Journal of Zhejiang University-SCIENCE B (Biomedicine & Biotechnology) ISSN 1673-1581 (Print); ISSN 1862-1783 (Online) www.zju.edu.cn/jzus; www.springerlink.com E-mail: jzus@zju.edu.cn

Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO₂ assimilation and carbohydrate metabolism in *Cucumis sativus*^{*}

Yu-ping JIANG¹, Fei CHENG¹, Yan-hong ZHOU¹, Xiao-jian XIA¹, Wei-hua MAO¹,

Kai SHI¹, Zhi-xiang CHEN^{1,3}, Jing-quan YU^{†‡1,2}

 (¹Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China)
(²Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China)
(³Department of Botany and Plant Pathology, Purdue University, West Lafayette 47907-2054, USA)
[†]E-mail: jqyu@zju.edu.cn
Received Aug. 3, 2012; Revision accepted Sept. 10, 2012; Crosschecked Sept. 11, 2012

Brassinosteroids (BRs) are potent regulators of photosynthesis and crop yield in agricultural crops; Abstract: however, the mechanism by which BRs increase photosynthesis is not fully understood. Here, we show that foliar application of 24-epibrassinolide (EBR) resulted in increases in CO₂ assimilation, hydrogen peroxide (H₂O₂) accumulation, and leaf area in cucumber. H₂O₂ treatment induced increases in CO₂ assimilation whilst inhibition of the H₂O₂ accumulation by its generation inhibitor or scavenger completely abolished EBR-induced CO2 assimilation. Increases of light harvesting due to larger leaf areas in EBR- and H₂O₂-treated plants were accompanied by increases in the photochemical efficiency of photosystem II (Φ_{PSII}) and photochemical quenching coefficient (q_P). EBR and H₂O₂ both activated carboxylation efficiency of ribulose-1,5-bisphosphate oxygenase/carboxylase (Rubisco) from analysis of CO₂ response curve and in vitro measurement of Rubisco activities. Moreover, EBR and H₂O₂ increased contents of total soluble sugar, sucrose, hexose, and starch, followed by enhanced activities of sugar metabolism such as sucrose phosphate synthase, sucrose synthase, and invertase. Interestingly, expression of transcripts of enzymes involved in starch and sugar utilization were inhibited by EBR and H₂O₂. However, the effects of EBR on carbohydrate metabolisms were reversed by the H₂O₂ generation inhibitor diphenyleneodonium (DPI) or scavenger dimethylthiourea (DMTU) pretreatment. All of these results indicate that H₂O₂ functions as a secondary messenger for EBR-induced CO₂ assimilation and carbohydrate metabolism in cucumber plants. Our study confirms that H₂O₂ mediates the regulation of photosynthesis by BRs and suggests that EBR and H₂O₂ regulate Calvin cycle and sugar metabolism via redox signaling and thus increase the photosynthetic potential and yield of crops.

Key words:Metabolism, Photosynthesis, Reactive oxygen species, Rubisco, Sucrosedoi:10.1631/jzus.B1200130Document code: ACLC number: Q946

1 Introduction

In this century, the world faces great challenges such as an exploding human population, global warming, environmental pollution, and shortages of fresh water and arable land. It is predicted by the US Population Division that the global population will increase to 9.1 billion by 2050 (Population Division

[‡] Corresponding author

^{*} Project supported by the National Basic Research Program (973) of China (No. 2009CB119000), the National Natural Science Foundation of China (No. 30972033), and the Program for New Century Excellent Talents in University, China

[©] Zhejiang University and Springer-Verlag Berlin Heidelberg 2012

of the Department of Economic and Social Affairs of the United Nations Secretariat, 2009). For the survival of this large population, it is a priority to increase global crop yields, which are mostly determined by the photosynthetic potential of the crops (Long et al., 2006). In C3 plants, ribulose-1,5carboxylase/oxygenase bisphosphate (Rubisco) catalyzes primary carbon fixation, in which CO₂ is converted to 3-phosphoglycerate. Phosphoglycerate is then phosphorylated and reduced by adenosine triphosphate (ATP) and triphosphopyridine nucleotide (NADPH), which are generated in the thylakoid membrane at the expense of the proton motive force generated by photosynthetic electron transport. The product triose phosphate is exported from the chloroplast via the chloroplast envelope phosphate (Pi) transporter to the cytosol for sugar metabolism or is used for starch synthesis or recycling to ribulose-1,5bisphosphate (RuBP) in chloroplast (Sonnewald et al., 1994; Furbank and Taylor, 1995). It is clear that there are many constraints limiting the increase of photosynthetic potential from the light reaction through the Calvin cycle and sugar metabolism. During the past thirty years, great efforts have been made to increase photosynthesis efficiency, with special emphasis on the modification of the biochemical characteristics of Rubisco, an enzyme with dual functions of RuBP carboxylation and oxygenation (Parry et al., 2003). Researchers have focused on engineering the key enzymes used in the Calvin cycle and sugar metabolism via plant biotechnology (Galtier et al., 1995; Miyagawa et al., 2001; Lefebvre et al., 2005). However, most of these studies failed to significantly increase photosynthetic rate and crop yield (Sinclair et al., 2004). It is likely that the regulation of photosynthesis is far more complex than is commonly understood.

The regulation of photosynthesis by phytohormones is an approach that figures prominently in research aimed at increasing crop yields. In recent years, brassinosteroids (BRs), a new type of phytohormones, have shown exciting promotion effects on crop yield in both field and greenhouse trials (Khripach *et al.*, 2000). Over-expression of genes involved in BR biosynthesis and reduction of plant BR level in BR deficient mutants or by application of inhibitors of BR biosynthesis resulted in enhanced plant growth, reduced rate of photosynthetic CO₂ assimilation, and lower sink strength and carbohydrate metabolism, respectively (Choe *et al.*, 2001; Schluter *et al.*, 2002; Asami *et al.*, 2003; Wu *et al.*, 2008). Wu *et al.* (2008) generated a BR biosynthetic gene over-expressing rice lines using roots and shoots specific promoters and observed significant increases in biomass accumulation and seed yield. They attributed the larger size of seeds and higher yield per plant to the increased flow of photoassimilates from source leaves. We have previously shown that BR enhances photosynthesis by directly regulating the activation state of Rubisco (Yu *et al.*, 2004). However, the mechanism by which BR regulates Rubisco and increases photosynthesis is still unclear.

To date, the major framework for BR signaling in plant growth and development has been established, receptor brassinosteroidwhich includes the insensitive 1 (BRI1) and associated signaling cascade components BRI1-associated receptor kinase 1 (BAK1), BR-signaling kinase 1 (BSK1), BRI1 suppressor 1 (BSU1), and BZR1/2 (Clouse, 2011). A surprisingly wide range of genes involved in cellular processes, environmental responses, development and hormonal responses have been shown to be directly regulated by BZR1 (Sun et al., 2010). However, no clues have been provided as to the role they play in the regulation of photosynthetic genes. It is highly likely that enzymes of carbon metabolism are regulated posttranscriptionally by BRs, or there are missing links between BRs and expression of photosynthetic genes.

