another finding from the model was that the efficacy of LTP in recurrent excitatory
connections among principal cells significantly affected the sharpness of the associated
stimulus generalization gradient (fig. 7b2–b4). Notably, they suggest that because fear
memory for a single tone is primarily stored in synapses connecting tone-pyr connections,
plasticity of intrinsic connections modulates stimulus generalization without significantly
affecting the response potentiation associated with CS-US pairing.

Our model highlighted a potential role for plasticity in recurrent LA synapses in controlling
the opposing tendencies of specificity to a tone and generalization to novel stimuli in
auditory fear learning. Generalization of fear learning to similar novel stimuli is one of the
features of Post-Traumatic Stress Disorder (DSM-IV-TR, 2000) and is proposed to underlie
the development of panic disorder (Lissek et al., 2010). The model suggests that differences
between individuals in rates of plasticity of the intrinsic LA connections could explain some
of the increased tendency to generalize fear learning in subjects with such disorders.

The insights reported in this section related to network connectivity were for a specific
network size, but the trends should generalize to other network sizes. In summary, these
insights are as follows. First, to produce tone responsive cells in biological ranges of 40% in
LA (Quirk et al., 1995) the model provides a testable prediction that the tone to interneuron
connectivity in LA be more than 60%, and that the range for tone to pyramidal cell
connectivity be within 20–75% (fig. 5). Specifically, transmission of input responsiveness
(e.g., tone responsiveness) among LA pyramidal cells is strongly influenced by interneuron
responses to the same input. Excitatory intrinsic connections amplify input responsiveness.
If interneurons form only short-range inhibitory connections with LA pyramidal cells, then it
is advantageous for a high percentage of interneurons (> 65% in the network simulations
presented here) to respond to that input. Secondly, the number of cells that exhibited
conditioned responses was greatly increased if the tone and shock input densities were above
15%, suggesting a lower bound for densities of these sensory inputs. Thirdly, cells receiving
only direct tone or only direct shock input typically cannot exhibit conditioned fear
responses unless they receive at least one other excitatory connection. In such cases, we also
found that the cell is more likely to condition if it receives the excitatory connection from
other cells that receive the same direct input (e.g. shock in the case of direct shock; fig.
6B,C). Finally, stimulus generalization of fear conditioning depends strongly on the rates of
plasticity of the intrinsic connections within LA. Lower rates of plasticity at pyr-int and int-
pyr synapses enhance generalization of fear to novel stimuli, and varying the rates of
plasticity of excitatory intrinsic connections determines the steepness of the stimulus
generalization gradient. The numbers in these insights may vary upon connection strengths
which are not well understood presently, but the trends would be similar. For instance,
weaker intrinsic excitatory connections will reduce the probability of signal propagation,
and so input responsiveness may not spread significantly beyond those cells directly
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receiving that input. However, such signal propagation seems advantageous for fear learning
and signal propagation in the LA would be an effective mechanism to encourage the
coincidence of conditioned and unconditioned stimuli in the absence of dense direct sensory
inputs.

Conclusions
We propose an enhanced time-varying firing rate neuronal model, and a form of synaptic
learning, which together can capture the essential dynamics of adaptive network
interactions. Lack of detailed biological data and excessive computing time requirements
presently limit the incorporation of biological realism into network models of brain regions.
In that sense, the proposed enhancements to the firing rate model reported here will help add
more realism to both single cell membrane potential dynamics and to the particular form of
synaptic learning, facilitating the modeling of large networks. A network developed along
these lines provided insights into the role of sensory afferents and of intrinsic network
connectivity in amplifying and distributing sensory inputs through the LA. The model also
helped quantify the input connectivity needed for the formation of cells with varying tone
responsive and conditioning features, e.g., amplification of tone responses had a nonlinear
relationship with tone-pyramidal input connectivity. Finally, the model predicts that the
plasticity rates of intrinsic connections within LA have a strong impact on stimulus
generalization. Some of these findings constitute testable predictions that await further
investigation.
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Highlights

• New firing rate model with full spike frequency adaptation and non-zero
rheobase

