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Abstract Current cancer therapies including cytotoxic che-
motherapy, radiation and hyperthermic therapy induce acute
proteotoxic stress in tumour cells. A major challenge to
cancer therapeutic efficacy is the recurrence of therapy-
resistant tumours and how to overcome their emergence.
The current study examines the concept that tumour cell
exposure to acute proteotoxic stress results in the acquisition
of a more advanced and aggressive cancer cell phenotype.
Specifically, we determined whether heat stress resulted in
an epithelial-to-mesenchymal transition (EMT) and/or the
enhancement of cell migration, components of an advanced
and therapeutically resistant cancer phenotype. We identi-
fied that heat stress enhanced cell migration in both the lung
A549, and breast MDA-MB-468 human adenocarcinoma
cell lines, with A549 cells also undergoing a partial EMT.
Moreover, in an in vivo model of thermally ablated liver
metastases of the mouse colorectal MoCR cell line, immu-
nohistological analysis of classical EMT markers demon-
strated a shift to a more mesenchymal phenotype in the
surviving tumour fraction, further demonstrating that ther-
mal stress can induce epithelial plasticity. To identify a
mechanism by which thermal stress modulates epithelial
plasticity, we examined whether the major transcriptional

regulator of the heat shock response, heat shock factor 1
(HSF1), was a required component. Knockdown of HSF1 in
the A549 model did not prevent the associated morphological
changes or enhanced migratory profile of heat stressed cells.
Therefore, this study provides evidence that heat stress signif-
icantly impacts upon cancer cell epithelial plasticity and the
migratory phenotype independent of HSF1. These findings
further our understanding of novel biological downstream
effects of heat stress and their potential independence from
the classical heat shock pathway.
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Introduction

The characteristic intrinsic properties of tumour cells as well
as the tumour microenvironment lead to a significant and
chronic disruption of protein homeostasis within the cancer
cell. Intrinsic features of the tumour cell such as aneuploidy,
oxidative stress, metabolic stress and high levels of mutant
protein expression, combined with tumour microenvironmen-
tal stressors that can include hypoxia, nutrient deprivation and
acidosis, generate high levels of misfolded proteins (Xie and
Huang 2003; Dai et al. 2012). Furthermore, other forms of
proteotoxic stress can occur acutely upon the cancer cell via
the administration of cancer treatments such as cytotoxic
chemotherapy, radiation treatment and hyperthermic therapy
(Rylander et al. 2005). The enhanced proteotoxic stress profile
generated by these treatments, combined with an inability of
the cancer cell to resolve excessive disruptions to protein
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homeostasis, is one mode by which these therapies can bring
about cancer cell death. Utilisation of ‘proteotoxic stress over-
load’ as an inducer of cancer cell death is the rationale for the
use of proteasome inhibitors such as Velcade®, in the treat-
ment of a variety of cancer types (Neznanov et al. 2011;
Workman and Davies 2011; Dou and Li 1999). However,
while tumour cells show increased sensitivity to enhanced
proteotoxic stresses, undergoing cell death more readily than
non-transformed cells, tumour cells that persist following
these treatments have been shown to characteristically exhibit
a more advanced malignant phenotype and may prove prob-
lematic in the event of tumour relapse (Blagosklonny 2005a).

A major obstacle to effective cancer therapy is tumour
recurrence, with the subsequent emergence of tumour cells
that are significantly less responsive to treatment, often exhib-
iting enhanced aggressive phenotypes (Blagosklonny 2005a,
b). The importance of determining the underlying mecha-
nisms that enable tumour recurrence and their refractory na-
ture to treatments is exemplified by the fact that clinical
response to therapy often does not correlate with extended
patient overall survival in advanced cancers (Huff et al. 2006;
Blagosklonny 2005b). Recent studies have shown that in
addition to activating pathways that confer enhanced cell
survival, various forms of proteotoxic stress can promote
properties associated with a more aggressive cell phenotype
such as enhanced cell migration, invasion and epithelial-to-
mesenchymal transition (EMT; Cannito et al. 2008; Mak et al.
2010; Zhong et al. 2011; Chakraborty et al. 2010; Tamminen
et al. 2012; Forsyth et al. 2010). These studies suggest that in
the likely event that therapies such as hyperthermic chemo-
therapy, radiation therapy and chemotherapeutics are not suf-
ficient in causing tumour cell death, the proteotoxic stress
undergone by surviving cells may actively progress these cells
towards more aggressive phenotypes. Indeed, inhibition of
angiogenesis that promotes tumour hypoxia has been shown
to not only have both anti-tumour effects but can also promote
tumour progression and metastasis (Ebos et al. 2009; Paez-
Ribes et al. 2009). These findings emphasise proteotoxic
stress as a potent mediator of cancer progression and highlight
the importance of elucidating the extent to which pathways
activated by proteotoxic stress contribute to aggressive tumour
phenotypes. Whether the activation of stress pathways such as
the heat shock response (HSR) or the unfolded protein re-
sponse (UPR) promote aggressive tumour phenotypes still
remains largely unknown.