We have previously shown that BR induced a transient oxidative burst, with hydrogen peroxide (H_2O_2) accumulation in the apoplast of mesophyll cells of cucumber (Xia et al., 2009b). H₂O₂ has been implicated as a second messenger in several plant hormone responses (Laloi et al., 2004; Kwak et al., 2006). Abscisic acid-induced stomata closure was dependent on H₂O₂ production in the cell membrane and chloroplast (Zhang et al., 2001; Kwak et al., 2003) and H₂O₂ crosstalks with Ca²⁺, nitric oxide, and cyclic guanosine monophosphate (cGMP) (Desikan et al., 2004). Interestingly, the kinase domain of BRI1 receptor contains a GC-domain, which potentially generates cGMP (Kwezi et al., 2007). This prompts us to consider the link between H₂O₂ and BR signaling. Recently, we have proposed evidence suggesting that H₂O₂ is required for BR-induced expressions of

photosynthetic genes, which are involved in light harvesting, electron transport, and the Calvin cycle (Jiang et al., 2012). It is extremely important to note that the activities of certain enzymes in CO₂ assimilation are regulated by the redox potential via the ferredoxin/thioredoxin system (Schüermann and Buchanan, 2008). Although reactive oxygen species (ROS) such as H_2O_2 could cause posttranslational modifications to proteins and inhibition of enzymes at a high level, evidence suggests that ROS are involved as signal transducing messengers in the regulation of enzyme activities by thioredoxins (Kamata and Hirata, 1999). An appropriate level of H₂O₂ accumulation during plant acclimation to cold, high light, and drought resulted in increased content and redox state of glutathione (Foyer et al., 1997). Up-regulation of genes involved in cysteine and glutathione biosynthesis by H₂O₂ further confirm the role of ROS in modulation of cellular redox state (Queval et al., 2009). Glutathione is potentially involved in regulating enzyme activity via electron input into the redox network or protein glutathionylation (Meyer and Hell, 2005; Rouhier et al., 2008).

In this study, we compared the effects of 24-epebrassinolide (EBR) and H_2O_2 treatments on the growth and photosynthesis of cucumber seedlings. We found that EBR and H_2O_2 can both cause similar increases in the carboxylation capacity of Rubisco and potential maximum rate of CO_2 assimilation. In addition, accelerated carbohydrate metabolism was also involved in EBR- or H_2O_2 -induced photosynthesis. Pretreatment with inhibitors of production or scavenger of ROS indicated that ROS act as mediators for the enhancement of photosynthesis.

2 Materials and methods

2.1 Plant materials and treatments

Cucumber (*Cucumis sativus* L. cv. Jinchun No. 3) seeds were germinated in a growth medium of peat, vermiculite, and perlite (6:3:1, v/v/v) in a glasshouse. Cucumber seedlings were transplanted into plastic pots (15 cm diameter and 15 cm deep) when the first true leaf was fully expanded. The seedlings were watered daily with half-strength Enshi nutrient solution (Yu and Matsui, 1997) and kept in growth chambers. The growth conditions were

as follows: a 12-h photoperiod, a temperature of 25 °C:17 °C (day:night), and a light intensity of 600 μ mol/(m²·s).

Treatment with EBR (Sigma, Santa Clara, USA) at 0.1 μ mol/L or H₂O₂ at 5 mmol/L was performed by foliar spraying of cucumber seedlings at the four-leaf stage using distilled water as a control. For analysis of the role of H₂O₂ in EBR-induced up-regulation of CO₂ assimilation, we pretreated cucumber seedlings with 5 mmol/L dimethylthiourea (DMTU; a H₂O₂ and OH· scavenger) (Fox, 1984) or 100 μ mol/L diphenyleneodonium (DPI; an inhibitor of NADPH oxidases which produce H₂O₂ (Hancock and Jones, 1987) and could be up-regulated by EBR (Xia *et al.*, 2009b)), and then treated the plants with 0.1 μ mol/L EBR 8 h later. For all the treatments, the chemicals were applied to all leaves. For all cases, the solutions were applied at the rate of 80 ml per m² leaf area.

2.2 Gas exchange and chlorophyll fluorescence measurements

Leaf gas exchange measurements were coupled with measurements of chlorophyll fluorescence using an open gas exchange with an integrated fluorescence chamber head system (LI-6400, LI-COR, Inc., Lincoln, NE, USA) on the 3rd leaves. Light-saturated rate of CO_2 assimilation (A_{sat}) was measured at ambient CO₂ concentration of 360 µmol/mol and saturating photosynthetic photon flux density $(1000 \,\mu mol/(m^2 \cdot s))$ with a leaf temperature of (25±1.5) °C and relative air humidity of 80%-90%. An assimilation versus intercellular CO₂ concentration (A/C_i) curve was measured according to von Caemmerer and Farquhar (1981). Assimilation was measured as described by Yu et al. (2004). The maximum Rubisco carboxylation rates (V_{c,max}) and maximum RuBP regeneration rates (J_{max}) were estimated from the A/C_i curves using the method of Ethier and Livingston (2004). Stomatal limitation (l), the proportion of photosynthesis that is limited by stomatal conductance, was calculated according to Farquhar and Sharkey (1982).

Chlorophyll fluorescence parameters were calculated on the basis of the light-adapted fluorescence measurements as described by Zhou *et al.* (2004) and Ogweno *et al.* (2008). Photochemical efficiency of photosystem II (Φ_{PSII}), efficiency of excitation capture by open PSII center (F_v'/F_m'), and photochemical quenching coefficient (q_P) were calculated as $(F_m'-F_s)/F_m'$, $(F_m'-F_o')/F_m'$, and $(F_m'-F_s)/(F_m'-F_o')$, respectively (Genty *et al.*, 1989; van Kooten and Snel, 1990). F_o , F_m , F_v : minimal, maximal, and variable fluorescence yields; F_m' , $F_{v'}$, F_s , maximal, variable, and steady-state fluorescence yield in a light-adapted state.

2.3 Measurements of total chlorophyll, soluble proteins, and carbohydrate content

Total chlorophyll content was determined by the method of Arnon (1949). Total soluble protein content was measured using Bradford (1976) reagent. Freeze-dried samples were used for the determination of carbohydrate content. Sucrose, starch, and hexose contents were determined using a modified phenol-sulfuric acid method (Buysse and Merckx, 1993). Soluble sugars were extracted from 200 mg of dried material with 50 ml of 80% ethanol, using five extraction steps. The supernatant was analyzed for hexose, sucrose, and total soluble sugars. The residue was boiled for 3 h in 10 ml 2% HCl to hydrolyze starch. The supernatant was analyzed for soluble sugars released from starch by acid hydrolysis (Yu *et al.*, 2004).

2.4 Measurement of H₂O₂

Leaf samples (0.5 g) were ground in liquid nitrogen and 2 ml of 0.2 mol/L HClO₄. After thawing, the mixture was transferred to a 10-ml plastic tube and another 2 ml of 0.2 mol/L HClO₄ was added. The homogenate was centrifuged at 2700×g for 30 min at 4 °C and the supernatant was collected, adjusted to pH 6.0 with 4 mol/L KOH, and then centrifuged at $110 \times g$ for 1 min at 4 °C. The supernatant was placed onto an AG1x8 prepacked column (Bio-Rad, Hercules, CA) and H₂O₂ was eluted with 4 ml doubledistilled H₂O. Recovery efficiencies of H₂O₂ from different samples were determined by analyzing duplicate samples to which H₂O₂ was added during grinding at a final concentration of 50 µmol/L. The sample (800 µl) was mixed with 400 µl reaction buffer containing 4 mmol/L 2,2'-azino-di(3ethylbenzthiazoline-6-sulfonic acid) and 100 mmol/L potassium acetate at pH 4.4, 400 µl deionized water, and 0.25 U of horseradish peroxidase (HRP). H_2O_2 content was measured at optical density at 412 nm (OD₄₁₂) (Willekens et al., 1997).

