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Abstract: Diffusion weighted magnetic resonance imaging (DW-MRI) are now widely used to assess brain
integrity in clinical populations. The growing interest in mapping brain connectivity has made it vital to
consider what scanning parameters affect the accuracy, stability, and signal-to-noise of diffusion measures.
Trade-offs between scan parameters can only be optimized if their effects on various commonly-derived
measures are better understood. To explore angular versus spatial resolution trade-offs in standard tensor-
derived measures, and in measures that use the full angular information in diffusion signal, we scanned
eight subjects twice, 2 weeks apart, using three protocols that took the same amount of time (7 min). Scans
with 3.0, 2.7, 2.5 mm isotropic voxels were collected using 48, 41, and 37 diffusion-sensitized gradients to
equalize scan times. A specially designed DTI phantom was also scanned with the same protocols, and
different b-values. We assessed how several diffusion measures including fractional anisotropy (FA), mean
diffusivity (MD), and the full 3D orientation distribution function (ODF) depended on the spatial/angular
resolution and the SNR. We also created maps of stability over time in the FA, MD, ODF, skeleton FA of
14 TBSS-derived ROIs, and an information uncertainty index derived from the tensor distribution function,
which models the signal using a continuous mixture of tensors. In scans of the same duration, higher
angular resolution and larger voxels boosted SNR and improved stability over time. The increased partial
voluming in large voxels also led to bias in estimating FA, but this was partially addressed by using
‘‘beyond-tensor’’ models of diffusion. Hum Brain Mapp 34:2688–2706, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

High angular resolution diffusion imaging (HARDI) is
one of several advanced diffusion weighted imaging tech-
niques [Tuch et al., 1999, 2002, 2004; Wedeen et al., 2005]
that can resolve complex diffusion geometries, such as
fiber crossings and intermixing of white matter tracts in
the brain. In regions where fibers cross, the standard sin-
gle-tensor model (used in diffusion tensor imaging; DTI) is
misleading; measures of fiber integrity, such as the frac-
tional anisotropy (FA), tend to be underestimated, and
fiber orientations are poorly approximated by the fitted
tensor. Increasing the number of diffusion-sensitive direc-
tional gradients can improve the accuracy of recovered
white matter fiber-tract orientations, as can increasing the
spatial resolution; but each of these adds to the scan time.
Several major initiatives, such as the NIH-funded ‘‘Human
Connectome Project,’’ are now devoted to understanding
factors that affect brain integrity and connectivity [e.g.,
genetic versus environmental factors, sex differences, and
maturation; Chiang et al., 2010; Jahanshad et al., 2011; Lep-
ore et al., 2010; Zhan et al., 2010a]. Many efforts also com-
bine diffusion imaging with resting-state functional MRI
or EEG/MEG to examine intrinsic functional correlations
in brain activation, and how it relates to anatomical con-
nectivity [Sporns, 2010; Wagner and Fuchs, 2001]. These
efforts make it increasingly important to understand how
DTI scanning parameters affect the results, and what
trade-offs are reasonable when scan time is limited.

Generally, when patients or healthy volunteers partici-
pate in large-scale imaging studies, such as the Alzheimer’s
Disease Neuroimaging Initiative (ADNI; http://adni.loni.
ucla.edu/), several structural and functional MRI sequences
need to be completed, often within less than an hour. Sev-
eral MRI scanning techniques are often combined to assess
multiple candidate biomarkers of a disease, or to map brain
connectivity. To limit patient discomfort, and avoid patient
attrition (failure to complete the scan, or failure to return in
a longitudinal study), trade-offs must be made between
angular and spatial resolution to obtain the best image
quality in an acceptable time.

Prior studies describe several procedures to boost the
signal-to-noise ratio (SNR) in diffusion imaging through
lengthy imaging sessions, extensive q-space sampling
(including scans at multiple different b-values), or diffu-
sion spectrum imaging [Jones et al., 2004; Tuch 2004;
Wedeen et al., 2005, Zhan et al., 2010c, 2011a]. These may
be ideal for research purposes [Liu et al., 2010], but most
large-scale clinical diffusion weighted imaging protocols
are part of a session that includes several imaging series,
leaving only a limited time for each scan. Limiting the
time for diffusion weighted imaging limits the number of
achievable applied directional gradients and also limits the
spatial resolution of the images. Our prior studies created
reference curves showing how the number of diffusion
directions acquired affects the SNR for various standard
DTI-derived measures [Zhan et al., 2009a,b]. Others have

studied how the scanning protocol affects reconstruction
errors in the principal eigenvector field, which is impor-
tant for tractography as it determines the directions of the
reconstructed fibers [Landman et al., 2007]. Even so, no
studies, to our knowledge, have examined the trade-offs
between spatial and angular detail for estimating HARDI
derived measures such as the Orientation Distribution
Function (ODF), which we also assess here.

Information on signal reproducibility is also important.
Smaller voxels (finer spatial resolution) may lead to higher
mean differences in the DTI-derived measures over time,
due to the poorer SNR. Larger voxels, in general, offer
greater longitudinal stability, although the resulting meas-
ures may be biased or have greater errors due to partial
volume averaging. In two recent reports [Jahanshad et al.,
2010, 2012a], we began to study how scan protocols affect
the reproducibility of DTI measures over time. We only
focused on standard DTI-derived measures, such as the
fractional anisotropy (FA) computed from the diffusion
tensor. Although this is perhaps the most widely used
measure of fiber integrity, more sophisticated models of
diffusion geometry can estimate more detailed fiber direc-
tions, avoiding bias in estimating fiber anisotropy. Here
we extend our earlier work to examine how diffusion
related measures depend on the scanning protocol.

In this study, we investigated trade-offs in angular and
spatial resolution for three 7-min protocols, which were
candidates for use in the second phase of ADNI. We
assessed how the protocol affected several widely used
measures including: fractional anisotropy (FA), mean dif-
fusivity (MD), and the HARDI-derived ODF. We
hypothesized that (1) larger voxels would boost the SNR
and allow for more detailed angular sampling during a
fixed scan time, and (2) a ‘‘beyond-tensor’’ model (i.e., a
more complex model than fitting a single tensor to the
diffusion data) would help avoid partial volume effects,
which can be a serious problem in large voxels. We also
performed computational simulations to create data with
prescribed fiber parameters, crossings, and noise, to
reveal how scan parameters (e.g., voxel size) affect the
derived DTI measures. Clearly, the ‘‘best’’ DTI protocol
depends on whether a project aims to assess anisotropy
or connectivity or both, and what levels of accuracy and
reproducibility are both desirable and achievable, given
the constraints. As such, we aimed to develop some gen-
eral principles based on studying these trade-offs
empirically.