The HSR is a major cellular stress pathway that is acti-
vated in response to increased levels of misfolded proteins.
Activation of the HSR results in the increased expression of
a family of molecular chaperone proteins known as the Heat
Shock Proteins (HSPs). HSPs function to ensure the correct
conformation of cellular proteins and during stress, promote
cell survival through maintaining protein homeostasis and
inhibiting apoptosis (Samali and Cotter 1996; Jolly and

Morimoto 2000). Due to the general ‘stress phenotype’
of tumour cells, they have been shown to have a higher
dependency upon HSP function, reflected by the in-
creased expression levels of HSPs in numerous forms
of human cancer (Khalil et al. 2011; Ciocca and
Calderwood 2005; Dai et al. 2012).

Heat shock factor 1 (HSF1) is the ‘master’ transcriptional
regulator of HSPs and essential for stress-induced activation
of HSP genes during the HSR (McMillan et al. 1998; Anckar
and Sistonen 2011; Xiao et al. 1999). Both increased levels of
HSF1 expression and activation have been correlated with
more aggressive forms of human cancer, and HSF1 has con-
sequently been proposed as an attractive therapeutic target for
cancer (Whitesell and Lindquist 2009; Santagata et al. 2011;
Dai et al. 2012). Moreover, recent studies have revealed that
HSF1 regulates transcriptional targets that extend well beyond
the induction of classical HSP genes, these include IL-6,
MDR-1, NFATc2 and CXCL8/IL-8, with gene expression
microarray and ChIP analysis providing evidence for many
more (Maity et al. 2011; Singh et al. 2008; Vilaboa et al. 2000;
Page et al. 2006; Hayashida et al. 2010; Trinklein et al. 2004).
Consistent with its broad transcriptional landscape, HSF1 is
known to have a diverse range of physiological functions,
including the modulation of cell migration, inflammatory
and metabolic pathway regulation (Ianaro et al. 2001;
O’Callaghan-Sunol and Sherman 2006; Dai et al. 2007;
Xiao et al. 1999). Hyperthermic, radiation therapy and many
chemotherapeutics are known to be potent activators of both
HSF1 and the HSR (Nikfarjam et al. 2005; Rylander et al.
2005); however, whether activation of HSF1 during the ad-
ministration of these therapies confers tumour cells with en-
hanced malignant properties in addition to increased survival
is currently unknown.

This study seeks to investigate whether increased proteo-
toxic stress induced by heat shock or proteasome inhibition
can modulate cancer cell migration and epithelial plasticity
through the activation of HSF1.

Materials and methods

Cell culture, heat shock and drug treatments

Both the lung A549 and the breast MDA-MB-468 human
adenocarcinoma cell lines were grown in Dulbecco’s mod-
ified Eagle’s medium (DMEM; Gibco) supplemented with
10 % FBS (Thermo Scientific) and 1 % antimycotics/anti-
biotics (Gibco cat. 15240–062). Cells were maintained at
37 °C, 5 % CO2 in a humidified environment. Heat shock
was performed by immersion into a water bath pre-heated in
advance to achieve a stable temperature of 42 °C. Growth
media was replaced with media warmed to 42 °C and the
plates or flask were sealed with parafilm and immersed for the
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indicated period of time. Media was then replaced with growth
media at 37 °C and incubated under standard growth condi-
tions for the indicated recovery time. MG132 (Calbiochem)
was resuspended in DMSO. Following MG132 treatment,
cells were rinsed twice with phosphate buffered saline (PBS)
and fresh media added after which the cells were incubated
under standard growth conditions for the indicated recovery
times.

Western blot analysis

Cells were rinsed with PBS and lysed with radioimmunopre-
cipitation buffer containing phosphatase and protease inhibi-
tor cocktails (Sigma). Samples were sonicated four times for
30 s in ice-cold water in a bench top sonicating waterbath
(Thermoline PowerSonic405) and clarified by centrifugation.
Protein quantification was performed using the BCA protein
assay kit (Pierce) as per manufacturer’s instructions. Protein
(10 μg) was loaded onto a 4–20 % Tris–glycine polyacryl-
amide gradient gel (NuSep), transferred for 120 min at 90 V
(Hoefer apparatus) to Immobilon-P PVDF membrane
(Millipore). Membranes were blocked in 3 % skimmed
milk/TBS+0.05 % tween (TBST) for 30 min and then anti-
bodies incubated either overnight at 4 °C or 1-h room temper-
ature. The following antibodies were used; N-cadherin (Cell
signalling 4061), E-cadherin (BD-610181), pan-actin
(Neomarkers MS-1295-P), HSPA1A (HSP70-1; AbCam
ab47455), HSP47 (AbCam ab13510), vimentin (abcam
ab71144), HSF1 (Enzo ADI-SPA-901 or Epitomics 2043-1),
HSPB1 (HSP27; Enzo ADI-SPA-800), HSPH1 (HSP105;
Santa Cruz sc-6241) and HSF1 pS326 (Epitomics 2092-1).
Unbound primary and horseradish peroxidase (HRP)-conju-
gated secondary (Thermo Scientific) antibodies were removed
by washing in TBST, then incubated in Super Signal West
Pico Chemiluminescent Substrate (Pierce) for 7 min followed
by exposure to film (GE healthcare or Fuji Film) or imaged
using Syngene G-Box ChemiXL imaging system.