2.5 Measurement of enzyme activity of carbohydrate metabolism

Sucrose phosphate synthase (SPS) and sucrose synthase (SS) were extracted at 0-4 °C according to Lowell et al. (1989). SPS activity was assayed at 37 °C by the method of Hubbard et al. (1989) and assayed essentially as described previously (Yu et al., 2004). Colour development of the reaction solution was measured at 620 nm and the SPS activity was calculated. SS was assayed in both the synthetic (SS-s) and cleavage (SS-c) directions with the method of Lowell et al. (1989). The increase in absorbance at 520 nm was measured (Yu et al., 2004). Acid invertase (AI) was extracted as described by Miron and Schaffer (1991). The reaction mixture that consisted of 4% sucrose, 50 mmol/L sodium acetate buffer (pH 4.5), and an aliquot of enzyme solution in a total volume of 1 ml. Reducing groups formed in the reaction mixture were measured (Endo et al., 1990).

2.6 Measurement of Rubisco activity

For measurements of Rubisco activity, frozen leaf samples were ground to a fine powder in liquid nitrogen and then extracted in a solution containing 50 mmol/L Tris-HCl (pH 7.5), 1 mmol/L ethylenediaminetetraacetic acid (EDTA), 1 mmol/L MgCl₂, 12.5% glycerin, 10% polyvinylpyrrolidone (PVP), and 10 mmol/L β -mercaptoethanol. After centrifugation at 15000×g for 15 min at 4 °C, the total Rubisco activity was assayed according to Lilley and Walker (1974) and Sharkey *et al.* (1991), and the analysis was performed essentially as described previously (Yu *et al.*, 2004). The oxidation of NADH was followed by changes in absorbance at 340 nm for 90 s.

2.7 Total RNA extraction and gene expression analysis

Total RNA was isolated from cucumber leaves using TRIZOL reagent (Sangon, China) according to the instructions supplied by the manufacturer. After extraction, total RNA was dissolved in diethyl pyrocarbonate-treated water. The complementary DNA (cDNA) template for real time polymerase chain reaction (RT-PCR) was synthesized using a RevertAidTM first strand cDNA synthesis kit (Fermentas, Burlington, Canada) from 2 µg total RNA purified using RNeasy mini kit (Qiagen, Hilden, Germany).

For quantitative RT-PCR (qRT-PCR) analysis, PCR products were amplified in triplicate using iQ SYBR Green SuperMix (Bio-Rad, Hercules, CA, USA) in 25 µl gRT-PCR reactions, an iCycler iO 96-well RT-PCR detection system (Bio-Rad), iCycler software to calculate threshold cycle values and cucumber actin as an internal control. On the basis of expressed sequence tag (EST) sequences, the following gene-specific primers were designed and used for amplification: BAM (β -amylolytic enzyme), 5'-ACCGAATATGGCGAATTCTT-3' and 5'-TGC CAATGAATTCCTGCTAC-3'; SUS (sucrose synthase), 5'-AAATTGGCCATTCAGGTTGT-3' and 5'-CTAGTGGTTGTGGCTGGAGA-3'; Invertase. 5'-CTGGAAAGAATATGGTGGCA-3' and 5'-CCC AAGAGAAGGATCGAGAG-3'; UGDH (UDPglucose 6-dehydrogenase), 5'-CCTACCCATCTTC AGCCAAT-3' and 5'-TCCTTGTTGCTTCATACGC-3'; actin, 5'-TGGACTCTGGTGATGGTGTTA-3' and 5'-CAATGAGGGATGGCTGGAAAA-3'. Relative gene-expression was calculated as described by Livak and Schmittgen (2001).

2.8 Statistical analysis

Tukey's test was used for testing the mean difference between treatments by using the SPSS statistical software package. A *P*-value <0.05 was considered statistically significant.

3 Results

3.1 Time course of CO₂ assimilation and H₂O₂ accumulation in leaves after EBR treatment

We first compared the time courses of the effects of EBR on A_{sat} and H_2O_2 accumulation (Fig. 1). A_{sat} was significantly increased 3 h after EBR treatment. A_{sat} reached the highest level 6 h after EBR treatment and then gradually declined. At 72 h after treatment, there was no significant difference of A_{sat} between control and EBR-treated leaves. Elevated H_2O_2 content was observed as early as 1 h after application of 0.1 µmol/L EBR. Thus, elevation of H_2O_2 preceded the increase in A_{sat} in EBR-treated plants. Induction of H_2O_2 by EBR was sustained until 72 h after EBR treatment.

Fig. 1 Time course responses of A_{sat} and content of H_2O_2 to EBR

Four-week-old cucumber plants were treated with distilled water or EBR at 0.1 μ mol/L at 9 am. CO₂ assimilation rate at saturated light (A_{sat}) was determined at 1000 μ mol/(m²·s) light intensity and 25 °C. Measurements were taken at 1, 2, 3, 6, 9, 24, and 72 h after EBR treatment. Data are expressed as mean±standard deviation (SD) (*n*=4). FW: fresh weight

3.2 Effects of EBR and H₂O₂ on the growth of cucumber seedlings

To investigate whether EBR-induced H_2O_2 is involved in the enhanced plant growth, we first compared the effects of EBR and H_2O_2 on leaf mass, leaf area, total chlorophyll, and soluble protein contents. As expected, EBR significantly increased leaf area and leaf mass after 3 d of treatment (Table 1). Similarly, H_2O_2 slightly increased leaf area and mass after 3 d of treatment, although the difference was not statistically significant in some cases. Neither EBR nor H_2O_2 had significant effects on total chlorophyll content. Interestingly, EBR significantly increased the total soluble protein content after 1 d of treatment although there were some exceptions. In contrast, H_2O_2 had no effects on the total soluble protein content as compared to the control.

Time after treatment (h)	Treatment	Leaf area (cm ² /plant)	Leaf mass per area (g FW/m ²)	Total chlorophyll content (μ g/cm ²)	Soluble protein content (g/m^2)
3	Control	314.3±15.6 ^a	191.8±10.2 ^a	33.1±1.2 ^a	7.39±0.48 ^a
	EBR	324.6±27.3 ^a	189.6 ± 7.8^{a}	31.8 ± 1.2^{a}	$8.01{\pm}0.38^{a}$
	H_2O_2	321.0±14.7 ^a	187.8±9.5 ^a	32.5±1.3 ^a	$7.49{\pm}0.32^{a}$
24	Control	417.6±24.7 ^a	193.6±11.1 ^a	30.9±2.1ª	7.41 ± 0.40^{b}
	EBR	433.6±20.6 ^a	190.8±8.2 ^a	31.2±1.8 ^a	8.29±0.44 ^a
	H_2O_2	434.6±9.1 ^a	186.5±11.8 ^a	30.5 ± 2.4^{a}	7.44 ± 0.13^{b}
72	Control	472.0±15.5 ^b	189.6±13.5 ^a	32.5±0.9 ^a	$7.58{\pm}0.39^{a}$
	EBR	531.0±26.0 ^a	192.1±9.8 ^a	30.2±1.9 ^a	8.32±0.45 ^a
	H_2O_2	519.6±25.2 ^{ab}	193.2±9.6 ^a	31.6±3.2 ^a	$7.56{\pm}0.30^{a}$
120	Control	540.8±14.7 ^b	194.5±8.0 ^a	33.2±1.6 ^a	7.39 ± 0.29^{b}
	EBR	603.4±11.5 ^a	188.6±12.2 ^a	32.8 ± 2.0^{a}	8.31 ± 0.54^{a}
	H_2O_2	588.6±43.9 ^{ab}	188.8 ± 7.2^{a}	30.6±2.1 ^a	7.68 ± 0.40^{ab}
168	Control	630.7±21.2 ^b	189.9 ± 7.6^{a}	29.2±2.6 ^a	7.21±0.39 ^b
	EBR	696.6±23.0 ^a	190.1±6.5 ^a	27.6±2.5 ^a	$8.18{\pm}0.40^{a}$
	H_2O_2	660.8±43.2 ^{ab}	191.3±9.0 ^a	28.6±1.8 ^a	7.41±0.39 ^{ab}

