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Abstract: Scientific knowledge is grounded in a particular epistemology and, owing to the requirements of that episte-

mology, possesses limitations. Some limitations are intrinsic, in the sense that they depend inherently on the nature of sci-

entific knowledge; others are contingent, depending on the present state of knowledge, including technology. Understand-

ing limitations facilitates scientific research because one can then recognize when one is confronted by a limitation, as op-

posed to simply being unable to solve a problem within the existing bounds of possibility. In the hope that the role of lim-

iting factors can be brought more clearly into focus and discussed, we consider several sources of limitation as they apply 

to biological knowledge: mathematical complexity, experimental constraints, validation, knowledge discovery, and human 

intellectual capacity. 
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INTRODUCTION 

 Near the end of his recent history of cancer, The Emperor 
of Maladies, and following almost 450 pages of a depressing 
empiricism, Siddhartha Mukherjee waxes hopeful in regard 
to a future medicine grounded in translational genomics: 

• Gene by gene, and now pathway by pathway, we have an 
extraordinary glimpse into the biology of cancer. The 
complete maps of mutations in many tumor types (with 
their hills, valleys, and mountains) will soon be complete, 
and the core pathways that are mutated fully defined. But 
as the old proverb runs, there are mountains beyond 
mountains. Once the mutations have been identified, the 
mutant genes will need to be assigned functions in cellu-
lar physiology. We will need to move through a renewed 
cycle of knowledge that recapitulates a past cycle – from 
anatomy to physiology to therapeutics [1]. 

 Mukherjee does not run from the difficulty but he cer-
tainly appears to envision a therapeutic revolution based on 
scientific progress that far surpasses the medicine of the re-
cent past.  

 This is a much different perspective than one taken only 
a decade earlier by James Le Fanu in his book, The Rise and 
Fall of Modern Medicine, when he writes: 

• Medicine, like any field of endeavor, is bounded by its 
concerns – the treatment of disease – so success necessar-
ily places a limit on further progress…. As of the mo-
ment, it is not clear whether or how the last challenge left 
– the discovery of the causes of disease like multiple 
sclerosis and leukemia – is indeed ‘soluble.’… The lim-
ited prospects of future medical advance should by now 
be well recognized [2]. 
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 Le Fanu, too, argues that the past has been dominated by 
empiricism, but he is not so enamored by the prospects of 
translational medicine. For him, the limitations of science 
inevitably place limits on science-based medicine and he 
clearly believes that the limitations on biological knowledge 
have already been approached to the point that they limit 
major medical advances. Surely, one cannot deny that limita-
tions on scientific knowledge limit its application, so that 
Mukherjee’s optimism must be tempered by any limitations 
that exist. On the other hand, Le Fanu places stark limita-
tions on science before science has even begun in earnest. He 
admits that limitations have been assumed before in physics, 
only to be quickly shattered. Yet somehow it is to be differ-
ent with biology.  

 As a modern science, biology is in its nascent years. In 
1949, Norbert Wiener wrote, “Many perhaps do not realize 
that the present age is ready for a significant turn in the de-
velopment toward far greater heights than we have ever an-
ticipated. The point of departure may well be the recasting 
and unifying of the theories of control and communication in 
the machine and in the animal on a statistical basis” [3]. As 
biological science turns to its natural home in control, com-
munication, and information, it will have open to it a vast 
store of systems theory gained over the last 75 years. To 
judge it a failure before it has hardly begun would be akin to 
arguing that humans cannot walk on the moon before the 
arrival of Newton. Whereas a scientific pessimist of the Six-
teenth Century did not possess almost a century of the calcu-
lus that would spur the advancement of a new physics and 
translate into space travel, today we possess three-quarters of 
a century of the mathematical theory that will propel a new 
biology that will translate into systems medicine. 