• Calcium-based learning rule implementation for networks of firing rate neurons

• Framework to study possible tone-shock distributions in LA for learning fear

• Tone-interneuron connectivity should be > 60% to match experimental data

• Model shows how impairment in inhibitory LTP might cause fear generalization
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Figure 1.
The preliminary firing-rate network model of the lateral amygdala for comparison with
outputs from Li et al. (2009). Green triangles 1–8 are pyramidal cells (5 type A cells [1–5], 2
type B cells [6–7], and 1 type C cell [8]); Black circles are interneurons 1–2; Purple circle is
tone input (T); Red circle is shock input (S). Pyramidal cells excited all other pyramidal
cells and interneurons, but not themselves. Interneurons inhibited one another and each
pyramidal cell. Pyramidal cells 3, 5, 7, and 8, received direct tone, while pyramidal cells 1,
4, 5, 7, and 8 received direct shock input. Both interneurons received direct tone and shock
inputs.
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Figure 2.
Comparison of single cell firing-rate output in the biophysical (left) and firing-rate (right)
LA model networks. Firing rates for detailed biophysical LA cell models in Li et al. (2009)
were computed as 1/ISI. Each trace corresponds to the firing rate calculated for a spike train
elicited with a 600 msec current injection (pA). Circles represent spike times at which the
ISI was calculated. At current injections below those shown, some cells fired only a single
spike, and so ISIs were not calculated. A) type A pyramidal cell, B) type B pyramidal cell,
C) type C pyramidal cell, and D) Interneuron.
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Figure 3.
Tone responses of conditioned pyramidal cells in the network model during the phases of
fear conditioning. Responses are shown as % of conditioned responses. Sensitization
response was measured for final five trials of the sensitization phase, and remaining
responses were measured for successive blocks of five trials during extinction. Results
reported as mean +/− SE for the four cells that displayed significantly conditioned tone
responses. Variations are seen in biological experiments, and so the aim is to match the
trends. Very good match was obtained with the results of the detailed biophysical LA model
(Li et al., 2009) which itself was previously validated with biological data (Quirk et al.,
1997).
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Figure 4.
Comparisons of representative time courses of synaptic weights for the detailed biophysical
and firing-rate models during the training protocol showed very good match in all cases: A:
Tone synapses (tone-pyr and tone-int). B: int-pyr. C: pyr-int. D: pyr-pyr. Training phases: S,
sensitization; C, conditioning ; E1, 1st (early) extinction; E2, 2nd (late) extinction.
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Figure 5.
Proportions of tone-receiving and tone-responsive pyramidal cells in 120 independent runs
of the 75-cell LA network. A: The proportion of tone-responsive cells closely tracked the
proportion of tone-receiving cells for tone-pyr input density below 20%. Above this value,
many tone-responsive pyramidal cells were generated that did not directly receive tone.
Above 75% tone-pyr input density, nearly every pyramidal cell was tone responsive. The
line represents the theoretical case in which cells were tone responsive if and only if they
received direct tone input. B: The level of intrinsic pyr-pyr connectivity in LA networks was
moderately correlated with the proportions of tone-responsive, non-tone-receiving pyramidal
cells (r = 0.32). C: Pyramidal cell tone responsiveness (% tone-responsive pyramidal cells
encoded by color; note that green points represent networks for which tone-responsiveness
were within biological ranges, approximately 35–65%) was most often within biological
ranges (approximately within the blue dotted line) for high levels of interneuron tone-
responsiveness and low-to-moderate levels of tone input to pyramidal cells. D: Tone-
responsive pyramidal cells that did not receive tone input were more likely to receive
multiple connections from other tone-receiving pyramidal cells than were non-tone-
responsive pyramidal cells that did not receive tone. Adjusted numbers of indirect tone
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inputs are shown on the x-axis, where the total is the number of connections received from
pyramidal cells receiving direct tone minus the number of connections received from
interneurons receiving direct tone.
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Figure 6.
Intrinsic connectivity produced conditioned tone responses in cells that did not receive direct
converging tone and shock inputs. A: The number of conditioned cells in each simulated LA