METHODS

Subjects and Image Acquisition

Eight healthy subjects (age: 32.0 � 3.9 yrs SD; 4 male; 7
right-handed) were scanned using a GE 3 T brain MRI
scanner, with an 8-channel head coil, running 14.0 M5
software. To explore trade-offs between spatial and angu-
lar resolution, we used three separate scanning protocols,
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each with an overall acquisition time held fixed at 7 min
� 3 seconds. For each image series, there was an addi-
tional EPI calibration scan lasting � 1 min. These tests
were part of a preparatory phase of the Alzheimer’s Dis-
ease Neuroimaging Initiative, in which different protocols
were compared for their stability and signal-to-noise,
within the constraints that (1) they could be readily imple-
mented on a large number of scanners (15 sites) across
North America, and (2) diffusion imaging scan time was
limited to 7 min to allow the overall scanning session to
last no more than half an hour. Each ADNI2 participant is
scanned with a 3D T1-weighted volume (both accelerated
and nonaccelerated), a FLAIR scan, a long TE T2-weighted
GRE scan, and one of three experimental scans—DTI, rest-
ing state functional MRI, or arterial spin labeling (ASL) to
study perfusion. Because of this context for the study, we
did not consider a very broad range of spatial resolutions,
or advanced diffusion imaging variants such as diffusion
spectrum imaging (DSI), considering only those that
would have a reasonable chance of being used for the
multisite study. On the basis of our experience with prior
multisite efforts, only ‘‘product’’ sequences were consid-
ered [Jack et al., 2010]; these are standard protocols that

can be purchased from a scanner manufacturer without
requiring technicians at each site to make significant modi-
fications. This avoidance of ‘‘work-in-progress’’ techniques
makes it more feasible to implement methods consistently
across many sites.

DWI data was acquired with contiguous axial slices, at
b ¼ 1,000 s/mm2. To ensure whole-brain coverage, the
field-of-view was fixed at 119.0 � 1.0 mm in the S/I direc-
tion and 230.0 � 0.4 mm A/P. The coverage in the R/L
direction (i.e., the frequency encoded direction) exceeded
320 mm in all cases, so it easily covered the entire head.
All imaging protocols also acquired 4 non-DWI
(T2-weighted, b0 images), which were used to estimate the
MRI signal attenuation due to diffusion, via the Stejskal-
Tanner equation [Stejskal and Tanner, 1965]. To keep scan
time fixed, TR (relaxation time) was allowed to vary, as
was the number of DTI angular gradient directions with
each given spatial resolution. The acquisition parameters
are summarized as P1 – P3 in Table I.

These acquisition parameters are achievable on a typical
commercial 3 Tesla scanner, without any special software.
More angular directions could be obtained on some
scanner configurations (particularly those running

TABLE I. Imaging protocols examined

b ¼ 1,000 s/mm2
Protocol 1 (P1)

(‘‘3 mm’’)
Protocol 2 (P2)

(‘‘2.7 mm’’)
Protocol 3 (P3)

(‘‘2.5 mm’’)

Acquired voxel size: Read-out
� phase-encoding � slice-select (mm3)

3.0 � 3.0 � 3.0 2.73 � 2.73 � 2.70 2.50 � 2.50 � 2.50

Prescribed matrix (read-out, phase-encoding) 128 � 128 128 � 128 128 � 128
Acquired matrix (read-out, phase-encodingA) 128 � 38 128 � 42 128 � 46
Number of gradient directions 48 41 37
Number of b0 scans 4 4 4
TR (ms) 7750 9000 9825
Number of slices 40 44 48
FOV-S/I (mm) 120 118.8 120
FOV-R/L (mm) 384 350 320
FOV-A/P (mm) 230.4 230.1 230.4
Phase FOV percentage 60% 66% 72%

b ¼ 3,000 s/mm2 Protocol 4 (P4)
(‘‘3 mm’’)

Protocol 5 (P5)
(‘‘2.7 mm’’)

Protocol 6 (P6)
(‘‘2.5 mm’’)

Acquired voxel size: Read-out
� phase-encoding � slice-select (mm3)

3.0 � 3.0 � 3.0 2.73 � 2.73 � 2.70 2.50 � 2.50 � 2.50

Prescribed matrix (read-out, phase-encoding) 128 � 128 128 � 128 128 � 128
Acquired matrix (read-out, phase-encodingA) 128 � 38 128 � 42 128 � 46
Number of gradient directions 48 41 37
Number of b0 scans 4 4 4
TR (ms) 14,950 16,600 17,000
Number of slices 40 44 48
FOV-S/I (mm) 120 118.8 120
FOV-R/L (mm) 384 350 320
FOV-A/P (mm) 230.4 230.1 230.4
Phase FOV percentage 60% 66% 72%

For brevity, we refer to these as the 3, 2.7, and 2.5 mm protocols, as that is the reconstructed voxel size. A greater number of directional
samples was obtained when the voxel sizes were larger. AThe acquired phase matrix is equal to the prescribed phase matrix � phase
FOV percentage / parallel imaging acceleration factor.
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‘‘work-in-progress’’ software), but the parameters listed
here are readily achievable in multicenter studies.
Throughout this paper, we refer to these three resolutions
by their voxel size, which was isotropic (or very close) in
each case (see Table I). Each subject was imaged on two
separate occasions, 2 weeks apart, with each protocol. To
further assess the protocols under controllable conditions,
without motion or other physiological confounds, we
scanned a DTI phantom [Pullens et al., 2010], i.e., a
specially designed test object with known geometry and
properties. The DTI phantom contains synthetic fibers
(of � 10lm circular diameter) that consist of polyester
yarns wound into bundles. These bundles are then inter-
woven with each other (in the same way as tracts cross
in the brain) and secured with heat shrink tubes. We used
the same scanning protocols listed in Table I with b ¼
1,000 s/mm2 and b ¼ 3,000 s/mm2 to further investigate
how the diffusion weighting factor b affected the trade-off
between angular and spatial resolution. Before any other
computations, eddy current correction was applied to all
diffusion datasets using the FSL toolbox [Smith, 2002].

Methods Overview

Three models were used to reconstruct the diffusion
data:

1. In the standard tensor model, diffusion tensor eigen-
values (k1, k2, and k3), were estimated using MedIN-
RIA (http://www-sop.inria.fr/asclepios/software/
MedINRIA/, Pennec et al., 2004), and were used to
create maps of the standard tensor-derived parame-
ters, fractional anisotropy (FA) and mean diffusivity
(MD) using the usual definition [Eq. (1)]:

FA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 � k2Þ2 þ ðk2 � k3Þ2 þ ðk1 � k3Þ2

2 � ðk2
1 þ k2

2 þ k2
3Þ

s

MD ¼ ðk1 þ k2þ k3Þ
3

8>>><
>>>:

(1)

2. In a second (alternative) model of the data, the orien-
tation distribution function (ODF) for water diffusion
was reconstructed voxelwise using the recently pro-
posed Constant Solid Angle formula [CSA-ODF;
Aganj et al., 2010; Descoteaux et al., 2007] with 4th-
order spherical harmonics (SH).

ODFðûÞ ¼ 1

4p
þ 1

16p2
FRT

n
r2

blnð�ln~EðûÞÞ
o

(2)

Here û is the arbitrary unit vector.
~EðûÞ:¼SðûÞ

S0
, where SðûÞ

is the diffusion signal, and S0 is the non diffusion-
weighted signal (from the b0 scans). r2

b is the Laplace-
Beltrami operator and FRT is the Funk-Radon
transform [Funk, 1916]. ODFs were reconstructed using
642 point samples, determined using a recursively sub-
divided icosahedral approximation of the unit sphere.