Microchemotaxis migration assay

The microchemotaxis assay was performed as previously
described using 8 μm (A549) or 12 μm (MDA-MB-468)
collagen IV-coated membranes (Sigma; Price et al. 2005;
Kouspou and Price 2011). Briefly, cells were counted and
seeded at equal numbers in a T75 flask (Nunc) 48 h prior to
the assay to achieve a confluence of 50–70 % on the day of
the assay. The proteotoxic stress (heat shock or MG132
treatment) was performed 21–24 h prior to the chemotaxis
assay. Cells were lifted non-enzymatically by incubation for
15 min in 1× PBS+EDTA, washed three times with 0.1 %
bovine serum albumin (BSA; Sigma) serum-free DMEM
and then resuspended at equal concentrations (0.8–1.0×
106cells/ml). The lower wells of the microchemotaxis

chamber (Neuroprobe) were loaded with 10 ng/ml epider-
mal growth factor (EGF; BD cat. 354052) in 0.1 % BSA
DMEM as the chemoattractant or 0.1 % BSA DMEM as the
negative control. Cells were loaded into the upper wells of
the apparatus and incubated for 3.5–4 h at 37 °C, 5 % CO2.
The chamber was then disassembled, the membrane was
removed and cells were fixed in 100 % methanol for
2 min, followed by staining in Quickdip I for 1 min and
QuickDip II (Fronine) for 2 min; the membrane was then
mounted onto a glass slide and non-migrated cells were
wiped off with a wet tissue. Migrated cells were imaged
at ×200 magnification on CKX41 microscope (Olympus) and
counted using ImageJ software.

Quantitative RT-PCR

Following 4 h of recovery after heat shock, total RNA was
isolated using the Qiagen RNeasy kit according to manufac-
turer’s instructions. Total RNA was quantified by spectropho-
tometer and 2 μg of RNA was reverse-transcribed using
SuperScript III Reverse-Transcriptase (Invitrogen). cDNA
(10 ng) was added to the qPCR reaction using Platinum
SYBR Green qPCR SuperMix-UDG (Invitrogen). Samples
were loaded into Rotorgene 3000 with cycle conditions hold
time: 2 min, 95 °C cycle (95 °C, 10 s; 60 °C, 15 s; 72 °C, 20 s).
Data was analysed using the LinReg PCR software, as outlined
in Ruijter et al. (2009). The following primers were used
(Sigma): human CDH1 forward—TGCCCCCAGAGGATG
ACACCC, reverse—CCCCTGTGCAGCTGGCTCAA and
Vimentin forward—AGGCGAGGAGAGCAGGATTTCT
CTG, reverse—ATTGCTGCACTGAGTGTGTGCAA.
These genes were normalised to the house keeping gene
RPL32 forward—CAGGGTTCGTAGAAGATTCAAGGG,
reverse—CTTGGAGGAAACATTGTCAGCGATC.

shRNAmir retroviral vectors and delivery

HSF1 (NM_005526.2)-targeted siRNA sequences were
designed using ‘Designer of Small Interfering RNAs-
DSIR’ (http://biodev.extra.cea.fr/DSIR/DSIR.html) and
these sequences were used to generate shRNA through the
subsequent use of RNAi Central (http://katahdin.cshl.org:9331/
siRNA/RNAi.cgi?type0shRNA). The shRNAmir(2) (target re-
gion 956–976: AACCCATCATCTCCGACATCAC),
shRNAmir(4) (target region 2010–2030: CAGGTTGTTC
ATAGTCAGAAT) and Scramble (TCTCGCTTGGG
CGAGAGTAA) oligomers were cloned into the retroviral
MSCV-LMP vector (Open Biosystems, Thermo Scientific).
HEK293T cells were transiently transfected with pVpack-
Ampho (Agilent Technologies) and LMP vectors using
Lipofectamine LTX reagent (Invitrogen). The media was
replaced after 16 and 24 h; later, the retrovirus-conditioned
media was collected and filtered using a 0.45-μm filter. A549
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cells in log-phase growth were transduced by adding virus-
containing media for a period of 24 h with the addition of
10 μg/ml of polybrene. Cells were then grown without virus
and transduced cells were selected based on green fluorescent
protein (GFP) expression using FACS (Flowcore, Monash
University); selection gates were chosen to equalise GFP fluo-
rescence between knockdown and scramble controls.

Immunofluorescence and microscopy

A549 cells were cultured on 13-mm coverslips in a 24-well
plate. Prior to fixation, cells were rinsed twice in PBS fol-
lowed by addition of 4 % paraformaldehyde for 15 min at 37 °
C. Cells were permeabilised with 0.1 % Triton-X for 10min at
room temperature (RT) and blocked with 10 % FBS/PBS for
30 min at RT. E-cadherin antibody (BD) was added at 1:1,000
dilution overnight at 4 °C. Unbound antibodywas removed by
washing with PBS and an alexa-fluor 488 conjugated anti-
mouse secondary antibody (Invitrogen) at 1:2,500 dilution
was added. DAPI (Invitrogen D1306) was included as a
nuclear stain and Texas Red-Phalloidin (Invitrogen T7471)
to stain actin. Cells were imaged on a Nikon C1 confocal
microscope with ×400 magnification. Analysis of E-cadherin
localisation was performed using ImageJ software; eight 2-
day cross-sections per cell, with total 25 cells chosen at
random for each sample from five different random fields
were measured using ROIs selected based on actin staining
to determine sites of cell junctions. Measurements were aver-
aged and then normalised to the values obtained for the centre
of the cell. All phase contrast images were taken on a Nikon
Eclipse microscope at ×200 magnification.