 Nonetheless, there will be limitations. An understanding 

of these limitations is useful for research because it can serve 

as a guide to the kinds of problems that confront the re-
searcher and as a prescription for the kinds of auxiliary ad-
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vances that need to occur to mitigate those limitations, for 

instance, the kinds of experimental apparatus that need to be 

developed to support fundamental advances in biological 
knowledge. Limitations on biological knowledge arise from 

numerous sources, all finding their roots in the scientific 

epistemological triad: (1) knowledge represented by a 
mathematical model, (2) operational definitions to tie the 

model to experiments, and (3) agreement (in some defined 

sense) of model-based predictions and experimental out-
comes. When we speak of limitations we do not necessarily 

refer to permanent limitations; more generally, we are con-

cerned with impediments, many of which can be more or 
less overcome to expand the knowledge domain. For in-

stance, while today certain matrix operations critical to the 

design of optimal therapeutic intervention are computation-
ally intractable, there is no doubt that in twenty years the 

domain of tractability will be increased. 

 Obviously, limitations to knowledge are relative to the 

epistemological ground of that knowledge, in this case, the 

ground of scientific knowledge. It is not our intent to delve 
systematically into scientific epistemology, in particular, as 

it relates to biology. For an in depth study of the issue, we 

refer to [4]; for a synopsis that we believe provides suffi-
cient background for the current paper, we refer to [5]. 

MATHEMATICAL COMPLEXITY 

 Because scientific knowledge is constituted in a 
mathematical model and the full scope of a theory is mani-

fested in propositions derived within the model, fundamen-

tal limitations arise from the structure imposed on the 
mathematical model by the nature of the science, in par-

ticular, its formal mathematical structure and its internal 

tractability, that is, the degree to which one can formulate 
relations within the theory. We incorporate all of these 

limitations under the heading of “mathematical complex-

ity.” While it may be possible to write down a large num-
ber of equations describing behavior to a fine degree, the 

ability to derive closed-form analytic solutions for various 

aspects of the model deteriorates with increasing model 
complexity. Examples include deriving limit cycles and 

mean first passage times in Markovian models of gene 

regulatory networks, both of which characterize important 
phenotypic properties, or expressing in closed-form the 

steady-state distribution, which plays a central role in de-

riving therapeutic intervention strategies [6]. Thus, if one 
desires analytic representation, model constraint becomes 

mandatory. 

 More generally, owing to the vast number of quantita-

tive variables within the cell, or any larger biological sys-

tem, such as gene and protein expressions, and the involved 
relationships among these variables, it is impossible to 

write down a system incorporating more than a small por-

tion of them. This difficulty stems not only from the sheer 
mass of variables and relations but also from the inability 

to measure such variables and their relationships due to 

experimental constraints imposed by measurement tech-
nologies, as discussed in the following section. This leads 

inevitably to model stochasticity resulting from latent vari-

ables and therefore to systems for which analytic treatment 

is virtually impossible, for instance, large systems of sto-

chastic nonlinear differential equations. In general, as we 

decrease the number of relevant variables within the model, 
stochasticity increases. The size of the system is decreased 

at the cost of increased randomness and a consequent loss 

in predictability with regard to the phenomena being mod-
eled. This is a fundamental trade-off in all modeling: model 

tractability versus phenomenal predictability. The problem 

is greatly heightened in biology in comparison to man-
made systems because biological systems have much 

greater complexity than man-made systems, in particular, 

with regard to the nature of their interactions. Hence, bio-
logical systems are forced more strongly into these trade-

offs.  

 To illustrate the stochastic effect of latent variables, we 

consider a network involving the widely studied tumor sup-

pressor gene p53, which serves as a transcription factor for 
hundreds of downstream genes in mammalian genomes and 

has been widely studied. Expression of these downstream 

genes can modulate cell cycle progression, repair damaged 
DNA, and induce senescence and apoptosis. Fig. (1) shows 

some major pathways involving p53 that are activated in 

the presence of DNA double strand breaks [7]. In [8], two 
Boolean networks are derived in which the pathways of 