network typically exceeded the number of cells that received direct converging tone and
shock. The dashed line represents the hypothetical case in which only those cells that receive
both direct tone and direct shock can condition.
B–D: How did indirect transmission of tone or shock input through intermediate pyramidal
cells contribute to conditioned tone responses among cells that received only direct shock or
only direct tone? Adjusted numbers of indirect tone inputs are shown on the X-axis, and
adjusted indirect shock inputs are shown on the Y-axis. Adjusted indirect inputs were
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computed as the total number of connections received from pyramidal cells receiving direct
tone (or shock) minus the number of connections received from interneurons receiving
direct tone (or shock). Colorcoding represents the percentages of the indicated
subpopulations of pyramidal cells across the 120 model runs that received the numbers of
adjusted indirect inputs shown on the X and Y axes. Data can be interpreted as three-
dimensional histograms where bar height is instead encoded by color. By way of example,
grid box (3,2) in panel B1 shows that approximately 11% of non-conditioned cells that
received direct shock, but not direct tone (n=679), received 1 adjusted indirect tone input
(X-axis) and 0 adjusted indirect shock inputs (Y-axis). Similarly, grid box (6,5) in panel B2
shows that approximately 3% of conditioned cells that received direct shock, but not direct
tone (n=886), received 4 adjusted indirect tone inputs and 3 adjusted indirect shock inputs.
The same interpretation holds for data in panels C1 and C2.
Panel B shows the levels of indirect input received by non-conditioned (B1) and conditioned
(B2) pyramidal cells that received direct shock, but not direct tone. Non-conditioned cells in
this category (n=679) typically received fewer than one indirect shock input and between 0–
3 indirect tone inputs, while conditioned cells (n=886) instead received between 0–4 indirect
shock inputs and 1–5 indirect tone inputs. Generally, a comparison of B1 to B2 shows that
in these simulations, a cell receiving only direct shock and more than zero adjusted indirect
tone inputs was unlikely to condition (B1) unless it also received more than zero adjusted
indirect shock inputs (B2).
Panel C instead quantifies the levels of adjusted indirect input received by non-conditioned
(C1) and conditioned (C2) pyramidal cells that received direct tone, but not shock. Non-
conditioned cells in this category (n=1185) typically received fewer than one indirect tone
input and between 0–3 indirect shock inputs, while conditioned cells (n=661) instead
received between 1–4 indirect shock inputs and 0–4 indirect tone inputs. In panel C, similar
to that in panel B, a cell receiving only direct tone input and more than zero indirect shock
inputs was unlikely to condition (C1) unless it also received more than zero adjusted indirect
tone inputs (C2).
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Figure 7.
Intrinsic plasticity in LA modulates stimulus generalization in a 100-cell network model. A:
Schematic of the input connectivity in the network. CS1-5 were identical tone inputs that
targeted cells indicated on the X-axis in black (red for interneurons). CS1/+ was paired with
the US (shock) during conditioning. CS5/− was also presented during conditioning, but was
never paired with the US, and targeted precisely the 50% of pyramidal cells not targeted by
CS1/+. Thus, CS2-5 exhibit a graded decline in similarity with CS1. B: Average responses
of all pyramidal cells in response to the indicated CS before conditioning (triangle) and after
conditioning (circle). B1: At base levels of intrinsic plasticity, no stimulus generalization
was observed. With impaired plasticity of int-pyr and pyr-int synapses, high generalization
was observed with normal plasticity of pyr-pyr synapses (B2), but moderate (B3) and low
(B4) levels of plasticity in pyr-pyr synapses reduced generalization and sharpened the
observed gradient.
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Table 2

Parameter values for firing rate model cells.

Pyr A Pyr B Pyr C Intr

MS 150 160 150 321

NS 1 1 1 1

σS 250 200 200 650

δS 150 100 100 50

MA 113 130 115 --

NA 1 1 1 --

σA 125 200 200 --

δA 500 450 300 --

τA0 5 5 5 --

k 0.6 0.48 0.58 --

P1 350 200 250 --

P2 550 500 300 --
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Table 3

Coefficients for synaptic calcium dynamics. For the tone-pyr synapse, coefficients of Epost were fractional
functions of Epre.

Synapse type K

Tone-pyr

Tone-int 0
0
0

3.5×10−7

0
0
0

−1.3×10−4

1.1×10−9

−4.1×10−7

4.9×10−5

0.014

4.3×10−8

−1.4×10−5

2.3×10−3

0.088

Pyr-pyr −6.3×10−6

3.3×10−3
4.4×10−3

0.15

Pyr-int 3.3×10−7

−4.95×10−5

5.11×10−3

−3.75×10−5

7.87×10−3

0.1257

Int-pyr −2.1×10−5

0.01
3.6×10−3

0.034
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