Table 1 Effects of EBR and H₂O₂ treatments on leaf mass per area, leaf area, total chlorophyll, and soluble protein contents in cucumber leaves

EBR at 0.1 μ mol/L or H₂O₂ at 5 mmol/L was used, respectively. Values are expressed as mean \pm SD (*n*=4). Significant differences (*P*<0.05) between treatments are indicated by different letters according to Tukey's test. FW: fresh weight

3.3 Effects of EBR and H₂O₂ on the CO₂ assimilation and chlorophyll fluorescence quenching

To examine whether enhanced plant growth by EBR and H₂O₂ treatment was associated with increased photosynthesis, we analyzed parameters of gas exchange and chlorophyll fluorescence after EBR and H₂O₂ treatments, respectively. Fig. 2a shows that the maximum carboxylation rate of Rubisco $(V_{c,max})$ increased rapidly at 3 h after treatment with either EBR or H_2O_2 . $V_{c,max}$ values peaked at 24 h after treatment and then declined. Interestingly, the effects of H_2O_2 on $V_{c,max}$ declined more rapidly than those of EBR treatment. $V_{c,max}$ for the H₂O₂-treated plants had no significant difference with control from 3 d afterward, whereas the effects of EBR sustained until 5 d after treatment. Changes of maximum potential rate of electron transport (J_{max}) showed trends similar to those of $V_{c,max}$ except that the induction rate of J_{max} was a little lower than that of $V_{c,max}$ by EBR and H_2O_2 treatments (Fig. 2b). EBR and H₂O₂ treatment, however, had no significant effects on l (Fig. 2c).

Actual Φ_{PSII} for control leaves remained almost constant throughout the experiment (Fig. 2d). Compared with control leaves, EBR- or H₂O₂-treated leaves exhibited significantly higher Φ_{PSII} values 3 h after treatment. The value of EBR-treated plants reached maximum at 1 d after treatment. In contrast, the value for the H₂O₂-treated plants began to decline at 1 d. Φ_{PSII} of both EBR- and H₂O₂-treated plants declined rapidly after 1 d of treatment and showed no significant difference with control afterward. Changes of q_P almost paralleled that of Φ_{PSII} (Fig. 2e), whereas no changes in the efficiency of energy capture by open PSII reaction centers (F_v'/F_m') were observed (Fig. 2f). Thus, the increase in Φ_{PSII} was mainly due to a significant increase in q_P .

3.4 Effects of EBR and H_2O_2 on the activity of Rubisco

Changes of $V_{c,max}$ reflected the in vivo carboxylation states of Rubisco. To further investigate whether EBR and H₂O₂ increased photosynthesis by regulating activity of Rubisco, we determined total Rubisco activity and initial Rubisco activity. Table 2 shows that EBR and H₂O₂ had no significant effects on total Rubisco activity, whereas it significantly induced initial activity and activation state of Rubisco. In comparison, the effect of EBR on the initial activity and activation state of Rubisco was more pronounced than that of H₂O₂.

3.5 Role of H_2O_2 in the EBR-induced CO_2 assimilation

To determine whether EBR-induced H_2O_2 accumulation played a role in CO_2 assimilation, we

Fig. 2 Changes in maximum carboxylation rate of Rubisco $(V_{c,max})$ (a), maximum RuBP regeneration rates (J_{max}) (b), stomatal limitation (l) (c), photochemical efficiency of photosystem II (Φ_{PSII}) (d), photochemical quenching coefficient (q_P) (e), and the efficiency of excitation capture by open PSII centers (Fv'/Fm') (f) for control, EBR-treated, and H₂O₂-treated plants

Measurements were taken at 1, 2, 3, 6, 9, 24, and 72 h after treatment with 0.1 μ mol/L EBR or 5 mmol/L H₂O₂, respectively. Data are expressed as mean±SD (*n*=4)

Table 2 Effects of EBR and H₂O₂ on total Rubisco activity, initial Rubisco activity, and Rubisco activation rate

Treatment	Total Rubisco activity (µmol/(m ² ·s))	Initial Rubico activity (µmol/(m ² ·s))	Rubisco activation rate (%)
Control	40.37 ± 5.57^{a}	13.90±1.10 ^c	34.43°
EBR	47.75 ± 6.37^{a}	33.69±2.47 ^a	71.12 ^a
H_2O_2	43.74±6.97 ^a	$23.24{\pm}0.29^{b}$	53.13 ^b

Samples were taken at 24 h after treatment with EBR at 0.1 μ mol/L or H₂O₂ at 5 mmol/L, respectively. Values are expressed as mean±SD (*n*=4). Significant differences (*P*<0.05) between treatments are indicated by different letters according to Tukey's test

analyzed the changes of potential maximum rate of photosynthetic rate (A_{max}) at saturating photosynthetic photon flux density (PPFD) of 1500 µmol/(m²·s) and CO₂ of 2000 µmol/mol in plants pretreated with the DPI and DMTU which inhibits NADPH oxidase-dependent H₂O₂ production and accumulation, respectively, before EBR treatment. The high concentration of CO₂ used in this study excluded the

limitation of carboxylation by Rubisco, and therefore, the induction of A_{max} was related to mechanisms other than regulation of activity of Rubisco. Fig. 3 shows that A_{max} was significantly increased as compared to control by EBR and H₂O₂ treatments. Importantly, inhibition of H₂O₂ production or scavenging of EBR-induced H₂O₂ by DPI and DMTU, respectively, completely abolished the effects of EBR on A_{max} .

Fig. 3 Effects of EBR and H_2O_2 and pretreatments with DPI and DMTU on the A_{max} of CO_2

 $A_{\rm max}$ was determined at saturating PPFD of 1 500 µmol/(m²·s) and CO₂ of 2000 µmol/mol. Measurements were taken at 24 h after treatment with EBR at 0.1 µmol/L or H₂O₂ at 5 mmol/L, respectively. DPI at 100 µmol/L and DMTU at 5 mmol/L were used, respectively. Values are expressed as mean±SD (*n*=4). Means denoted with different letters showed statistically significant difference (*P*<0.05) according to Tukey's test

3.6 Effects of EBR and H₂O₂ on carbohydrate metabolism

Photosynthesis is also limited by inorganic phosphate supply to chloroplasts, which is accompanied by triosephosphate transport and sucrose metabolism. Therefore, we determined the involvement of EBR and H_2O_2 on carbohydrate metabolism. Treatment of EBR significantly increased total soluble sugar, sucrose, hexose and starch contents (Table 3). The change of sucrose was most significant, with an increase of about 30%. Treatment with H_2O_2 had similar effects on contents of the above carbohydrates. Importantly, pretreatment, with DPI and DMTU completely inhibited the induction of carbohydrates by EBR. Increases in carbohydrate metabolite contents were accompanied by increases in acid invertase activity (AI) and activity of SS-s in EBR- or H_2O_2 -treated leaves, which increased by 82% and 31%, or 116% and 23%, respectively (Table 4). However, EBR and H_2O_2 had no influence on the activities of SPS and SS-c direction. Again, pretreatments with DPI and DMTU completely inhibited the induction of activities of AI and SS-s by EBR.