Fig. (1) are manifested. In each, states are of the form 

[ATM, p53, Wip1, Mdm2], with dna_dsb being the DNA 
damage input, which is external to the network. Depending 

on the value of dna_dsb, 0 (no damage) or 1 (damage), we 

obtain a different network. A Boolean network is a binary-
valued network in which a gene value (0 or 1) is 

determined by logical rules involving gene values from the 

previous time instant [9]. In this case, two Boolean net-
works are determined by the following logical rules, de-

pending on the value of dna_dsb: 

 ATMnext = dna_dsb)(ATMWip1 +  

 P53next = Wip1)(ATMMdm2 +  

 Wip1next = p53 

 Mdm2next = Wip1)(p53ATM +  

 Here, the symbols ·, +, and  represent logical conjunc-
tion, disjunction, and negation, respectively. The state tran-

sition diagrams for these are shown in Fig. (2): (a) dna_dsb 

= 0; (b) dna_dab = 1. Absent damage, the network evolves 
into a single attractor state (0000); with damage, the net-

work evolves into an attractor cycle in which p53 may be 

expressed or unexpressed. If one were to observe the net-
work without knowing the damage status, then network 

behavior would appear stochastic, for instance, 0001  

0000 when dna_dsb = 0 and 0001  1000 when dna_dsb = 
1. A “probabilistic Boolean network” (PBN) results from 

considering the two Boolean networks as “contexts” of a 

single network governed by one of the Boolean networks at 
any given time point, where there is a probability of 

switching the governing network [6]. In this simple case, 

there is only one variable external to the network leading to 
stochasticity; in fact, there can be many such variables. 
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Fig. (1). A network governing the response of p53 to DNA double strand breaks. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). State space dynamics of Boolean networks corresponding to (a) no damage, dna_dsb = 0; and (b) double-strand-break damage, 

dna_dsb = 1. 

 The basic point regarding complexity is that it leads in-
exorably to compression: models must be reduced to make 
them tractable. While the general concept may seem straight-
forward, what is not straightforward is characterizing the 
relation of compression to specific functionality. Compres-
sion increases uncertainty, but it may not unduly affect one’s 
aims for the system. For instance, if those aims are medical 
and the compression does not involve the regulatory mecha-
nisms upon which the aims depend, then the compression is 
of no consequence. This means that compression (equiva-
lently, model constraint) should be done with one’s ends in 
mind. If one begins with a complex model, say a gene regu-
latory network with 20 genes, and wishes to reduce it to a 
network with 12 genes in order to facilitate derivation of a 
control policy (therapeutic regimen), then that compression 
should be done so as to maintain, to the extent possible, the 
information required for such derivation. In other words, 
compression should be goal-dependent. For example, the 
network in Fig. (1) could be expanded to include other regu-
lators of p53, such as the checkpoint kinase 2 (CHK2), 
which like ATM, activates p53 and is inhibited by Wip1, in 
addition to being activated by ATM itself. Although it is 

known that CHK2 is important for shaping the dynamics of 
p53 [10] and, in the Boolean network context, its inclusion 
would have the effect of doubling the total number of states, 
the reduced network (without CHK2) nonetheless captures 
the essential behavior of p53 under no damage and double-
strand-break damage conditions. 

 Methods need to be developed to reduce models while 
preserving important information for the task at hand, such as 
therapeutic intervention. This requires appropriate (canonical) 
model representation so as to separate out unneeded structure, 
a classic problem in signal processing. It also requires charac-
terization of approximation accuracy for the reduction, where 
approximation is related to the goal of the modeling and the 
reduction. A scientist might be satisfied with the original net-
work and judge it superior to the reduced one because it pro-
vides better prediction, but the translational scientist (engineer 
or physician) requires the reduced network in order to accom-
plish the translational mission, albeit, perhaps with decreased 
performance than would be the case with the original network. 
Unfortunately, with the latter being impossible, a trade-off 
must be made or else one is paralyzed.  
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 While too much complexity presents a problem, paralysis 
can also ensue at the opposite end of the model reduction 
spectrum. This is starkly evident in genome-wide association 
studies (GWAS). The goal of such studies is to identify ge-
netic variations associated with a particular disease and is 
based on rapidly scanning genomic markers across the ge-
nome from affected and unaffected populations [11, 12]. In a 
sense, such studies represent the ultimate compression to the 
point where 'the model' is typically reduced to a univariate 
statistical test, such as a chi-square test, which produces a p-
value for the significance of the so-called odds ratio – the 
ratio of the proportions of individuals in each group 
(case/control) having a specific allele. Since millions of 
markers (single nucleotide polymorphisms, or SNPs) are 
tested, the p-values must be corrected for multiple testing 
and only very low ones are deemed to be significant. This 
requires very large sample sizes and recent studies are ap-
proaching 200,000 individuals [13].  