Thermal ablation tumour treatment and analysis

Formalin-fixed specimens of thermally ablated colorectal liver
metastases were examined by immunohistochemistry for heat
shock effects. Thermal ablation (TA) of tumour metastases
was carried out on a murine model of colorectal liver metas-
tasis in CBA mice as reported previously (Nikfarjam et al.
2005). In brief, thermal ablation was performed with a diode
laser 400-μm bare tip optical quartz fibre (D-6100-BF,
Dornier MedTech Laser GmbH, Germany), applying 40 J of
power per tumour (20 s at 2 W). Average tissue temperatures
reach 65 °C adjacent to the fibre site without causing tissue
charring. For the day 0 time point, the whole liver was re-
moved immediately after TA application and samples collect-
ed. For other time points, the abdomen was closed with
sutures and the animals allowed to recover until culled at
specific time points following TA treatment. In control ani-
mals, a sham ablation was performed by inserting the probe
into the tumour but with no activation of the probe being
applied. For this study, changes in EMT markers were only
investigated at 24 h after treatment. In a previous study,

HSPA1A levels were found to peak at 24 h after TA treatment
(Nikfarjam et al. 2005).

Immunohistochemistry

Formalin-fixed paraffin-embedded 4-μm-thick sections of tis-
sue were deparaffinised and rehydrated using standard techni-
ques. A polymer labelling kit was used for immunostaining
according to the manufacturer’s instructions (Dako EnVision
Plus, Dako). Endogenous peroxidases were blocked by incu-
bation in 3 % hydrogen peroxide for 30 min at RT. Antigen
retrieval for the detection of E-cadherin was performed by
incubation in Citrate buffer (pH 6) at 99–100 °C then allowed
to cool at RT for 20 min. Antigen retrieval for detection of
Zeb1 was performed by incubation in Tris buffer (pH 7.4) at
99–100 °C then allowed to cool at RT for 20min. Normal goat
serum (20 %) was used to block non-specific binding. Tissue
sections were incubated with respective primary antibodies,
E-cadherin (sc-7870, 1:500) and Zeb1 (sc-25388, 1:200) (both
antibodies obtained from Santa Cruz Biotechnology,
ThermoFisher Scientific) for 1 h at 37 °C then overnight at
4 °C. For negative controls, sections were incubated with non-
immune rabbit IgG only (DakoCytomation, Glostrup) at the
same concentration as the primary antibody. Dako EnVision
kit was then used containing goat anti-rabbit immunoglobu-
lins (IgG) coupled with HRP (EnVision Plus, Dako, Australia)
according to manufacturer’s instruction. Each incubation step
was followed by two 5-min washes with TBS+0.05 % Tween
20. Positive cells with intense staining were identified by
incubation with diaminobenzidine solution for 5 min.

Statistical analysis

Data is presented as mean±SD or SEM. Student’s t tests
were conducted to determine whether the treatment group
was statistically significant compared to controls. * p<0.05,
** p<0.01 and *** p<0.001.

Results

Heat shock stimulates enhanced cell migration in the A549
and MDA-MB-468 cell lines

To determine the conditions in which the HSR is activated in
both the lung A549 and the breast MDA-MB-468 human
adenocarcinoma cell lines, cells were treated at 42 °C for 15,
30 and 45 min (Fig. 1a). Each condition efficiently activated
HSF1 as detected by its increased phosphorylation status at
serine 326, the shift in its band size and the increased expres-
sion of HSPs (Fig. 1a; Guettouche et al. 2005). Generally,
higher levels of HSP induction correlated with longer treat-
ment time. The treatment of both cell types at 42 °C for 30min
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gave a strong induction of the HSR with very little morpho-
logical signs of cellular toxicity which was evident with
longer treatment times. Therefore, a heat stress of 42 °C for
30 min with a 24-h recovery period was used in subsequent
experiments.

The migratory and chemotactic properties of a cancer cell
closely reflect its invasive and metastatic potential (Condeelis
et al. 2005; Wang et al. 2005). Therefore, to investigate the
effects of heat shock upon mediating advanced cancer pheno-
types, we examined the effects of this proteotoxic stress upon
the migratory capacity of the cell lines. We utilised a standard
48-well microchemotaxis assay to determine cell migration in
the A549 and the MDA-MB-468 cell lines after heat shock
treatment and recovery. Although no alteration in the back-
ground migration of the cell lines was detected, as determined
by use of the 0.1 % BSA control, upon heat shock, the
chemotactic migration towards EGF of both cell types was
greatly enhanced (Fig. 1b).