3. In a third model of the diffusion data, we used a ten-
sor distribution function (TDF) framework [Jian et al.,
2007; Leow et al., 2009] to compute a probabilistic en-
semble of 3D Gaussian diffusion processes at each
voxel that best describes the observed signal. The
probabilistic ensemble of tensors, as represented by a
TDF, P, is defined on the tensor space D that was
used to explain the observed diffusion-weighted sig-
nals. To solve for an optimal TDF P*, we use the mul-
tiple diffusion-sensitized gradient directions qi and
arrive at P* using the least-squares principle with gra-
dient descent as defined in [Leow et al., 2009]:

ScalculatedðqiÞ ¼
R

D2D PðDÞ expð�bqT
i DqiÞdD

P� ¼ arg minp

P
i ½SobsðqiÞ � ScalculatedðqiÞ�2

(
(3)

where b is the instrumental scaling factor, or level of diffu-
sion weighting [Le Bihan 1990a,b], containing information
on the pulse sequence, gradient strength, and physical
constants. This number is unique for a specific b-value or
q-space shell; qi is the ith gradient’s unit direction vector
and qT

i denotes the vector transpose; D is the diffusion ten-
sor, which may be considered to be an element of the
space of symmetric positive definite 3 � 3 matrices
denoted by D. Sobs(qi) is the diffusion-weighted signal di-
vided by S0 in the ith gradient direction, and S0 is the non-
diffusion-weighted (or b0) signal. Once TDF P* is
computed, an information uncertainty index, the exponen-
tial isotropy (EI), can be defined based on the exponential
of the Shannon Entropy [Shannon, 1948]:

EI ¼ e
�
R

D2D
P�ðDÞ log P�ðDÞdD

(4)

Study Design

As there is a trade-off between the achievable angular and
spatial resolutions for scans of fixed duration, we designed
three studies to further investigate how angular and spatial
resolution affect diffusion measures derived from different
models. In our analyses, we did not account for effects of
variable T1 during the simulations. Here TR is sufficiently
long (>3–4 � T1) that T1 effects saturate for brain paren-
chyma, and can be neglected. While the T1 of CSF is much
longer and virtually complete T1 recovery may not be
assumed, its diffusion properties are isotropic, so the DTI
analysis of CSF was not of particular interest in this study.

Simulation study

Two typical diffusion scenarios were considered:

1. Single fiber diffusion: We randomly generated tensors
with eigenvalues in the normal range for human
white matter. We set b ¼ 1,000 s/mm2, as in the real
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diffusion images we obtained. All three eigenvalues
were randomly generated to be between 0 and 1 inde-
pendently. On the basis of these values, we generated
noise-free diffusion-weighted signals S1 [Eq. (5)] for
different angular resolutions (from 10 to 100 directions
in successive increments of 10). Gradient directions
were selected using PDEs based on electrostatic repul-
sion, which minimize the angular distribution energy
[Jones et al., 1999, Wong and Roos, 1994]. We added
different levels of Rician noise to each of these diffu-
sion-weighted signals to create a noisy diffusion signal
S1n, with varying SNRs of: 5, 6, 7, 8, 9, 10, 12, 14, 16,
18, 20, 25, 50, and 100. We repeated this process 1,000
times for each angular resolution simulated.

2. Two fibers crossing at 90	: We randomly generated
eigenvalues for each of two tensors independently,
each representing one fiber. The dominant eigenvec-
tor for Fiber 1 was randomly chosen and the second
was made to cross at 90	 to the first. Based on these
simulated tensors, we generated noise-free diffusion-
weighted signals S2 and repeated the same process as
we did for the single-tensor model simulation (b ¼
1,000 s/mm2, angular resolution from 20 to 100 and
SNR ranging from 5 to 100 to obtain noisy diffusion
signals S2n). As the ODF was estimated using 4th
order SHs, which requires at least 15 noncollinear
gradient directions to solve, we did not model the
case with 10 directions in this fiber crossing simula-
tion model. This process was also repeated 1,000
times for each combination of SNR and each number
of angular samples.

The diffusion signal for each gradient direction was simu-
lated based on the Stejskal-Tanner equation, using an equal
weighting assumption for the multiple fibers in a voxel:

SðqiÞ ¼ Sð0Þ �
Xn

j¼1

1

n
� expð�b � qT

i �Dj � qiÞ (5)

Here n is the number of the fiber simulated (1 or 2); S(0) is
the baseline signal, assumed to be 1; b is the diffusion scal-
ing factor and set to 1,000 s/mm2 in this simulation; qi is
the gradient direction unit vector for i ¼ 1,2,3, : : :M, where
M is the total number of gradient directions; qT

i is the
transpose of the gradient vector; Dj is the j-th diffusion
tensor; S(qi) is the diffusion signal in the direction qi.

Once S1, S1n, S2, and S2n were generated, FA and MD
were estimated from the fitted diffusion tensor, according
to Eq. (1), for both the noisy and noise-free data; the ODF
was also estimated from both noisy and noise-free data,
using Eq. (2). The symmetric Kullback-Leibler (sKL) diver-
gence, a commonly used distance measure from informa-
tion theory, was used to measure the discrepancy among
ODFs reconstructed from noisy and noise-free data. sKL
was calculated from Eq. (6), where p(x) and q(x) are the
discretized ODF elements from noise-free data and noisy

data, respectively. Using the sKL, we estimated how the
prescribed SNR and the angular resolution affected the ac-
curacy of DTI-derived scalar measures (FA, MD) and the
ODF:

sKLðp; qÞ ¼ 1

2
�
Z

X

(
pðxÞ � log

pðxÞ
qðxÞ þ qðxÞ � log

qðxÞ
pðxÞ

)
dx (6)

Figure 1 shows the flow chart for the single-fiber simula-
tion experiments.

Tests combining real and simulated data

Even when the scan time is fixed, the relationships and
optimal trade-offs among SNR, spatial resolution, and
angular resolution still depend, to some extent, on the sub-
ject being scanned and the diffusion profiles observed in a
living brain. Thus, we designed the following tests to
investigate these trade-offs in real human brain datasets.

First, we investigated the effect of angular resolution, on
its own, in real human brain data. We chose the highest
angular resolution data with 48 directions (P1 in Table I),
to fit the diffusion tensor and calculate FA48, MD48, as
well as estimate ODF48. We then incrementally reduced
the angular resolution from 48 to 47, 46, : : : , 6 directions
that were recomputed to minimize the angular distribution
energy. Our downsampling method, to do this, is detailed
in Zhan et al. [2010b], and is designed to give a fair assess-
ment of undersampled data by optimizing the angular dis-
tribution in the available data. For each angular resolution,
we recalculated FA, MD and estimated the ODF. For the
ODFs, the minimum number of angular samples was cho-
sen to be 15 because that is the minimum number needed
to fit 4th order SHs. To evaluate the angular sampling

Figure 1.

Flow chart for simulating diffusion signals from a single fiber.