 Since for virtually all complex diseases, such as cancer or 
autoimmune diseases, no single marker carries sufficient 
explanatory power, a natural idea is to move toward higher 
complexity by considering combinations of markers. How-
ever, this has the effect of only exacerbating the multiple 
testing problem and demanding yet larger sample sizes. The 
burgeoning field of systems genetics is attacking this prob-
lem by introducing prior information, possibly computation-
ally inferred from complementary data sets, about molecular 
networks that ultimately determine the phenotype. The use 
of such prior knowledge has the potential to substantially 
mitigate sample size requirements and increase the power of 
identifying genotype-phenotype relationships. Thus, from 
the engineering (translational) perspective, models must be 
reduced for tractability, but not to the point where their use 
becomes impractical due to other factors. 

 Although model reduction is typically associated with 
translational science, the scientist too must deal with com-
pression. If analytic representations for important systems 
properties are desired so as to fully appreciate the scientific 
content of the system, then complexity trade-offs are often 
necessary. Here one usually speaks of approximations. 
Rather than deduce exact relations as might hold for the full 
system, the scientist must derive approximate solutions, 
which ultimately means that mathematical complexity has 
been reduced. For instance, one might have a differential 
equation model and reduce it to a discrete model or eliminate 
“very small” terms from infinite expansions. In either case, 
the solutions only hold approximately (in some sense) rela-
tive to the full system, just as do the solutions in a reduced 
model relative to the full model.  

 While we have focused on mathematical complexity, this 
issue is closely related to computational complexity. Very 
often one must employ large calculations to derive mathe-
matical characteristics of the system, say the steady-state 
distribution. In this case, mathematical intractability is really 
computational intractability. It is not that one cannot solve 
the relevant equations and write down the solution; rather, 
the computations involved in the solution are not feasible 
(although they might be in the future). For instance, if one 
considers a Markovian binary gene regulatory network with 
40 genes, then there are 2

40
 states and the transition probabil-

ity matrix is 2
40

 by 2
40

, which makes finding the steady-state 
distribution intractable. 

 We have emphasized the important and limiting role 
played by stochasticity in biological science, where stochastic-
ity is incorporated in the mathematical model. There is another 
way in which uncertainty can appear in the modeling process. 
Rather than have a single model, stochastic or deterministic, 
one might wish to take a “robust” view of the situation and 
postulate an “uncertainty class” of models, the idea being that 
we believe the model belongs to the uncertainty class but are 
uncertain as to which model in the class applies in the present 
situation. In this case, rather than finding some optimal opera-
tion on the model, such as finding an optimal intervention 
strategy, one tries to find an operation that is robust across the 
uncertainty class, in the sense that it performs reasonably well 
on all models in the class. This idea was first introduced in the 
framework of finding system filters that depend on a covari-
ance matrix when the exact matrix is unknown, our only 
knowledge being that the covariance matrix of interest belongs 
to an uncertainty class of covariance matrices [14]. The early 
work took a mini-max approach, the goal being to find the 
filter with best worst-case performance across the uncertainty 
class [15, 16]. Later, a Bayesian approach was proposed in 
which a probability distribution is associated with the uncer-
tainty class [17]. The Bayesian approach was then applied to 
find optimal robust control strategies in the context of gene 
regulatory networks to achieve beneficial therapeutic interven-
tion across the uncertainty class of networks [18].  