Heat shock stimulates mesenchymal properties in the A549
cell line

One mechanism by which carcinoma cells acquire a migra-
tory phenotype is through the induction of an epithelial-to-
mesenchymal transition (EMT). An EMT is defined by the
loss of epithelial–cell polarity and cell–cell adhesion, cou-
pled with enhanced cell migration, resistance to apoptosis,
invasiveness and enhanced extracellular matrix remodelling
properties (Zeisberg and Neilson 2009). In vitro, an EMT
can be characterised through enhanced cell migration—a
change from a cuboidal to elongated cell morphology and
at the protein level—downregulation of epithelial markers
such as E-cadherin and increased expression of mesenchy-
mal makers such as Vimentin, HSP47, Zeb1 and N-cadherin
(Thiery and Sleeman 2006; Zeisberg and Neilson 2009). E-
cadherin is a cell adhesion molecule that is localised at the
adherens junctions of epithelial cells and is responsible for
cell–cell adhesion of neighbouring cells. Its peripheral cel-
lular localization is a defining marker of epithelial morphol-
ogy (Schmalhofer et al. 2009).

Therefore, we sought to characterise whether enhanced
cell migration following heat shock was coupled to a shift
towards a more mesenchymal cell phenotype indicative of
an EMT. To achieve this, we examined cell morphological
changes in conjunction with alterations in classical EMT
marker expression and localization. Both the A549 and the
MDA-MB-468 cell lines have an epithelial phenotype and
have both been used as in vitro models for EMT (Lo et al.
2007; Kasai et al. 2005). Following a 24-h period of recov-
ery from heat shock, A549 cells displayed reduced cell–cell
contacts and had undergone scattering (Fig. 2a). In contrast
to the A549 cells, little morphological change was observed
in the MDA-MB-468 model (Fig. 2a). Consistent with the
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morphological alterations in the A549 cell, Western blot
analysis revealed that the epithelial marker, E-cadherin,
was significantly reduced following heat shock (Fig. 2b)
and mRNA levels of E-cadherin were also observed to be
decreased (Fig. 2c). Immunofluorescent staining of E-
cadherin revealed that heat shock partially alters the local-
isation of E-cadherin with a trend towards reduced levels of
the molecule being present at the cell periphery/cell–cell
junction (Fig. 2d). In addition to E-cadherin, analysis of
mesenchymal marker expression revealed that HSP47 levels
were significantly increased following heat shock in the
A549 model. However, no significant increase in N-
cadherin or vimentin expression at the protein level (not
shown) or at the level of gene expression was observed
(Fig. 2c). Taken together, these results indicate a partial loss
of epithelial properties in the A549 model following heat
shock rather than a full transition towards a mesenchymal
phenotype. In contrast to the A549 model, the induction of
HSP47 and reduced E-cadherin expression following heat
shock was not significant in the MDA-MB-468 model.
Therefore, while both A549 and MDA-MB-468 cells
exhibited enhanced cell migration upon heat shock, changes
in cellular morphology and marker expression appeared to
be cell line specific.

Thermal ablation treatment induces EMT in residual tumour
fraction

Thermal ablation is used in the clinic to destroy tumours by
heat application. In a previous study, thermal ablation of
murine colorectal liver metastases (CRCLM) was shown to
induce the upregulation of HSPA1A in residual tumour cells
that peaked at 24 h post-treatment (Nikfarjam et al. 2005). In
the present study, we used archival tissues from a previous
investigation (Fifis et al. 2011) to determine whether ther-
mal ablation stimulated an EMT in the residual tumour
fraction. Immunohistochemical analysis demonstrated that
untreated tumours expressed high levels of E-cadherin
(Fig. 3a) and minimal Zeb1 (Fig. 3b); however, strong

Zeb1 expression was observed in infiltrating cells surround-
ing the tumour nodules (Fig. 3b inset). At 24 h post-TA
treatment, the surviving tumour fraction had reduced E-
cadherin expression (Fig 3c and inset), while Zeb1 (E-cad-
herin transcription repressor) expression was reciprocally
increased within the cytoplasm and nuclei of surviving
tumour cells following TA treatment (Fig. 3d and inset)
indicating that the surviving residual tumour fraction had
undergone an EMT.

Heat shock induced changes in cell morphology; E-cadherin
expression and enhanced migration are not dependent upon
heat shock factor 1

As HSF1 is the major transcriptional regulator of the HSR,
we wanted to determine whether it was mechanistically
involved in the heat stress-induced alterations to cell migra-
tion, morphology and EMT marker expression levels. To
achieve this we utilised HSF1-targeted shRNAmir retroviral
constructs that were stably expressed in the A549 cell line
enabling the constitutive knockdown of HSF1 in these cells
(Fig. 4a). Western blot analysis of HSF1 knockdown cells in
comparison to control cells showed reduced protein expres-
sion of HSF1 transcriptional targets HSPH1 (HSP105),
HSPA1A (HSP70-1) and HSPB1 (HSP27) under basal con-
ditions as well as following heat shock (Fig. 4a). However,
despite HSF1 knockdown cells being inhibited in their abil-
ity to efficiently induce HSP expression, administration of
heat shock to the cells was still able to induce a scattered
morphology (Fig. 4b) and reduce E-cadherin expression
(Fig. 4c). HSP47 induction did not occur in response to heat
shock in either of the knockdown cell lines, indicating that
HSP47 expression was not linked to E-cadherin downregu-
lation nor essential for the enhanced migratory phenotype
induced by heat shock. Furthermore, despite the knockdown
of HSF1, heat shock was still able to enhance chemotactic
cell migration in the A549 cells (Fig. 4d). Thus, these results
indicated that the changes to cellular morphology and the
enhanced migratory capacity of the A549 cells induced by
heat shock occur independently of HSF1.