Different variations (dðFAÞ ¼ jFA1 � FA1nj and dðMD1Þ ¼
jMD1 �MD1nj) were used to evaluate the accuracy of tensor

fitting in different simulations. sKL was used to evaluate the

accuracy of ODF estimation for different simulations.
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effect, cross-correlation (Corr), and mutual information
(MI) scalar maps were calculated to compare the original
(P1) data to the down-sampled data. Corr and MI are com-
puted across all brain voxels in one subject and their arith-
metic mean was computed across all subjects.

The MI between two images A and B is defined in
Eq. (7).

IðA;BÞ ¼
X

a;b
pða; bÞ � log

pða; bÞ
pðaÞ � pðbÞ (7)

MI measures the distance between the joint distribution of
the images’ intensity values p(a,b) and the joint distribution
that would arise if the images were completely independ-
ent, p(a)p(b). MI is therefore a measure of dependence
between two images. When MI is used to guide registra-
tion, the assumption is that there is maximal dependence

between the intensity values of the images when they are
correctly aligned, and misalignment will lead to a decrease
in the MI. In this study, MI is built from the cumulative
histogram of two images, where one is under-sampled
(i.e., fewer gradient directions) and the other is the full
protocol. When making this histogram, data is pooled from
all the voxels in the brain region. In addition, sKL was
used to measure the ODF differences (estimation errors)
between the original P1 data and each of the under-
sampled P1 datasets. This procedure allows us to investi-
gate the amount of information lost by sacrificing angular
resolution, while other parameters are fixed. In general,
‘‘better’’ approximations to the true DTI measures, are indi-
cated by a higher Corr and MI between corresponding sca-
lar maps (FA or MD), and smaller sKL distance between
the ODFs in the original P1 and downsampled P1.

This angular downsampling will slightly overestimate
the correlation achievable in scans of the same subject col-
lected in independent scanning sessions, but by subsam-
pling the same dataset, we can isolate the effect of angular
sampling and model it in the absence of other sources of
error. Figure 2 shows a flow chart indicating how we
quantified the information loss when downsampling the
angular resolution of the data.

We next assessed the effect of spatial resolution by com-
paring datasets obtained with different voxel sizes, as out-
lined in Figure 3. We chose the highest spatial resolution
data, with 2.5 mm isotropic voxels (P3 in Table I), to calcu-
late FA and MD. We then gradually reduced the spatial re-
solution by downsampling from (2.5 mm)3 to 2.6, 2.7, : : : (10
mm)3. Although other choices are possible, we used linear
interpolation to downsample the spatial resolution of the
original images in P3 to create each new image since P3 is
the highest spatial resolution protocol in our study and the
partial volume effect can be better modeled in compared
with using the other two protocols. For each spatially down-
sampled dataset, we recalculated FA and MD. To evaluate
the effect of reducing the spatial resolution, we again calcu-
lated Corr and MI between original and downsampled sca-
lar maps for each subject and their arithmetic mean was
computed across all brains.1 To do this, we upsampled the
downsampled maps back to the original resolution and re-
calculated Corr and MI. This additional procedure was per-
formed because as the spatial resolution changes, the num-
ber of voxels in the scan will also change accordingly.
Therefore, to make the comparisons fair, all scalar maps
were sampled on the same image matrix. This upsampling
was performed using linear interpolation. We used the FA
and MD calculated from the original P3 data as the ground
truth since the original P3 data has the highest spatial reso-
lution, and should contain the most spatial information.
When downsampling, the spatial resolution will be lost—
but the SNR should increase due to partial voluming effects.

Figure 2.

In this flow chart, we show how we used correlation and

mutual information to assess how much information was lost

when reducing the directional sampling of the DTI scans.

Figure 3.

Flow chart for assessing how spatial resolution affects FA and

MD, without allowing the SNR to confound the assessment. The

ground truth is calculated from original P3 data with (2.5 mm)3

(indexed as 25), then downsample the spatial resolution to

(2.6 mm)3 (indexed as 26), (2.7 mm)3 (indexed as 27), : : : ,
(10 mm)3 (indexed as 100).

1We concede that a real protocol with these voxel sizes may not give
the same FA; the partial volume effect is only approximately mod-
eled here.
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We firstly did not consider SNR varying due to spatial reso-
lution changing. In this way, we examined voxel size effects
while keeping the angular resolution constant.

Theoretically, the SNR is related to the voxel volume
(SNR / volume�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
scanning time

p
), so changing the spatial

resolution will affect the SNR. In a fixed scanning time, SNR
is proportional to the voxel volume, so we used linear
regression to relate SNR to the voxel volume based on the
three protocols (P1, P2, and P3). The details are as follows.

T2-weighted (b0) images for the P1, P2, and P3 datasets
were aligned to the Colin27 high-resolution single subject
average brain MRI T1 template [Holmes et al., 1998] using
the FLIRT linear registration software (http://fsl.fmrib.ox.
ac.uk/fsl/flirt), with 9-parameters (to account for transla-
tions, rotations, and scaling in each direction) and a
mutual information cost function. Once linearly aligned,
further registration was performed using a 3D Navier-
Stokes based fluid warping technique enforcing diffeomor-
phic mapping, using least-squares intensity differences as
a cost function [Leporé et al., 2008]. Deformation fields
from the fluid registration steps were retained. Then a
small spatially homogeneous region of interest (ROI,
around 10 � 10 � 10 mm3) was manually traced on the
corpus callosum (CC) in the Colin27 space using the ‘‘ero-
sion with a 3D diamond’’ tool in the BrainSuite package
[Shattuck and Leahy, 2002]. We then inverted the above
transformation matrix and applied it to this ROI to create
individual ROIs on the P1, P2, and P3 scans respectively,
and SNR was computed as a ratio between the mean sig-
nal and its spatial standard deviation over the individual
ROI in the original T2 (b0) images for each protocol [Zhan
et al., 2010b]. We preferred this SNR estimation method
since SNR is highly correlated with spatial resolution, so
for each protocols in Table I, we need to estimate SNR in
the individual space as fairly as possible. After we calcu-
lated the SNR for the three protocols, we used linear
regression to model the relationship between SNR and
voxel volume. Figure 4 shows the predicted SNR and the
fitted line.

After the SNR was related to voxel size, we continued
to use P3 as a reference, it had the highest spatial resolu-
tion. We added Rician noise according to the SNR equa-
tion obtained from the linear least squares fit to create
noisy P3 data, and calculated FA and MD. We then down-
sampled the original P3 data to give poorer spatial resolu-
tions, added Rician noise accordingly, and calculated FA
and MD. Finally, we upsampled all scalar maps back to
the original image size and do the comparison (using
Corr, MI). The flow chart of this part can be referred to
Figure 3, the only difference is adding corresponding
Rician noise when downsampling the spatial resolution.