EXPERIMENTAL CONSTRAINTS 

 The difficulty in specifying many of the variables and their 
interrelationships in a model frequently stems from experi-
mental limitations imposed by current measurement technolo-
gies. As technologies evolve and new measurement modalities 
come online, which has been the case over the past several 
decades in biology, the domain of modeling becomes ex-
panded, entailing the mathematical, statistical, and computa-
tional difficulties associated with greater complexity. It is thus 
paramount to understand how experimental feasibility con-
strains model development. 

 Consider again models of genetic regulatory networks. 
Typically, such models represent the collective behavior of 
genes and their products, RNAs and proteins, which constitute 
highly dynamic, multivariate, and nonlinear interactions. To 
even begin to appreciate the enormous complexity of these 
molecular interactions, let us sketch out some of the regulatory 
mechanisms involved.  

 For instance, transcription factors, such as the aforemen-
tioned p53, are proteins that bind to their cognate recognition 
sites encoded by specific DNA sequences and regulate the 
expression of other genes that contain these sequences in their 
cis regulatory regions. Transcription factors can frequently 
function jointly, either directly binding in complexes with 
other proteins or through combinatorial binding to the pro-
moter architecture of their target genes [19], and they can have 
activating or inhibitory functions. The target genes of tran-
scription factors are often other transcription factors, resulting 
in feedback or feedforward mechanisms that play important 
roles in modulating the dynamics of gene expression and re-
sponses to environmental cues [20]. 
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 Small non-coding RNAs, such as microRNAs, play simi-
lar roles in the cell, typically by suppressing the expression 
of other genes by means of translational repression or tran-
script degradation [21, 22], forming regulatory networks 
known to interplay with transcription factor networks. For 
example, microRNAs can suppress the expression of tran-
scription factors and transcription factors can regulate the 
expression of microRNAs by binding to their promoters 
(regulatory regions) or the promoters of genes harboring the 
microRNAs in their intronic regions. 

 DNA, tightly packed in the nucleus of a eukaryotic cell 
and packaged into chromatin, is configured in three-
dimensional space in a way that certain genomic regions are 
accessible to other proteins, such as transcription factors, 
while others are not. This process of genomic accessibility 
profoundly affects which genes are expressed and which are 
silenced, and itself is highly dynamic [23]. Certain proteins, 
themselves naturally encoded by genes and thus controlled 
by genetic regulatory mechanisms, are able to chemically 
modify components of chromatin, such as histones, through 
processes such as methylation, phosphorylation, or acetyla-
tion, and thereby dynamically alter chromatin structure and, 
consequently, accessibility of DNA to other proteins [24-27]. 
This process is called “epigenetic regulation.” Such post-
translational modifications extend beyond chromatin modifi-
ers to many other proteins, which themselves form vast net-
works of protein-protein interactions, themselves also dy-
namic. Such networks play important roles in transducing 
signals within the cell by propagating information from out-
side the cell to its nucleus [28, 29]. 

 This description in no way attempts to be comprehensive 
and only superficially touches on the enormous complexity 
of molecular networks in a single living cell. It ignores other 
fundamental aspects of regulation, such as RNA binding 
proteins, metabolic networks and allosteric effectors, and, 
importantly, spatial organization of all these molecules 
within the cell. It is somewhat astounding that most of these 
behaviors and interactions can already be directly measured 
on a global scale, thereby lending themselves to experimen-
tal inquiry. 

 For example, the advent of high throughput sequencing 
technologies allows for global measurements of mRNAs, 
including their alternatively spliced isoforms, and microR-
NAs, through a methodology called RNAseq [30]. This is 
now becoming possible on a single cell level [31]. Global 
patterns of transcription factor binding to DNA, as well as 
those of histone modifiers, can be measured using ChIPseq, 
which combines chromatin immunoprecipitation (ChIP) with 
massively parallel DNA sequencing [32]. Protein expression, 
including post-translational modifications, can be measured 
with a variety of technologies, such as by the recently devel-
oped selected reaction monitoring (SRM) that uses targeted 
quantitative proteomics by mass spectrometry [33]. At the 
single cell level, a modest number of proteins can be meas-
ured by flow cytometry in a highly quantitative manner [34, 
35] and, more recently, by mass cytometry (CyTOF), which 
promises the ability to measure hundreds of proteins per cell 
[36]. 