Consistent with changes of AI, the transcription of invertase was induced significantly by H₂O₂ treatment but was only slightly increased by EBR treatment (Fig. 4). Meanwhile, EBR and H₂O₂ significantly inhibited the expressions of BAM and UGDH, encoding β -amylolytic enzyme and UDPglucose 6-dehydrogenase, which are involved in starch and glucose metabolism, respectively. In contrast, EBR and H₂O₂ had no significant effects on transcript of SUS. Importantly, pretreatments of DPI and DMTU reversed the effects of EBR on the expressions of BAM and UGDH. These results suggest that sugar metabolism is one of the factors that drive the flux of CO_2 assimilation after EBR or H_2O_2 treatment, and H₂O₂ is involved in regulation of carbohydrate metabolism by EBR.

4 Discussion

In this study, we found that both EBR and H_2O_2 treatments induced an up-regulation of CO_2 assimilation and carbohydrate metabolism. Foliar application of EBR resulted in a H_2O_2 accumulation while

Table 3 Effects of EBR and H_2O_2 and pretreatments with DPI and DMTU on the contents of total soluble sugar, sucrose, hexose, and starch after 24 h treatments

Treatment	Content (mg/g DW)				
	Total soluble sugar	Sucrose	Hexose	Starch	
Control	42.12±1.90 ^b	10.88 ± 0.96^{b}	26.76±0.47 ^b	22.41±0.55 ^b	
EBR	51.88±3.37 ^a	14.16 ± 1.40^{a}	$30.79{\pm}0.82^{a}$	28.50±1.01ª	
H_2O_2	52.26±1.90 ^a	$13.44{\pm}0.34^{a}$	31.19±0.62 ^a	29.32±0.48 ^a	
DMTU+EBR	$40.34{\pm}1.64^{b}$	11.31 ± 1.11^{b}	23.19±0.97 ^c	19.00±3.31°	
DPI+EBR	$42.99 {\pm} 0.58^{b}$	$10.33{\pm}0.09^{b}$	23.83±0.40°	19.65±1.13 ^{bc}	

DPI at 100 μ mol/L and DMTU at 5 mmol/L were applied 8 h before EBR treatment, respectively. Samples were taken at 24 h after treatment with EBR at 0.1 μ mol/L or H₂O₂ at 5 mmol/L, respectively. Values are expressed as mean±SD (*n*=4). Significant differences (*P*<0.05) between treatments are indicated by different letters according to Tukey's test. DW: dry weight

Treatment	SPS activity (µmol/(h·g FW))	AI activity (μmol/(h·g FW))	SS-s activity (µmol/(h·g FW))	SS-c activity (µmol/(h·g FW))
Control	34.23±3.21 ^a	$17.66 \pm 2.11^{\circ}$	37.71±1.05 ^b	18.26 ± 1.20^{a}
EBR	29.59±5.01 ^a	32.10±2.64 ^a	49.51±3.02 ^a	22.80±3.02 ^a
H_2O_2	38.23±4.55 ^a	38.06 ± 5.10^{a}	46.20±4.27 ^a	24.78±5.23 ^a
DMTU+EBR	30.00 ± 4.20^{a}	19.00±4.19 ^{bc}	29.55±2.19 ^c	20.58±3.41 ^a
DPI+EBR	37.60±3.90 ^a	23.44±3.25 ^b	33.41±5.22 ^{bc}	17.28±2.19 ^a

Table 4 Effects of EBR and H₂O₂ and pretreatments with DPI and DMTU on the activities of SPS, AI, SS-s and SS-c directions after 24 h treatments

DPI at 100 μ mol/L and DMTU at 5 mmol/L were applied 8 h before EBR treatment, respectively. Samples were taken at 24 h after treatment with EBR at 0.1 μ mol/L or H₂O₂ at 5 mmol/L, respectively. Values are expressed as mean±SD (*n*=4). Significant differences (*P*<0.05) between treatments are indicated by different letters according to Tukey's test. FW: fresh weight

Fig. 4 Effects of EBR and H_2O_2 and pretreatments with DPI and DMTU on transcripts of *BAM* (β -amylolytic enzyme), *SUS* (sucrose synthase), *invertase*, and *UGDH* (UDP-glucose 6-dehydrogenase) in cucumber leaves Leaf samples were taken at 24 h after treatment with EBR at 0.1 µmol/L or H_2O_2 at 5 mmol/L, respectively. DPI at 100 µmol/L and DMTU at 5 mmol/L were used respectively. Data are expressed as mean±SD (*n*=4). Means denoted with different letters showed statistically significant difference (*P*<0.05) according to Tukey's test

the inhibition of the H_2O_2 accumulation completely abolished EBR-induced CO_2 assimilation and carbohydrate metabolism. These results suggest that H_2O_2 functions as a secondary messenger for the EBR-induced changes in CO_2 assimilation and carbohydrate metabolism. The effects of H_2O_2 and EBR on plant growth and photosynthesis were comparable, which led us to consider whether the effects of EBR were mediated by ROS. Previously, we have shown that EBR induces the transient induction of H_2O_2 accumulation in the apoplast by activating plasma membrane NADPH oxidase (Xia et al., 2009b). Inhibition of ROS production or scavenging of H2O2 significantly inhibited EBR-mediated stress tolerance, which suggests that ROS may act as a second messenger of BR signaling. Recently, we have shown that plant ROS content was highly correlated with endogenous BR content in cucumber and accumulation of ROS increased steadily with increasing concentration of exogenously applied EBR (Jiang et al., 2012). Interestingly, the enhancement of CO₂ assimilation after EBR treatment was abolished by pretreatment with DPI or DMTU whilst DPI or DMTU at the applied concentrations had no significant effects on CO2 assimilation (Jiang et al., 2012). In this study, inhibition of H_2O_2 accumulation inhibited the effects of EBR on A_{max} , accumulation of carbohydrates, and induction of sugar metabolism enzymes. This further confirmed the role of ROS in EBR-mediated plant growth and photosynthesis.

Both EBR and H₂O₂ increased the $V_{c,max}$, Φ_{PSII} and potential maximum photosynthetic rate (Figs. 2 and 3). Photosynthetic CO₂ assimilation is limited by several physiological processes. Stomatal movement controls the entry of CO_2 into the cell, photosynthetic electron transport supplies reducing power of ATP and NADPH for CO₂ reduction, Rubisco is the rate limiting enzyme of the Calvin cycle and sugar metabolisms regulate the balance of triosephosphate transport and Pi translocation (Paul et al., 1992; Fryer et al., 1995; Allen and Ort, 2001). In this study, EBR and H_2O_2 had no influence on the *l* value, which excluded the involvement of stomatal limitation (Fig. 2). Our previous research indicates that EBR enhances photosynthetic CO₂ assimilation by regulating the expressions and activities of Rubisco and Rubisco activase (Xia et al., 2009a). Consistent with these results, EBR and H₂O₂ treatments both caused increased $V_{c,max}$ and initial Rubisco activity, but had no effects on total activity of Rubisco. This indicates that EBR and H₂O₂ mainly regulate the activation state of Rubisco, possibly through the action of Rubisco activase. EBR and H₂O₂ treatments also significantly increased the Φ_{PSII} . Φ_{PSII} is determined by q_P and $F_{\rm v}'/F_{\rm m}'$. From our analysis, the inductions of $\Phi_{\rm PSII}$ by EBR and H_2O_2 were mainly attributed to q_P but not related to $F_{\rm v}'/F_{\rm m}'$. This is consistent with the fact that there were no differences in chlorophyll contents between control and EBR or H2O2-treated leaves

(Table 1). q_P has been proposed to be controlled by the demand of ATP and NADPH of Calvin cycle (Nogues and Baker, 2000). The increased activity of the Calvin cycle induced by EBR and H₂O₂, therefore, contributed to the increased demand and the increased q_P .