Longitudinal stability

We also compared the temporal stability (test/retest
reproducibility) of the three different protocols based on
scans collected 2 weeks apart. All subjects’ images (3 proto-

cols and 2 time points) were linearly registered to the
Colin27 space using the FLIRT algorithm using a 9-parame-
ter global registration and a mutual information cost func-
tion [Jenkinson and Smith, 2001; Jenkinson et al., 2002].
DTI-derived scalar maps (FA, MD) and ODF were calcu-
lated from these registered data as before. Then the TDF
framework was applied to analyze all these images, and the
diffusion profile, P* [Eq. (3), Leow et al., 2009], was deter-
mined for each voxel in each brain (FSL’s ‘‘bet’’ function
was used to extract the brain) [Smith, 2002]. The exponen-
tial isotropy (EI) can be used to quantify the randomness of
this probabilistic ensemble P*. The EI inversely measures
how certainly (reliably) we can estimate the dominant fibers
for each voxel. Thus, EI may be used to represent the infor-
mation uncertainty; it has higher values in gray matter than
white matter. EI can be calculated from Eq. (4). Then we
evaluated longitudinal reproducibility for all scalar maps
(DTI-derived FA, MD, TDF-derived EI) and the ODF across
time for all three protocols. The longitudinal reproducibility
(LR) at each voxel was computed from Eq. (8):

LRðvarÞ ¼
XN

i¼1

1

N

vartime1 � vartime2

vartime1 þ vartime2

����
���� (8)

Here var represents FA, MD and EI value for each voxel,
and N is the number of subjects (8 in this study). The lon-
gitudinal reproducibility (LR) of the ODF field at each
voxel was computed using the information-theoretic dis-
tance, sKL, from Eq. (9):

LRðODFÞ ¼
XN

i¼1

1

N
sKLðODFjtime1;ODFjtime2Þ (9)

Figure 4.

Linear least-squares estimation for SNR vs. voxel volume. Here we

show that there is a relative gain in SNR that is linear in the voxel

volume; this SNR gain followed the equation shown on the plot.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Here sKL was calculated from Eq. (6), and N is the total
number of subjects. The ODF values were sampled on a
spherical surface at 642 points determined using a recur-
sively subdivided icosahedral approximation of the unit
sphere.

Tract-based analysis

To assess how the choice of scanning protocol might
affect a standard, widely-used type of image analysis, we
examined Tract-Based Spatial Statistics (TBSS) using the
TBSS toolbox in FSL [Smith et al., 2006]. We used the soft-
ware on the human datasets (not the phantom) to assess
the longitudinal reproducibility of FA along the fiber skel-
eton for protocols P1-P3 from Table I. As our eight sub-
jects were all healthy adults, we aligned the two time
point FA images from all subjects via nonlinear transfor-
mations to a target image, which was the FA image from
ICBM young adult DTI-81 atlas (http://www.loni.
ucla.edu/ICBM/). The resulting data were then further
affinely transformed into the 1x1x1 mm3 standard MNI152
space. From the registered FA maps, we computed mean
FA skeletons. Then we defined 14 white matter ROIs along
the mean FA skeleton (Table II, Column 1). We computed
the longitudinal reproducibility of FA for each point in the
skeleton based on Eq. 8. This allowed ROI-based compari-
son of the protocols P1 � P3. For the phantom data, we
used MedINRIA to extract one main fiber bundle using
the Q-ball tractography model and parameters of this tract
were assessed for dependency on the protocol (P1 � P6
from Table I).

RESULTS AND DISCUSSION

SNR vs. Angular Resolution in Simulated Data

Figure 5 shows how the estimation error changes for the
standard DTI-derived scalar maps (FA, MD) and the
HARDI-derived ODF, (1) as the SNR increases, and (2) at
different angular resolutions. Results differ when diffusion
is modeled by a single tensor (Fig. 5a–c) or as two crossing
tensors (Fig. 5d–f). At low SNR, increasing the angular re-
solution greatly improved the estimation accuracy both for
the DTI-derived scalars and for the ODF, but this mattered
less when SNR was already high. Comparing Figure 5c
and 5f, the sKL distance (i.e., the ODF reconstruction
error) is smaller for the single- versus two-tensor simula-
tions, as poorly sampled data does a poorer job of captur-
ing fiber crossings than single fibers. This is reasonable, as
greater angular sampling is needed to estimate a more
complex diffusion profile with the same accuracy when
two tensors are present. Clearly, increasing the angular
sampling improves estimation accuracy more when SNR
is low, and when fiber crossing is present.

Angular Resolution Effects in Real Data

Figure 6 shows how angular resolution affects DTI-
derived scalar maps. Figure 6a,b show MD and FA calcu-
lated from four different angular resolution subsets. Figure
6c,d show the correlation and mutual information between
scalar maps calculated from the down-sampled data and
the original resolution data. As expected, more angular
samples are needed for FA to converge to its true value,

TABLE II. Paired t-test significance level comparing protocols for their longitudinal stability

ROIs

Comparisons

P1<P2 P1<P3 P2<P1 P2<P3 P3<P1 P3<P2

Corpus Callosum 1 1 3.82E-09 1 3.47E-33 3.77E-11
Cerebellar Peduncle 2.29E-04 0.86 1 1 0.14 7.78E-06
Cerebral Peduncle 0.01 0.44 0.99 0.99 0.56 0.01
Internal Capsule 1 1 4.69E-03 0.97 1.66E-06 0.03
Corona Radiata 2.63E-37 1.43E-06 1 1 1 4.18E-16
Posterior Thalamic Radiation 1.47E-08 1.69E-05 1 0.93 1 0.07
Sagittal Stratum 0.98 1.20E-03 0.02 1.92E-07 1 1
External Capsule 0.99 1 0.01 1 7.85E-09 8.00E-04
Cingulum 0.91 1 0.09 1 6.24E-17 8.05E-12
Fornix and stria terminalis 0.01 4.87E-11 0.99 1.00E-04 1 1
Superior Longitudinal Fasciculus 3.90E-07 0.84 1 1 0.16 2.81E-08
Fronto-Occipital Fasciculus 1.03E-04 1.71E-04 1 0.37 1 0.63
Uncinate Fasciculus 1.50E-04 0.54 1 1 0.46 1.30E-03
Tapetum 1.70E-04 1.85E-11 1 0.01 1 0.99

Here, the stability of the FA on the skeleton is assessed, in numerous ROIs used in TBSS analyses. As 6 contrasts were performed in 14
ROIs, the Bonferroni corrected significance level for these tests should be set to 0.05/(14 � 6), or 5.95 � 10�4. If a protocol outperforms
the other two, at the Bonferroni threshold, it is underlined. See text for interpretation.
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Figure 5.

This simulation shows that greater angular resolution improves

the accuracy of estimating FA, MD, and the ODF, but only when

the SNR is low. When only one tensor is present, the discrep-

ancy between the ground truth and the approximated signal is

less when the angular resolution is better (lower curves). (a–c)

show this discrepancy, d(MD), d(FA), and sKL for the single-ten-

sor situation; (d–f) show d(MD), d(FA), and sKL, for the fibers

that cross at 90	. The SNR level is chosen to vary from 5 to 50,

and the angular resolution is varied from 10 to 100. Increasing

the angular sampling improves estimation accuracy more when

SNR is low, and when fiber crossing is present—in other words,

the estimation accuracy is already relatively good in single-fiber

and high-SNR situations. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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while MD converges to its true value more quickly, as the
angular sampling is improved. The same pattern is seen
for the MI (Fig. 6d). This suggests lower angular resolution
is acceptable for computing MD relative to FA, which is
consistent with our previous study of an independent
HARDI dataset from young adults [Zhan et al., 2010b].