 Despite this impressive ability to measure the abun-
dances, states, and interactions of biomolecules on a global 

scale, current experimental capabilities are still woefully 
inadequate for constructing all but the simplest and reduced 
models of biomolecular networks in a cell. This is due to a 
number of fundamental experimental limitations. First is the 
issue of sensitivity. Most biological measurements are per-
formed on cell populations including measurements of 
mRNAs, microRNAs, and proteins. The same is true for 
measurements of protein-DNA interactions using ChIPseq. 
This is a fundamental problem, since even nominally identi-
cal cells can exhibit great heterogeneity in the abundances of 
transcripts and proteins, due to numerous factors including 
thermal fluctuations, intrinsic stochasticity or noise in gene 
expression, and even minor differences in the cellular micro-
environment, which can be amplified by the cell [37-39]. 
Thus, population level measurements only yield average 
behaviors, which can be highly misleading.  

 Returning to the p53 signaling network, p53 expression 
levels, when measured in a cell population, first increase 
dramatically in response to double strand breaks, but then 
decrease in a series of damped oscillations, with the ampli-
tude decreasing over time [40]; however, single-cell analysis 
using fluorescently tagged p53 reveals that individual cells 
exhibit undamped pulses with fixed amplitude and duration 
[41]. One reason for this phenomenon is that the number of 
cells exhibiting pulses is decreased with time and synchroni-
zation between individual cells is eventually lost [8]. Popula-
tion level average measurements naturally mask this effect. 

 Although such single cell dynamics can be measured 
using fluorescently labeled constructs, such as luciferase, 
and quantified through automated microscopic imaging, one 
sacrifices the ability to measure behaviors globally. Only a 
handful of genes or proteins can be measured in this manner. 
One promising recent technology is microfluidics, which 
permits quantitative measurement of multiple single cells in 
a highly controlled microenvironment that allows paralleliza-
tion and multiplexing, thereby making it possible to measure 
multiple genes under multiple conditions simultaneously 
[42-44]. Nonetheless, global and dynamic measurement of 
gene activity at a single cell level is still experimentally out 
of reach. 

 This is not to say that population level measurements are 
not useful in model building and validation. Indeed, a model 
constructed on a single cell level can be used to make predic-
tions on a population level. For example, single cell models 
can be studied using stochastic simulation algorithms, such 
as the well-known Gillespie algorithm [45], and validated at 
a population level by measuring the distributions of protein 
expressions from a large number of cells using flow cytome-
try [46]. Naturally, statistical limitations must be carefully 
considered and sample sizes should be large enough to deal 
with heterogeneity. 

 A related experimental limitation stems from the inability 
to measure different time scales concomitantly. For example, 
signaling networks, through processes such as phosphoryla-
tion, protein conformational changes, and physical move-
ment of signaling compounds by diffusion, frequently oper-
ate on a timescale of seconds or milliseconds [47], but tran-
scriptional regulatory networks exhibit dynamics on a times-
cale of minutes to hours [48]. Since these processes are cou-
pled, it becomes necessary to measure them jointly in order 
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to construct mathematical models describing their behavior. 
This is currently impossible, since such measurements re-
quire different techniques that cannot be carried out on the 
same cells. Furthermore, these techniques are generally de-
structive, meaning that the cell is killed during the process of 
measurement. This challenge can be partially overcome by 
assuming timescale separation, meaning that fast interactions 
are assumed to complete before the slow interactions begin 
to change the concentrations of proteins. Mathematically, 
this can be achieved by steady-state approximations on the 
fast timescale, which are used as inputs to the slow timescale 
models [49]. 