It was interesting to note that A_{max} varied between control and EBR- or H2O2-treated leaves (Fig. 3). At saturating PPFD and CO₂ concentration, the capacity for sucrose synthesis ultimately limits the maximal rates of photosynthesis by restricting the rate at which inorganic phosphate can be recycled to support electron transport and carbon fixation in the chloroplast (Stitt, 1986). Increased A_{max} for the EBRor H₂O₂-treated leaves suggests that triose-phosphate transport and Pi translocation were in a new balanced state in EBR or H₂O₂ treated leaves, which could probably be attributed to accelerated carbohydrate metabolisms. An increase in A_{max} was accompanied by increases in sucrose, soluble sugars, and starch contents, together with significant increases in acid invertase and sucrose synthase (Tables 3 and 4) and reductions in the expression of genes of carbohydrate utilization such as BAM and UGDH (Fig. 4). These results suggest that EBR and H₂O₂ increased carbohydrate metabolism and kept efficient supply of Pi to the chloroplast. Ozaki et al. (2009) determined the effects of periodic soil H2O2 drenching on carbohydrate metabolism in leaves and fruits of melon and observed that appropriate dose of H₂O₂ increased the contents of fructose, glucose, sucrose and starch with concomitant increases of sucrose phosphate synthase and invertase in leaves or fruits. The discrepancy in the effects on SPS between our findings and those of Ozaki et al. (2009) may be caused by differing application methods and concentration of H2O2 used, because the H₂O₂ signal could be attenuated rapidly in plant cells due to efficient antioxidant system (Neill et al., 2002). Single application of EBR and H₂O₂ in our experiment system triggered a transient stimulus of metabolism, whereas the periodic application to soil in their application system could ensure sustained translocation of H₂O₂ signal from roots. The increase of activity of invertase suggests for the enhanced sucrose synthesis and vice versa, as shown by increases in hexose in EBR- or H₂O₂-treated leaves. The increase of invertase was related to enhanced sink strength (Roitsch and Gonzalez, 2004). Ozaki et al. (2009) proposed that increases of sugars in melon

fruits were related to enhanced carbon flux from source leaves. It is likely that sink strength was increased by EBR and H_2O_2 treatments, which increased the demand for photo assimilates and CO_2 assimilation.

Plants have evolved an efficient oxidation and reduction (redox) system to control their metabolic fluxes (Dietz, 2008). Ferredoxin/thioredoxin is well known to be involved in the regulation of Calvin cycle activity and sugar metabolism including fructose-1,6-bisphosphatase (FBPase), SPS, and SUS (Ruelland and Miginiac-Maslow, 1999; Buchanan et al., 2002; Marino et al., 2008). Although higher level of ROS could induce oxidative stress in the cells, ROS could be induced as second messengers during response to EBR at modest concentrations. BRs have been shown to activate the reduction of glutathione pool, resulting in reductive cellular redox state (Jiang et al., 2012). Interestingly, EBR had little effects on Rubisco content and transcript levels of SUS and AI, but significantly increased activities of these enzymes, which suggests a role of posttranscriptional regulation. Several studies have shown that sugar metabolism enzymes are subject to direct thiol modification in plants (Balmer et al., 2003; Hendriks et al., 2003; Ito et al., 2003; Lemaire et al., 2004). The photosynthesis increase was strictly dependent on the concentration of EBR, which is mostly related to appropriate redox states. It is probable that the reducing redox state induced by EBR application favors the activation of sugar metabolism enzymes.

References

- Allen, D.J., Ort, D.R., 2001. Impacts of chilling temperatures on photosynthesis in warm-climate plants. *Trends Plant Sci.*, 6(1):36-42. [doi:10.1016/S1360-1385(00)01808-2]
- Arnon, D.I., 1949. Copper enzymes in isolated chloroplasts: polyphenol oxidase in *Beta vulgaris*. *Plant Physiol.*, 24(1):1-15. [doi:10.1104/pp.24.1.1]
- Asami, T., Nakano, T., Nakashita, H., Sekimata, K., Shimada, Y., Yoshida, S., 2003. The influence of chemical genetics on plant science: shedding light on functions and mechanism of action of brassinosteroids using biosynthesis inhibitors. J. Plant Growth Regul., 22(4):336-349. [doi:10.1007/s00344-003-0065-0]
- Balmer, Y., Koller, A., del Val, G., Manieri, W., Schurmann, P., Buchanan, B.B., 2003. Proteomics gives insight into the regulatory function of chloroplast thioredoxins. *PNAS*, **100**(1):370-375. [doi:10.1073/pnas.232703799]
- Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal. Biochem.*,

 $\textbf{72} (1\text{-}2) \text{:} 248\text{-} 254. \hspace{0.2cm} [\text{doi:} 10.1016 / 0003\text{-} 2697 (76)90527\text{-} 3]$

- Buchanan, B.B., Schurmann, P., Wolosiuk, R.A., Jacquot, J.P., 2002. The ferredoxin/thioredoxin system: from discovery to molecular structures and beyond. *Photosynth. Res.*, 73(1-3):215-222. [doi:10.1023/A:1020407432008]
- Buysse, J., Merckx, R., 1993. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot., 44(10):1627-1629. [doi:10.1093/jxb/44.10.1627]
- Choe, S., Fujioka, S., Noguchi, T., Takatsuto, S., Yoshida, S., Feldmann, K.A., 2001. Over-expression of *DWARF4* in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. *Plant J.*, 26(6):573-582. [doi:10.1046/j.1365-313x.2001. 01055.x]
- Clouse, S.D., 2011. Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. *Plant Cell*, 23(4):1219-1230. [doi:10.1105/tpc.111.084475]
- Desikan, R., Cheung, M.K., Bright, J., Henson, D., Hancock, J.T., Neill, S.J., 2004. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. *J. Exp. Bot.*, 55(395):205-212. [doi:10.1093/jxb/erh033]
- Dietz, K.J., 2008. Redox signal integration: from stimulus to networks and genes. *Physiol. Plant.*, **133**(3):459-468. [doi:10.1111/j.1399-3054.2008.01120.x]
- Endo, M., Nakagawa, H., Ogura, N., Sato, T., 1990. Size and levels of mRNA for acid invertase in ripe tomato fruits. *Plant Cell Physiol.*, **31**(5):655-659.
- Ethier, G.J., Livingston, N.J., 2004. On the need to incorporate sensitivity to CO₂ transfer conductance into the Farquharvon Caemmerer-Berry leaf photosynthesis model. *Plant Cell Environ.*, 27(2):137-153. [doi:10.1111/j.1365-3040.2004.01140.x]
- Farquhar, G.D., Sharkey, T.D., 1982. Stomatal conductance and photosynthesis. *Annu. Rev. Plant Physiol.*, 33: 317-345. [doi:10.1146/annurev.pp.33.060182.001533]
- Fox, R.B., 1984. Prevention of granulocyte-mediated oxidant lung in rats by a hydroxyl radical scavenger, dimethylthiourea. J. Clin. Invest., 74(4):1456-1464. [doi:10. 1172/JCI111558]
- Foyer, C.H., Lopez-Delgado, H., Dat, J.F., Scott, I.M., 1997. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. *Physiol. Plant.*, **100**(2):241-254. [doi:10.1111/j.1399-3054.1997.tb04780.x]
- Fryer, M.J., Oxborough, K., Martin, B., Ort, D.R., Baker, N.R., 1995. Factors associated with depression of photosynthetic quantum efficiency in maize at low growth temperature. *Plant Physiol.*, **108**(2):761-767. [doi:10.1104/pp. 108.2.761]
- Furbank, R.T., Taylor, W.C., 1995. Regulation of photosynthesis in C-3 and C-4 plants: a molecular approach. *Plant Cell*, 7(7):797-807. [doi:10.2307/3870037]
- Galtier, N., Foyer, C.H., Murchie, E., Alred, R., Quick, P., Voelker, T.A., Thepenier, C., Lasceve, G., Betsche, T., 1995. Effects of light and atmospheric carbon-dioxide enrichment on photosynthesis and carbon partitioning in

the leaves of tomato (*Lycopersicon esculentum* L.) plants over-expressing sucrose-phosphate synthase. *J. Exp. Bot.*, **46**(SI):1335-1344. [doi:10.1093/jxb/46.special_issue.1335]