Figure 7 shows how angular resolution affects the accu-
racy of ODF estimates. Figure 7a shows the ODF recon-
structed from four different angular resolution subsets.
Figure 7b shows the discrepancy (sKL) between ODFs
reconstructed from the highest angular resolution data
and the downsampled versions shown in Figure 7a. As
expected, in Figure 7c, the discrepancy decreases as angu-
lar resolution increases, but with different patterns of
improvement depending on the brain region. For the cor-
pus callosum ROI, the sKL decreases more steadily com-
pared to the sKL for ROIs with known fiber crossings
in the superior longitudinal fasciculus (SLF) and corona

radiata (Fig. 7c). This agrees with our simulation study in
Section 3.1 (Figure 5c vs. 5f).

Spatial Resolution Effects in Real Brain Data

Figure 8 shows how voxel size affects DTI-derived sca-
lar maps; here we do not consider the ODF, as its recon-
struction in low spatial resolution data is complex. Figure
8a,b show FA and MD calculated at four different spatial
resolutions, with and without artificially added noise.
Figure 8c,f show plots of Corr and MI for FA and MD as
the voxel sizes vary. Corr and MI decrease monotonically
as the voxel sizes get bigger, from (2.5 mm)3 to (10 mm)3

(represented by the black curve in Figure 8c–f). As shown
in the zoomed-in insets, these effects are not monotonically
decreasing—there is initially some evidence of a slightly
better correlation as the voxel size increases, as the SNR is

Figure 6.

Angular resolution affects DTI-derived scalar maps. At the top of

the figure, we show the number of diffusion gradients (10, 22, 36,

or 48) used to estimate the MD and FA maps, shown in rows (a)

and (b). (c) Correlations are shown between between scalar

maps derived from the highest angular resolution data versus the

downsampled (lower angular resolution) data. As expected, the

FA requires more angular samples to converge to its true value,

while MD converges more quickly. (d) The MI value between sca-

lar maps calculated from original angular resolution data and from

downsampled angular resolution dataset. The MI curves are nor-

malized to their maximum value. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

r Angular Versus Spatial Resolution Trade-Offs r

r 2697 r



boosted by the bigger voxel size. Then the correlation falls
rapidly, as the voxel size is too large to correctly resolve
the details of the fiber geometry.

Longitudinal Stability

For many measures that we need to compute longitudi-
nally (such as FA), it is not entirely clear if adding gradi-
ent directions is going to be better or worse in a fixed scan
time, as the voxel size also has to be increased to keep the
scan duration the same. When adding more directions
under fixed scan duration, the voxels will eventually need
to be so large that they would encompass multiple tracts
and FA could not be reasonably obtained without severe
partial voluming errors. Conversely, the use of larger vox-
els is not necessarily a bad thing, as it does boost the SNR
for FA, which is also important for longitudinal consis-

tency and reproducibility. However, it is not obvious what
happens to the longitudinal stability of any of these meas-
ures as gradients are added and voxel sizes are varied to
equalize scan times. Figure 9 compares the longitudinal
stability of the three different protocols (described in Table
I), when our eight subjects were scanned twice over a
short interval (2 weeks apart). Maps show the mean value

of the stability, defined as abs(time 1�time 2
time 1þtime 2) for the two DTI-

derived scalars (FA, MD) and the TDF-derived EI, as well
as the mean reconstruction error (sKL) for the derived
ODF(time point1, time point2). The FA stability was nota-
bly poorer even with a relatively small reduction in the
voxel size, from 2.7 to 2.5 mm. The EI, which uses the full
set of gradients, was less dependent on the voxel size;
such a measure may be useful in studies that have to com-
bine data with different voxel sizes, such as meta-analyses
of studies that were designed independently. When voxels
are larger, measures derived from DTI (MD, FA, sKL, and

Figure 7.

Greater angular sampling improves ODF reconstruction more

when the ROI contains fiber crossings. The top row (a) shows

ODF fields calculated from datasets with different angular resolu-

tions; (b) shows the discrepancy (sKL) between the ODFs at the

highest angular resolution versus ODFs from downsampled data

with lower angular resolutions; (c,d) show sKL vs. angular resolu-

tion for two ROIs: the splenium of the corpus callosum (CC) and

for fiber crossings in the SLF (superior longitudinal fasciculus), co-

rona radiata, and corpus callosum. The ODF reconstruction error

(sKL) for the CC is much smaller than in the fiber crossing region.

In addition, the greater angular sampling offers greater improve-

ment for reducing the ODF estimation error in the ROI where

fibers cross. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]
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Figure 8.
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EI) were more reproducible over time, but partial volume
averaging can cause incorrect reductions in the estimated
FA, as well as other sources of biases and errors.

Clearly it would require enormous resources to study
this problem in its full generality, with all scan durations
being assessed. For ADNI specifically, the allotted time of
7 min was based on the feasibility of finishing a multimo-
dal acquisition with several other scans in a 30-min period
(including standard anatomical data and FLAIR assess-
ments for white matter lesions). Many other factors were
also being traded off, such as the need to collect one ver-
sus two anatomical scans, or the relative need to collect a

T2-weighted scan to rule out or quantify vascular lesions.
For the three protocols compared in this study, an upper
limit (7 min) was imposed on the scan time and the rest of
the parameters were optimized for a scan of this duration.
It must be conceded that the exact trade-off would differ if
the available scan time were 10 rather than 7 min, or any
other duration, leading to a new optimization problem to
determine the optimum imaging parameters. Even so, the
methodology of this article could be similarly applied to
longer or shorter scans. Inevitably, some general conclu-
sions would be the same as those of the current analysis:
that larger voxels would help to conserve SNR, that FA

Figure 9.

Longitudinal stability over a 2-week interval. When voxels are larger, measures derived from DTI

(MD, FA, sKL, and EI) are more reproducible over time. The more stable regions are shown in blue.

Even so, the partial volume averaging can cause incorrect reductions in the estimated FA, and can

lead to other biases and errors. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 8.

Errors in DTI-derived scalar maps as the voxel size increases.

Four increasing voxel sizes are shown (shown at the top, from left

to right: 2.5, 4, 8, and 10 mm). For each, we computed MD (a)

and FA (b) and compared their values with the measures com-

puted at the highest resolution (2.5 mm). The correlations of the

MD and FA from downsampled data versus the most accurate

measure of MD (c) and FA (d) fall rapidly as the voxel size

increases. This deteriorating correlation is found whether noise is

artificially added (red curves) or not (black curves). Similar pat-

terns are seen when MI is used to compare downsampled meas-

ures with the ground truth. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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SNR asymptotes slowly with the number of angular sam-
ples, and that the longitudinal stability of the protocols
tends to be better when larger voxels are used. It is also
important to know how the angular sampling affects the
ODFs, which we examined here. The concepts and
approach of this article are also more relevant when the
available imaging time is quite short, making trade-offs
absolutely critical to evaluate. The trade-offs matter less
when a longer acquisition time is tolerable.