 Just as biological systems are multiscale in the temporal 
domain, they also exhibit multiscale characteristics in the 
spatial domain. Firstly, intracellular molecular dynamics are 
highly nonhomogeneous, with most molecular species local-
ized to only certain subcellular compartments, such as or-
ganelles, including the nucleus or the nuclear membrane, 
peroxisomes, mitochondria, endoplasmic reticulum, cellular 
membrane, and so on. This presents problems for modeling 
efforts that make assumptions of internal homogeneity, in-
cluding systems of ordinary differential equations describing 
these interactions. The cell is far from a well mixed bag of 
molecules. Molecular imaging techniques, employing quan-
tum dots and other nanoparticles, can be used to track the 
subcellular localization of individual molecules and colocali-
zation of multiple molecules [50, 51]; however, these tech-
niques are currently limited to only several molecular meas-
urements at a time. 

 Secondly, multicellular systems, especially higher Meta-
zoa, are organized across multiple spatial scales. Cells com-
municate with each other not only through chemical signal-
ing, by means of secretion of various diffusible factors, such 
as growth factors and cytokines, but also via physico-
mechanical interactions as they move, adhere to each other, 
divide, and interact with the extracellular matrix. These in-
ter-cellular interactions comprise tissues, typically consti-
tuted by multiple different cell types that build structures, 
such as blood vessels. The spatial organization further ex-
tends to organs and eventually to whole organisms.  

 The feasibility of constructing molecular and cellular 
models is greatly constrained by the experimental capabili-
ties of measuring such multiscale behaviors. Yet, this is nec-
essary for attacking complex diseases such as cancer, which 
is inherently a multiscale phenomenon [52]. Indeed, consider 
that even a microtumor contains billions of cells of different 
types, including tissue specific cancerous cells, infiltrating 
innate and adaptive immune cells, endothelial cells that con-
struct blood vessels, and other stromal cells. Thus, even 
though molecular disruptions to regulatory networks in can-
cer may be the underlying initiating events, a full under-
standing of cancer as a multicellular phenomenon must rely 
on multiscale models spanning multiple temporal and spatial 
scales of organization. Molecular in vivo imaging will need 
to evolve to the point where highly parallel and dynamic 
measurements can be made across multiple scales so as to 
inform construction of mathematical models for capturing 
these complex behaviors and designing therapeutic ap-
proaches. Until that time, simplifying assumptions concern-
ing separation of scales and homogeneity must be made to 

reduce model complexity, as already discussed. Predictions 
from such simplified models can be tested by cleverly de-
signed experiments that measure particular characteristics of 
the systems and partially validate the models. This brings us 
to the important topic of model validation, which carries 
with it its own particular limitations and challenges. 

VALIDATION 

 Validation depends on predictions from the model agree-
ing (in some statistical sense) with experimental observa-
tions. Validating every relation in a complex model is typi-
cally beyond experimental feasibility. One may lack the ex-
perimental capability to obtain the observations relevant to 
certain predictions or the number of experiments may simply 
exhaust time or resources owing to model complexity – the 
number of relations to check. Hence, one seeks to validate 
some characteristics derivable from the model, such as the 
connectivity or the steady-state distribution in the case of a 
regulatory network. Albert Einstein writes, “In order that 
thinking might not degenerate into ‘metaphysics,’ or into 
empty talk, it is only necessary that enough propositions of 
the conceptual system be firmly enough connected with sen-
sory experiences” [53]. Validation is a process and validity is 
relative to that process. The model must be connected to 
observations, but the specification of this connection in a 
given circumstance is left open – in particular, the specifica-
tion of what is “enough.”  

 The characteristic (or characteristics) one chooses for 
validation depends on the ability to perform experiments and 
the aspects of the model with which one is most concerned. 
The latter is a pragmatic question. For instance, if one is in-
terested mainly in the long-run behavior of a network, vali-
dating the steady-state distribution is of prime interest. Since 
many networks possess the same steady-state distribution, or 
ones very close to the steady-state distribution of the model, 
such an approach only validates that the model belongs to a 
class of networks whose steady-state distributions are con-
cordant with the data; indeed, the transient behavior of the 
model may differ greatly from the observed transient behav-
ior were one to observe transient behavior of the biological 
system itself.  