Proteotoxic stress through proteasome inhibition induces
changes in cell morphology and enhanced migration that
are heat shock factor 1 independent

To further investigate a role of proteotoxic stress in modu-
lating epithelial plasticity and the promotion of advanced
cancer phenotypes, we examined the phenotypic effects
induced by proteasome inhibition using the compound
MG132 in the A549 cell line. Proteasome inhibition results
in an accumulation of misfolded and dysfunctional proteins,
resulting in HSF1 and HSR activation (Workman and
Davies 2011). Previously, proteasome inhibition has been

�Fig. 2 Heat shock induces alterations in EMT marker expression,
localisation and cell morphology in A549 lung adenocarcinoma
cells. a Cell scattering and change in morphology in heat-shocked
A549 cell following 24 h of recovery, no distinct change is seen
in the MDA-MB-468 cells, scale bar 100 μm. b Heat shock
reduces the protein expression of the epithelial marker E-
cadherin following 24 h of recovery in A549 cells. Densitometry
represents the average fold change ±SD normalised to the loading
control of actin (n03). c RT-qPCR showing downregulation of
expression of the E-cadherin (CDH1) gene following 4 h of
recovery. The graph represents fold change ±SD normalised to
the RPL32 control gene (n03). d Heat shock induces altered levels
and localisation of E-cadherin in A549 cells following 24-h recovery. The
graph represents quantified E-cadherin distribution across the cell, aver-
age ±SEM, (n03), scale bar 25 μm, *p<0.05, **p<0.01
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shown to be both inductive and inhibitory with respect to the
EMT (Mak et al. 2010; Baritaki et al. 2009). The concen-
tration of MG132 was initially optimised for a 5-h treatment
period to enable a potent HSR to be induced. Treatment with
2 μM of MG132 over a 5-h period, resulted in a strong
activation of HSF1 as indicated by increased phosphoryla-
tion of HSF1 at serine 326 and induction of HSPB1 expres-
sion after a 24-h recovery period (Fig. 5a). This treatment
regime was effective in enhancing the chemotactic cell mi-
gration (Fig. 5b) and inducing a morphological shift towards
a more mesenchymal phenotype of the parental A549 cells
(Fig. 5c); however, no significant changes were observed in
EMT marker expression (Fig. 5c). To investigate whether
activation of HSF1 during proteasome inhibition mediated
the observed phenotypic changes, we utilised the A549
HSF1 knockdown cells (Fig. 4a). As with heat shock, it
was found that the HSF1 knockdown cells were unable to
induce significant levels of HSP expression upon MG132
treatment (Fig. 5d). However, despite the effective knock-
down of HSF1, MG132 was still able to induce the morpho-
logical changes towards a more mesenchymal phenotype
(Fig. 5e) and enhance the migration of the A549 cell line
(Fig. 5f). Therefore, as with heat stress, the phenotypic

alterations induced by proteasome inhibition were inde-
pendent of HSF1 in the A549 cell line.

Discussion

Activation of proteotoxic stress pathways such as the HSR
have been proposed to not only support tumour cell survival
following a variety of insults but may also be a major factor
in promoting tumour progression (Dai et al. 2007; Rylander
et al. 2005). Activation of the transcription factor, HSF1, is
synonymous with HSR induction; however, in addition to
its ability to confer enhanced survival of cells, HSF1 can
also regulate many other cellular processes. This raises the
potential that the HSR may stimulate a variety of cellular
properties that are required for tumour recurrence and ag-
gressive cancer cell phenotypes. A number of studies have
shown that various forms of proteotoxic stress such as
hypoxia, proteasome inhibition, ethanol treatment, endo-
plasmic reticulum (ER) stress, and oxidative stress-induced
cell migration, invasion and EMT (Cannito et al. 2008;
Chakraborty et al. 2010; Mak et al. 2010; Tamminen et al.
2012; Zhong et al. 2011). However, although cancer
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treatments such as hyperthermia treatment and pharmaco-
logical inhibition of the proteasome illicit proteotoxic stress
and activate the HSR in tumour cells, their ability to pro-
mote aggressive cancer phenotypes has not been fully ex-
amined. Therefore, the aim of the current study was to
determine whether proteotoxic stress, primarily in the form
of heat stress, could promote advanced cancer phenotypes
such as enhancing epithelial plasticity and cell migration. In
addition, we wanted to determine whether HSF1 was an
important mediator of the proteotoxic stress pathway effects
upon the cancer cell phenotype.