One limitation of our study is that we did not assess
how coils with higher channel counts or even acceleration
might impact the attainable results. Higher channel count
coils, for example, have been shown to improve SNR.
Higher spatial resolution, in particular, is very SNR
demanding. If the phase-encode matrix is held constant,
then SNR scales as the voxel size, i.e., in proportion to the
isotropic spatial resolution (in mm) to the third power.
Since SNR only scales as the square-root of acquisition
time, higher channel count coils offer promise to improve
spatial resolution while keeping the acquisition time rea-
sonable [Ferré et al., 2012; Keil et al., 2011; Wiggins et al.,
2009].

Another limitation of this study is that we did not con-
sider a very broad range of spatial and directional resolu-
tions, so the protocols that performed best here are not
necessarily global optima for what could be achieved
where state-of-the-art technology is available. To avoid
incurring enormous cost in this preparatory study, we had
to estimate that the final ADNI DTI protocol was unlikely
to have larger voxels than 3 mm, as few state-of-the-art
studies would have lower resolution. The choice of proto-
cols was also based on experience showing that voxels
much smaller than 2 mm tend to give relatively poor SNR,
unless the scan time could be substantially increased,
which would not be practical here. As such, we performed
repeat scanning in the smallest sample of human subjects
that we expected to give robust conclusions. We also

scanned a specialized phantom using six protocols to
broaden the range of protocols assessed. As we show such
trade-offs and variability in these protocols, a more
detailed study with more time and resources available to
scan subjects in 0.1 mm increments could be of great use
to the general community; a more global optimum may be
achievable, although it is not clear that it would substan-
tially alter the findings here for multisite longitutinal
analysis.

Tract-Based Analysis

Figure 10 shows the skeleton of the mean FA map, over-
laid on a single subject’s FA map. These skeletons (and
the FA map in each case) are derived using the different
scanning protocols: P1, P2, and P3. There is no obvious
visual difference among these images. Thus we calculated
mean longitudinal reproducibility (LR) across all eight
subjects for each protocol; we also ran pairwise t-tests to
assess any evidence that FA stability was better for any
one protocol versus the others. In these tests, we examined
measures defined on the skeleton of the mean FA map, in
a set of ROIs. Table II shows the Student’s paired t-test
significance level for 14 WM ROIs when comparing three
protocols (P1–P3). The underlined in the table indicates
which specific protocol (if any) has the best longitudinal
stability in the ROIs defined on the skeleton. Future work
is needed to compare protocols in terms of their accuracy
for mapping fiber tract trajectories and connectivity matri-
ces, so the best choice among these protocols in that con-
text remains unknown.

Interestingly, in Table II, P3 (with the smallest voxels)
gave best stability for the larger tracts, such as the corpus
callosum and internal capsule, but P1 (with the most
angular samples) gave greater stability for the more dif-
fuse tracts that have a high degree of fiber crossing (corona

Figure 10.

Mean FA skeleton overlaid on individual subject’s FA for three protocols: P1, P2, and P3 (from

left to right). There is no obvious visual difference for these TBSS measures; further analysis of

longitudinal stability is in Table II. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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radiata and long association fibers). Even so, there were
exceptions to this general rule, and no protocol was a clear
and consistent ‘‘winner’’ for longitudinal stability.

To pursue this question further, we investigated a
broader range of protocols (P1-P6 from Table I) on the DTI
phantom shown in Figure 11a (Pullens et al., 2010). An
ROI was defined by hand to cover the whole fiber bundle
(Fig. 11a,b) and MedINRIA was used, with a Q-ball model,
to reconstruct the fiber pathway. Figure 11(c–h) show the
reconstructed fibers; parameters of these recovered fibers
are summarized in Table III.

In Figure 11, the reconstructed fiber pathways were
more accurate when derived from the protocols that used

a standard b-value (P1–P3); in general these gave intact
fiber bundles. As seen in panels P5 and P6, it was more
difficult to recover intact fibers from protocols with higher
b-values (from b ¼ 3,000 s/mm2) unless the voxel size was
higher, which serves to boost the SNR (P4). This is in line
with intuition, because according to the Stejskal-Tanner
equation, Sq ¼ S0 � expð�b � qT �D � qÞ, a higher b-value will
lead to smaller measured diffusion signal Sq, which is
more readily corrupted by noise [Zhan et al., 2009a], The
better performance of P4 relative to the other high b-value
scans is consistent with prior studies showing that greater
angular sampling can improve the SNR for diffusion
measures [Zhan et al., 2009b, 2010b]. In Table III, more

Figure 11.

Fiber bundles were reconstructed from a specialized DTI phan-

tom, scanned with various different protocols (P1–P6 from Table

1). (a) Photograph showing the phantom’s structure; (b) Phantom

T2 image; (c–h) fibers reconstructed with MedINRIA. The middle

row shows scans with a standard b-value (1,000 s/mm2) and the

bottom row shows scans with a higher b-value (3,000 s/mm2). In

general, the high noise at higher b-values makes it harder to recon-

struct accurate fibers (P5, P6) but this can be mitigated by using

more angular samples and larger voxels to boost SNR (P4). Over-

all, the traditional b-value of 1,000 s/mm2 gave most accurate

reconstructions. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]
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fibers are extracted at a higher spatial resolution (P3), as
the ODF tends to be sharper and less affected by partial
voluming. Even so, the higher spatial resolution data are
more corrupted by noise, and the mean fiber length is
greatest for the intermediate protocol (P2 > P3 > P1).
When the b-value was standard (1,000), the largest voxels
tended to limit the mean length of the paths, possibly due
to partial voluming (which can make the fibers hard to
track). But when the b-value was increased, the data were
more noisy overall, and the larger voxels ended up giving
longer mean fiber length and a great number of fibers (see
Table III). As such, the best voxel size for tractography
would appear to depend on the b-value, with larger voxels
being helpful to limit the effects of noise at high b-values.

As shown in the bottom row of Figure 11, scans with
higher b-values tended to be noisier, when other factors
were held constant. However, when angular resolution
was highest (P4), the noise was mitigated to some extent;
the higher b-value protocol gave better reconstruction
when the number of gradients was also high (P4). As a
result, high b-value scans should be reasonable to use, but
due to their higher noise level, there is a tendency to need
larger voxels to increase the SNR. If there is a need to
resolve thinner tracts or more spatial detail, a reasonable
trade-off is to keep the diffusion weighting to more stand-
ard levels (such as 1,000 s/mm2) but allow smaller voxels.
We note that the final 9-min protocol used for ADNI was
2 min longer than originally planned, but the reason for
the time increase was mainly to increase the FOV. This
was found to be necessary to avoid occasional cropping of
brain tissue that was happening at sites that began to use
the 7-min protocol.

In prior work, we also evaluated the benefits of using a
higher b-value—or even multiple b-values at once, such as
the 1,000, 2,000, and 3,000 s/mm2 in our recent study
using ‘‘staggered HYDI’’ or hybrid diffusion imaging
[Zhan et al., 2011]. When comparing the spherical diffu-
sion functions (orientation density functions or ODFs)
recovered at different b-values, we noticed that there was
a higher uncertainty in estimating fiber eigenvalues but a

more precise resolution of fiber directions as b-values were
increased. This is mainly due to the relative enhancement
of diffusion along axonal fibers at higher b-values, and rel-
ative suppression of random nonaxonal diffusion (see
related work on CHARMED, by Assaf et al., 2005 and DSI,
by Wedeen et al., 2005). It could be argued that the mea-
surement of FA is more critical in AD biomarker studies
than accurate recovery of tract directions, but clearly
trade-offs are involved and higher b-values may be of
interest in AD studies.