- Genty, B., Briatais, J.M., Baker, N.R., 1989. The relationships between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. *Biochim. Biophys. Acta*, **990**(1):87-92. [doi:10.1016/ S0304-4165(89)80016-9]
- Hancock, J.T., Jones, O.T.G., 1987. The inhibition by diphenyleneiodonium and its analogs of superoxide generation by macrophages. *Biochem. J.*, 242(1):103-107.
- Hendriks, J.H.M., Kolbe, A., Gibon, Y., Stitt, M., Geigenberger, P., 2003. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. *Plant Physiol.*, **133**(2):838-849. [doi:10.1104/pp.103.024513]
- Hubbard, N.L., Huber, S.C., Pharr, D.M., 1989. Sucrose phosphate synthase and acid invertase as determinants of sucrose accumulation in developing muskmelon (*Cucumis melo L.*) fruits. *Plant Physiol.*, **91**(4):1527-1534. [doi:10.1104/pp.91.4.1527]
- Ito, H., Iwabuchi, M., Ogawa, K., 2003. The sugar-metabolic enzymes aldolase and triose-phosphate isomerase are targets of glutathionylation in *Arabidopsis thaliana*: detection using biotinylated glutathione. *Plant Cell Physiol.*, 44(7):655-660. [doi:10.1093/pcp/pcg098]
- Jiang, Y.P., Cheng, F., Zhou, Y.H., Xia, X.J., Mao, W.H., Shi, K., Chen Z., Yu, J.Q., 2012. Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO₂ assimilation in *Cucumis sativus. New Phytol.*, **194**(4):932-943. [doi:10.1111/j.1469-8137.2012.04111.x]
- Kamata, H., Hirata, H., 1999. Redox regulation of cellular signaling. *Cell. Signal.*, **11**(1):1-14. [doi:10.1016/S0898-6568(98)00037-0]
- Khripach, V., Zhabinskii, V., de Groot, A., 2000. Twenty years of brassinosteroids: steroidal plant hormones warrant better crops for the XXI century. *Ann. Bot.*, 86(3): 441-447. [doi:10.1006/anbo.2000.1227]
- Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., Schroeder, J.I., 2003. NADPH oxidase *AtrbohD* and *AtrbohF* genes function in ROS-dependent ABA signaling in *Arabidopsis. EMBO J.*, **22**(11):2623-2633. [doi:10.1093/emboj/cdg277]
- Kwak, J.M., Nguyen, V., Schroeder, J.I., 2006. The role of reactive oxygen species in hormonal responses. *Plant Physiol.*, **141**(2):323-329. [doi:10.1104/pp.106.079004]
- Kwezi, L., Meier, S., Mungur, L., Ruzvidzo, O., Irving, H., Gehring, C., 2007. The Arabidopsis thaliana brassinosteroid receptor (AtBRII) contains a domain that functions as a guanylyl cyclase in vitro. PLoS One, 2(5):e449. [doi:10.1371/journal.pone.0000449]
- Laloi, C., Apel, K., Danon, A., 2004. Reactive oxygen signalling: the latest news. *Curr. Opin. Plant Biol.*, 7(3): 323-328. [doi:10.1016/j.pbi.2004.03.005]

- Lefebvre, S., Lawson, T., Zakhleniuk, O.V., Lloyd, J.C., Raines, C.A., 2005. Increased sedoheptulose-1,7bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. *Plant Physiol.*, **138**(1):451-460. [doi:10.1104/pp.104.055046]
- Lemaire, S.D., Guillon, B., le Marechal, P., Keryer, E., Miginia-Maslow, M., Decottignies, P., 2004. New thioredoxin targets in the unicellular photosynthetic eukaryote *Chlamydomonas reinhardtii*. *PNAS*, **101**(19): 7475-7480. [doi:10.1073/pnas.0402221101]
- Lilley, R.M., Walker, D.A., 1974. An improved spectrophotometric assay for ribulose-bisphosphate carboxylase. *Biochim. Biophys. Acta*, **358**(1):226-229. [doi:10.1016/ 0005-2744(74)90274-5]
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the $2^{-\Delta\Delta C_{\rm T}}$ method. *Methods*, **25**(4):402-408. [doi:10.1006/meth.2001.1262]
- Long, S.P., Zhu, X.G., Naidu, S.L., Ort, D.R., 2006. Can improvement in photosynthesis increase crop yields? *Plant Cell Environ.*, 29(3):315-330. [doi:10.1111/j.1365-3040.2005.01493.x]
- Lowell, C.A., Tomlinson, P.T., Koch, K.E., 1989. Sucrosemetabolising enzymes in transport tissue and adjacent sink structures in developing citrus fruit. *Plant Physiol.*, **90**(4):1394-1402. [doi:10.1104/pp.90.4.1394]
- Marino, D., Hohnjec, N., Kuster, H., Moran, J.F., Gonzalez, E.M., Arrese-Igor, C., 2008. Evidence for transcriptional and post-translational regulation of sucrose synthase in pea nodules by the cellular redox state. *Mol. Plant-Microbe Interact.*, **21**(5):622-630. [doi:10.1094/ MPMI-21-5-0622]
- Meyer, A.J., Hell, R., 2005. Glutathione homeostasis and redox-regulation by sulfhydryl groups. *Photosynth. Res.*, 86(3):435-457. [doi:10.1007/s11120-005-8425-1]
- Miron, D., Schaffer, A.A., 1991. Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of *Lycopersicon esculentum* Mill. and the sucrose accumulating *Lycopersicon hirsutum* Humb. and Bonpl. *Plant Physiol.*, 95(2):623-627. [doi:10.1104/pp.95.2.623]
- Miyagawa, Y., Tamoi, M., Shigeoka, S., 2001. Over-expression of a cyanobacterial fructose-1,6-/ sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth. *Nat. Biotechnol.*, **19**(10): 965-969. [doi:10.1038/nbt1001-965]
- Neill, S., Desikan, R., Hancock, J., 2002. Hydrogen peroxide signalling. *Curr. Opin. Plant Biol.*, 5(5):388-395. [doi:10.1016/S1369-5266(02)00282-0]
- Nogues, S., Baker, N.R., 2000. Effects of drought on photosynthesis in Mediterranean plants grown under enhanced UV-B radiation. J. Exp. Bot., 51(348):1309-1317. [doi:10.1093/jexbot/51.348.1309]
- Ogweno, J.O., Song, X.S., Shi, K., Hu, W.H., Mao, W.H., Zhou, Y.H., Yu, J.Q., Nogues, S., 2008. Brassinosteroids alleviate heat-induced inhibition of photosynthesis by increasing carboxylation efficiency and enhancing