Heat shock induces a wide variety of cellular responses
including a dose-dependent induction of necrosis or

apoptosis, stalled protein, RNA and DNA synthesis, and
the induction of the HSR. Heat shock has also been shown
to induce changes in cell shape, as well as altering cell
membrane fluidity and membrane potential (Hildebrandt et
al. 2002). However, to our knowledge, this is the first study
in which heat shock has been shown to enhance chemotactic
migration and epithelial plasticity.

The characterisation of cellular responses to heat stress
have revealed both immediate and prolonged responses in
terms of HSP induction and apoptotic signalling, as well as
revealing that the dynamics of these cellular responses are
dependent upon the intensity and duration of the heat stress.
Previous investigations examining cellular responses to heat
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shock in vitro have utilised a variety of heat shock temper-
atures ranging from 41 to 45 °C and exposure times of
between 15 min and 2 h (Garcia et al. 2012; Hildebrandt
et al. 2002). Although a minimal heat shock was utilised in
this study, represented by an exposure time of 30 min at 42 °
C, a potent HSR was observed in the selected cell line models.
In both the A549 and MDA-MB-468 cell lines, we observed
enhanced cell migration after a 24-h period of recovery fol-
lowing heat shock. Although the relationship between the
degree and length of heat shock exposure was not fully
investigated in regards to cell migration, it was noted that a
more prominent enhancement of cell migration was observed
with an extended heat treatment of 1 h at 42 °C (not shown) in
the A549 cell line. Even though this heat treatment induced

higher levels of cellular toxicity, it did indicate that the migra-
tory capacity of the cells was relative to the level of heat stress.

Heat shock was found to decrease E-cadherin steady-
state protein levels, decrease its gene expression levels, as
well as induce changes to the cellular morphology and
enhance migration, indicative of the loss of epithelial cellu-
lar properties. Despite no detectable differences in cellular
morphology or EMT marker expression in heat-shocked
MDA-MB-468 cells, a potent enhancement of cell migration
was still observed. The differences in the observed
responses may reflect variations in epithelial plasticity be-
tween the two cell lines. Such variations have been observed
previously in growth factor-induced EMT responses in dif-
fering cell line models, which have been attributed to
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general differences in epithelial plasticity and cell signalling
pathway activation (Huber et al. 2005; Robson et al. 2006).
Whether enhanced cell migration occurs universally in re-
sponse to heat shock in other cancer and non-cancer cell
lines awaits further study.

Immunohistological staining of thermally ablated liver
metastases demonstrated an extensive reduction in E-
cadherin staining as well as increased levels of Zeb1 in the
surviving tumour fraction. Zeb1 is an E-cadherin transcrip-
tional repressor, central for the promotion of EMT, metasta-
sis and tumour progression (Spaderna et al. 2008). Although
much research has focused on Zeb1 as a transcriptional
repressor, increasing evidence has also indicated that Zeb1
can also transcriptionally activate target genes involved in
EMT (Schmalhofer et al. 2009). Within this in vivo model,
widespread downregulation of E-cadherin coupled with in-
creased Zeb1 expression strongly demonstrated a shift to-
wards a more mesenchymal phenotype within the surviving
tumour cell fraction following thermal ablation. This finding
suggests that areas of the tumour that do not reach sufficient
temperatures to induce coagulative necrosis, undergo an
EMT, highlighting the concept that administration of pro-
teotoxic stress that is insufficient to cause cancer cell death
may provide adverse effects through the induction of a more
aggressive tumour phenotype. This study examined an acute
cellular response (24 h) following thermal ablation, whether
the EMT phenotype observed in this study persists over time
remains to be delineated. However, Oliveira-Filho and col-
leagues have previously demonstrated that hyperthermic
treatment of murine B16-F10 melanoma cell lines, although
having a short-term negative impact upon cell viability and
metastatic lung colonisation in mice, cells that were allowed
to recover and injected into mice 13 days following heat
shock treatment displayed an enhanced metastatic propensi-
ty (Oliveira-Filho et al. 1997). This points to a somewhat
prolonged enhancement of metastatic phenotype induced by
a single heat treatment.

In response to heat stress, a global reduction in RNA and
protein synthesis is observed, as well as a loss in the func-
tionality of many heat-sensitive proteins. In contrast, HSF1
maintains its functionality and becomes hyperactivated en-
abling it to transactivate the expression of HSP genes as well
as potentially many other non-HSP genes. We therefore
hypothesised that HSF1 may be a transcriptional mediator
of cell migration and/or EMT in response to heat stress.
Increased expression levels of HSF1 transcriptional targets
HSP47 and HSPB1 have been associated with the mesen-
chymal phenotype (Wei et al. 2011; Zeisberg and Neilson
2009). In addition, O’Callaghan and Sherman demonstrated
that immortalised hsf1−/− murine embryonic fibroblasts had
a reduced capacity for migration (O’Callaghan-Sunol and
Sherman 2006). However, in the current study, HSF1
knockdown in the A549 cell line did not inhibit basal levels

of chemotactic cell migration, more surprisingly however,
was the fact that knockdown of HSF1, although sufficient to
prevent increased HSP expression induced by heat stress,
was not able to inhibit the enhanced migration. This result
indicates that heat stress illicits alterations to cancer cell
biology features that are both dependent and independent
of HSF1.