Involuntary Head Motion Evaluation

Prior studies have discussed how the physiological noise
affects the DTI in population analysis [Walker et al., 2011].
Here we decided to confirm that head motion was compa-
rable for the different protocols, to make sure that the pro-
tocol differences were not due to unmodeled differences in
the amount of head motion. Motion in a time-series of dif-
fusion weighted images is typically estimated by retro-
spectively aligning all the diffusion gradient images to a
nondiffusion-sensitized baseline image. Clearly this may
not recover all the motion, as the registration process has
some error itself, but it is a fair estimate of the head
motion present in the time-series. We estimated the
motion for each subject and protocol by affinely aligning
each diffusion-weighted image to a mean nondiffusion
sensitized image (b0). We then defined the mean transla-
tion (MT) for the i-th diffusion-weighted image as

MTi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd2

x þ d2
y þ d2

zÞ
q

; then the MT for the whole dataset

is defined as MT ¼ 1
N RN

i¼1MTi, in which i ¼ 1,2, : : : ,N and

N is the total number of diffusion-weighted images. We
found the mean MT across the eight subjects in our study
and two time points; values were 2.80 mm, 2.31 mm, and
2.04 mm for the three protocols (P1, P2, and P3). Paired
two-tailed t tests between P1 and P2, P1, and P3 and P2
and P3 motion levels detected no protocol-related differen-
ces in the average amount of head motion at the 5% signif-
icance level (P ¼ 0.34, 0.08, and 0.19 respectively). This is
reasonable, as all scans took the same amount of time.
Even so, we acknowledge that motion levels may affect
the computed value of FA, even after motion correction
(tending to reduce FA if motion is random and isotropic).

CONCLUSIONS

Clearly, if a major goal of a DTI study is to measure FA
and compare it across subjects, it may be more important
to minimize the error in estimating the diffusion eigenval-
ues than the error in estimating their dominant directions,
although both are clearly important. Many studies now
use voxel-based methods to compare FA across groups,
using methods such as ‘‘tract based spatial statistics’’
[TBSS: Smith et al., 2006] or whole-brain statistical para-
metric maps [Braskie et al., 2011; Jahanshad et al., 2012b].

TABLE III. Fiber bundle parameters for different

protocols

P1 P2 P3 P4 P5 P6

Number of
fibers

185 253 326 138 102 134

Min length
(mm)

10.50 12.15 14.35 10.50 10.12 10.62

Max length
(mm)

134.18 130.27 128.10 117.74 93.13 98.73

Mean length
(mm)

78.88 95.55 92.09 69.04 38.78 51.31

Std length
(mm)

34.80 30.54 31.92 28.18 15.22 25.27

See text for interpretation.
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For ADNI, we expected FA maps, and regional summaries
of FA, to be a key target of analysis as they show robust
differences between groups of MCI and AD patients and
matched controls. In the future however, tractography and
even network-based measures of fiber connectivity [Nir et
al., 2012] may show promise for diagnosis and for predict-
ing future brain and cognitive changes as we age. It must
be conceded that these acquisition protocols are not opti-
mized for tractography-based connectivity studies, but are
more suited for TBSS type voxelwise analyses.

Our study had three main conclusions. First, in the three
scanning protocols with fixed scan time (7 min), scans
with larger voxels gave better longitudinal stability (Fig. 9)
and higher SNR (Fig. 4). In line with theoretical predic-
tions, we verified empirically that the SNR went up by
about 50% as the voxel size went up from 2.5 mm to
3mm, and the relationship between SNR and voxel volume
was linear. This is worth considering practically, as there
is a common tendency to favor scans with smaller voxels,
but this may not be optimal when scan times limit the
available SNR. Even so, errors in the derived measures
increase as more tissues of different kinds (e.g., GM and
WM), and more fibers with different dominant directions
are included in the same voxel. The underestimation of
FA, in particular, can be addressed to some extent by
using a ‘‘beyond-tensor’’ model of diffusion, such as the
tensor distribution function model used to compute ODFs;
the same model may be used to compute an adjusted mea-
sure of FA [Leow et al., 2009, Zhan et al., 2009a, 2010c].

Second, we performed simulations to separately assess
the effects of angular and spatial resolution, which were
correlated in the scans we collected as one was deliber-
ately reduced to improve the other. In these simulations,
better angular sampling helped to resolve the details of
the diffusion geometry—but this effect was most evident
when (1) SNR was low, and (2) more than one fiber per
voxel was present. In Figure 5, our calibration curves
show that show the angular sampling suppresses recon-
struction errors in the ODF, even well beyond the number
of gradients that would typically suffice to estimate FA
and MD (with further improvements with >100
gradients).

Our third conclusion was that around 20–30 diffusion
gradients were helpful for resolving fiber crossing geome-
tries (Fig. 7). There were also greater ODF estimation
errors when using 2.5 mm versus 3.0 mm voxels.

This study has strengths and limitations. Among its
strengths are the scanning of multiple subjects (8), each
with several protocols and repeated scans, allowing assess-
ments of longitudinal reproducibility. As the effects of
angular and spatial resolution were traded off and were
confounded in the real data, we also showed simulations
and artificially resampled real data to separate the effects
of voxel size and angular sampling. Among the limitations
of the study are that we did not compare the protocols for
mapping fiber tract trajectories and connectivity matrices.
Although we plan such a study, it was not as immediate a

goal as assessing the temporal stability of the most com-
monly derived diffusion indices, FA, MD, and the
HARDI-type measures such as the ODF.

The true value of DTI scanning, and the protocol used
to collect it, is really only clear when the statistical out-
comes of the study are known. This may include localizing
brain regions or connections that differ between patients
and controls, or discriminating people with MCI who will
imminently develop AD. As the statistical power of the
study depends on the question asked and the image analy-
sis too, it is not possible to infer that the best DTI protocol
in terms of SNR and reproducibility will be the one that
gives most powerful results for discriminating disease. In
addition, some SNR differences can arise from the varia-
tion in the TR, but this effect is expected to be small as the
TRs are all relatively long compared with the T1 of WM
and GM.

In reality, the final protocol selected for the diffusion
imaging portion of ADNI was the 2.7-mm protocol, as it
offered a reasonable trade-off among the benefits of large
voxels (higher SNR and longitudinal stability), reasonable
angular detail for ODF reconstruction, and acceptable spa-
tial detail for reducing the partial volume effect. A further
modification was made, after this study was performed, to
increase the field-of-view, as the pilot protocols had led to
cropping of brain tissue at several sites. This led to a DTI
protocol lasting around 9 min, which is still feasible for a
clinical study. Financial factors were also relevant as lon-
ger scans may cost more to collect, depending on how
scanner time is billed.

Depending on the goals of the particular study, a more
advanced HARDI protocol or longer scan may be feasible,
but this study offers some practical guidelines for people
developing diffusion protocols for clinical populations.
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