822

antioxidant systems in *Lycopersicon esculentum*. J. Plant Growth Regul., **27**(1):49-57. [doi:10.1007/s00344-007-9030-7]

- Ozaki, K., Uchida, A., Takabe, T., Shinagawa, F., Tanaka, Y., Takabe, T., Hayashi, T., Hattori, T., Rai, A.K., Takabe, T., 2009. Enrichment of sugar content in melon fruits by hydrogen peroxide treatment. *J. Plant Physiol.*, **166**(6): 569-578. [doi:10.1016/j.jplph.2008.08.007]
- Parry, M.A.J., Andralojc, P.J., Mitchell, R.A.C., Madgwick, P.J., Keys, A.J., 2003. Manipulation of Rubisco: the amount, activity, function and regulation. *J. Exp. Bot.*, 54(386):1321-1333. [doi:10.1093/jxb/erg141]
- Paul, M.J., Driscoll, S.P., Lawlor, D.W., 1992. Sink-regulation of photosynthesis in relation to temperature in sunflower and rape. J. Exp. Bot., 43(2):147-153. [doi:10.1093/ jxb/43.2.147]
- Population Division of the Department of Economic and Social Affairs of the United Nations Secretariat, 2009. World Population Prospects: The 2008 Revision. Available from http://www.un.org/esa/population/publications/popnews/ Newsltr 87.pdf.
- Queval, G., Thominet, D., Vanacker, H., Miginiac-Maslow, M., Gakiere, B., Noctor, G., 2009. H₂O₂-activated up-regulation of glutathione in *Arabidopsis* involves induction of genes encoding enzymes involved in cysteine synthesis in the chloroplast. *Mol. Plant*, 2(2):344-356. [doi:10.1093/mp/ssp002]
- Roitsch, T., Gonzalez, M.C., 2004. Function and regulation of plant invertases: sweet sensations. *Trends Plant Sci.*, 9(12):606-613. [doi:10.1016/j.tplants.2004.10.009]
- Rouhier, N., Lemaire, S.D., Jacquot, J.P., 2008. The role of glutathione in photosynthetic organisms: Emerging functions for glutaredoxins and glutathionylation. *Annu. Rev. Plant Biol.*, **59**:143-166. [doi:10.1146/annurev.arplant. 9.032607.092811]
- Ruelland, E., Miginiac-Maslow, M., 1999. Regulation of chloroplast enzyme activities by thioredoxins: activation or relief from inhibition? *Trends Plant Sci.*, 4(4):136-141. [doi:10.1016/S1360-1385(99)01391-6]
- Schluter, U., Kopke, D., Altmann, T., Mussig, C., 2002. Analysis of carbohydrate metabolism of CPD antisense plants and the brassinosteroid-deficient *cbb1* mutant. *Plant Cell Environ.*, 25(6):783-791. [doi:10.1046/j.1365-3040.2002.00860.x]
- Schüermann, P., Buchanan, B.B., 2008. The ferredoxin/ thioredoxin system of oxygenic photosynthesis. *Antioxid. Redox Signal.*, **10**(7):1235-1273. [doi:10.1089/ars.2007. 1931]
- Sharkey, T.D., Savitch, L.V., Butz, N.D., 1991. Photometric method for routine determination of kcat and carbamylation of Rubisco. *Photosynth. Res.*, 28(1):41-48. [doi:10.1007/BF00027175]
- Sinclair, T.R., Purcell, L.C., Sneller, C.H., 2004. Crop transformation and the challenge to increase yield potential. *Trends Plant Sci.*, 9(2):70-75. [doi:10.1016/j.tplants. 2003.12.008]
- Sonnewald, U., Lerchl, J., Zrenner, R., Frommer, W., 1994.

Manipulation of sink-source relations in transgenic plants. *Plant Cell Environ.*, **17**(5):649-658. [doi:10.1111/j.1365-3040.1994.tb00156.x]

- Stitt, M., 1986. Limitation of photosynthsis by carbon metabolism. I. Evidence fro excess electron-transport capacity in leaves carrying out photosynthsis in saturating light and CO₂. *Plant Physiol.*, **81**(4):1115-1122. [doi:10.1104/pp.81.4.1115]
- Sun, Y., Fan, X.Y., Cao, D.M., Tang, W.Q., He, K., Zhu, J.Y., He, J.X., Bai, M.Y., Zhu, S.W., Oh, E., *et al.*, 2010. In tegration of brassinosteroid signal transduction with the transcription network for plant growth regulation in *Arabidopsis. Dev. Cell*, **19**(5):765-777. [doi:10.1016/j. devcel.2010.10.010]
- van Kooten, O., Snel, J., 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. *Photosynth. Res.*, 25(3):147-150. [doi:10.1007/BF00033156]
- von Caemmerer, S., Farquhar, G.D., 1981. Some relationships between the biochemistry of photosynthesis and the gas-exchange of leaves. *Planta*, **153**(4):376-387. [doi:10. 1007/BF00384257]
- Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., van Montagu, M., Inze, D., van Camp, W., 1997. Catalase is a sink for H₂O₂ and is indispensable for stress defence in C-3 plants. *EMBO J.*, 16(16): 4806-4816. [doi:10.1093/emboj/16.16.4806]
- Wu, C.Y., Trieu, A., Radhakrishnan, P., Kwok, S.F., Harris, S., Zhang, K., Wang, J.L., Wan, J.M., Zhai, H.Q., Takatsuto, S., *et al.*, 2008. Brassinosteroids regulate grain filling in rice. *Plant Cell*, **20**(8):2130-2145. [doi:10.1105/tpc.107. 055087]
- Xia, X.J., Huang, L.F., Zhou, Y.H., Mao, W.H., Shi, K., Wu, J.X., Asami, T., Chen, Z.X., Yu, J.Q., 2009a. Brassinosteroids promote photosynthesis and growth by enhancing activation of Rubisco and expression of photosynthetic genes in *Cucumis sativus*. *Planta*, **230**(6):1185-1196. [doi:10.1007/s00425-009-1016-1]
- Xia, X.J., Wang, Y.J., Zhou, Y.H., Tao, Y., Mao, W.H., Shi, K., Asami, T., Chen, Z, Yu, J.Q., 2009b. Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. *Plant Physiol.*, **150**(2):801-814. [doi:10.1104/pp.109.138230]
- Yu, J.Q., Matsui, Y., 1997. Effects of root exudates of cucumber (*Cucumis sativus*) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol., 23(3): 817-827. [doi:10.1023/B:JOEC.0000006413.98507.55]
- Yu, J.Q., Huang, L.F., Hu, W.H., Zhou, Y.H., Mao, W.H., Ye, S.F., Nogues, S., 2004. A role for brassinosteroids in the regulation of photosynthesis in *Cucumis sativus*. J. Exp. Bot., 55(399):1135-1143. [doi:10.1093/jxb/erh124]
- Zhang, X., Zhang, L., Dong, F.C., Gao, J.F., Galbraith, D.W., Song, C.P., 2001. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in *Vicia faba*. *Plant Physiol.*, **126**(4):1438-1448. [doi:10.1104/pp.126.4.1438]
- Zhou, Y.H., Yu, J.Q., Huang, L.F., Nogues, S., 2004. The relationship between CO₂ assimilation, photosynthetic electron transport and water-water cycle in chill-exposed cucumber leaves under low light and subsequent recovery. *Plant Cell Environ.*, 27(12):1503-1514. [doi:10.1111/j. 1365-3040.2004.01255.x]