Cellular effects brought about by heat shock can be broad
and non-specific, for example, heat shock has been shown to
increase ROS levels within cells which in turn can activate a
wide range of signalling pathways (Hildebrandt et al. 2002;
Hsu et al. 2011; Jozwiak and Leyko 1992). Consistent with
this, heat shock has been shown to activate numerous cell
signalling pathways associated with migration and EMT,
including c-Src, PI-3-kinase, the MAPK pathway and the
EGFR pathway (Wolf et al. 2011; Lin et al. 1997; Nadeau
and Landry 2007; Dubois and Bensaude 1993). Whether
heat stress-induced activation of these pathways leads to
increased cell migration and the activation of EMT associ-
ated transcription factors still need to be determined.

In addition to the HSR, another major stress pathway
within cells is that of the unfolded protein response (UPR).
Although these two responses are compartmentally separat-
ed, they share common elements and features, and it is
known that upon heat shock, elements of the UPR are
activated (Heldens et al. 2011). Therefore, the UPR may
be an alternative stress pathway that may activate cellular
migration and EMT programmes within the cancer cell.
Consistent with such a role, it has been shown that mild
activation of the UPR by ER stress induced by tunicamycin,
thapsigargin or the overexpression of mutant surfactant
protein-C (SP-C) induces EMT and cell migration in a
number of cell types, including that of the A549 cell line
(Zhong et al. 2011). Whether crosstalk between the HSR
and UPR occurs, eliciting increased cellular migration and
the EMT requires further examination.

An element that is shared between the HSR and the UPR
is the proteasome to which misfolded or mutant proteins
from the cytosol and the ER are targeted (Heldens et al.
2011). Inhibition of the proteasome generates a high degree
of proteotoxic stress and is known to induce both the HSR
and the UPR (Fribley et al. 2004; Neznanov et al. 2011).
Proteasome inhibitors, such as Velcade®, are currently being
clinically evaluated in combination with conventional che-
motherapy in a number of cancer types to determine thera-
peutic efficacy (Yang et al. 2009). The rationale behind this
approach is to generate proteotoxic stress levels that exceed
the buffering capacity of the cancer cell stress pathways,
generating ‘stress overload’ and inducing cancer cell death.
As tumour cells exhibit higher levels of sensitivity to pro-
teasome inhibition than non-transformed cells, it is believed
that this approach will also afford a degree of tumour cell
killing selectivity (Neznanov et al. 2011; Workman and
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Davies 2011; Dou and Li 1999). However, one potential
caveat indicated by our present study is that if cell killing is
not fully achieved then the emergence and/or recurrence of
more advanced cancer phenotypes may result (Neznanov et
al. 2011; Workman and Davies 2011; Dou and Li 1999). In
previous studies, proteasome inhibition using a number of
compounds has been shown to be both inhibitory and in-
ductive towards EMT (Baritaki et al. 2009; Mak et al. 2010;
Saitoh et al. 2009). Changes in the cancer cell phenotype
induced by proteasome inhibition are likely to be dependent
on the dosage and duration of inhibition. As these studies,
including the current study, have used various cell models,
compounds and treatments, the full extent to which protea-
some inhibition influences a migratory phenotype requires
further characterisation.

As proteasome inhibition also activates the HSR, it has
been postulated that inhibition of the HSR may lead to in-
creased toxicity of proteasome inhibitors, indeed Zaarur et al.
have demonstrated in vitro inhibition of the HSR by knock-
down of HSF1 sensitises several cancer cell lines to protea-
some inhibition by MG132 (Zaarur et al. 2006). This has led
to combination strategies to inhibit both the proteasome and
HSR simultaneously to enhance the efficacy of proteasome
inhibitory compounds (Workman and Davies 2011; Zaarur et
al. 2006). Although knockdown of HSF1 may increase the
toxicity of proteasome inhibitors, we determined that it was
not able to prevent MG132 stimulated increases in A549
chemomigration. Thus, our findings indicate that inhibition
of HSF1 in isolation would not be sufficient in preventing the
recurrence of more advanced cancer phenotypes if the treat-
ment proved inefficient at tumour cell killing.

In adult tissues, EMT has been shown to be important in
wound healing, tissue fibrosis and cancer. These contexts
are associated with high levels of cellular stress. Previous
studies have demonstrated that EMT promotes resistance to
apoptosis and chemotherapeutics and as such has led to the
process being recognised as a survival mechanism of cancer
cells (Tiwari et al. 2012; Li et al. 2009; Robson et al. 2006).
This study has identified for the first time that heat stress can
induce enhanced migratory capacities and the EMT in can-
cer cells independent of HSF1 signalling, and adds to the
many studies that have provided evidence for EMT as a
cellular response to sub-lethal proteotoxic stress. The en-
hanced malignant properties of recurrent tumour cells is
often attributed to selection of a sub-population that possess
enhanced survival and aggressive properties (Blagosklonny
2005b); however, the findings from this study suggest that
the additional proteotoxic stress endured by these surviving
cells may further potentiate their malignant phenotype.
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