 Although validation is pragmatic, depending on the 
choice of validation criteria, it is nonetheless intersubjective 
because the validation criteria are intersubjectively under-
stood. Two scientists may differ on the validation criteria 
they wish to apply; nonetheless, each understands the other’s 
criteria. This is why it is important to always specify the 
validation criteria when proposing a model; otherwise, the 
model is not intersubjective, the phenomenal content of the 
model remains unknown, and there is no science.  

 To illustrate the notion of characteristics in the context of 
gene regulatory networks, we consider a mammalian cell cy-
cle network proposed in [54]. Under normal conditions, cell 
division coordinates with growth in a process tightly con-
trolled via extra-cellular signals indicating whether a cell 
should divide or remain in a resting state. The positive signals 
(growth factors) instigate the activation of the key gene Cyclin 
D (CycD). Should p27 be mutated, abolishing its expression, it 
is possible for both CycD and Rb to be simultaneously inac-
tive and, consequently, for the cell to cycle in the absence of 
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any growth factor [55]. (Table 1) summarizes the mutated 
Boolean functions for eight genes: Rb, E2F, CycE, CycA, 
Cdc20, Cdh1, UbcH10, and CycB. The growth factor input is 
external to the cell and its value is determined by the cell's 
environment. The expression of CycD reflects the state of the 
growth factor and is not part of the network. Depending on the 
expression status of CycD, one of two context Boolean net-
works is obtained, corresponding to whether CycD = 0 or 
CycD = 1. The PBN network model is completed by defining 
a probability of switching contexts and a small probability that 
a gene may randomly flip its value. Figs. (3 and 4) show the 
connectivity graph and steady-state distribution of the net-
work, respectively. The steady-state distribution is defined by 

(1), (2),…, ( m), where m is the number of states, such 
that, no matter what state the network is currently in, the prob-
ability of being in state j after a very large number of transi-
tions converges to (j). For more details on this network, see 
[56], where structural intervention is considered to reduce the 
long-run probability of being in cancerous states. 

 In the classical deterministic environment, one makes a 
prediction from the model, conducts an experiment in which 
one of the observables corresponds to the prediction and 
checks for agreement. Owing to experimental variability, one 
has to allow for some disagreement between the predicted and 
observed values, but this is purely an issue of experimental 
accuracy and, if we were to assume perfect accuracy, the con-
clusion would either be agreement or disagreement. In the 
case of disagreement, we would reject the model – the theory 
would be falsified. On the other hand, agreement simply 
means that the model is accepted insofar as the particular pre-
diction (characteristic) is concerned, but remains open to re-
jection should future predictions fail to agree with the relevant 
observations. The model is contingently validated. 

 Because biological models are inherently stochastic, one 
cannot hope to get agreement between prediction and observa-
tion (even discounting experimental variability). Thus, to 
check a prediction, one must employ a hypothesis test involv-

ing the distribution of the prediction, assuming the model. 
Given this “null” distribution and an observation (or set of 
observations), a decision is made to accept or reject the hy-
pothesis based on some region of rejection. As in standard 
hypothesis testing, this “critical region” is determined via 
probabilities from the null distribution. We note in passing that 
“accepting” the null hypothesis is to be interpreted as “failing 
to reject” it – in the absence of evidence against it, one simply 
continues to assume it to be true. We note further that there is 
abundant criticism of this classical approach to statistics, pri-
marily rooted in the belief held within the Bayesian philoso-
phy that experiments should not lead to a conclusion, but 
rather to a probability or estimate with associated confidence 
intervals. There being abundant literature on this topic, e.g. 
[57, 58], we return to the classical approach and illustrate the 
ideas through examples. 

 Suppose one has a proposed model for a gene regulatory 
network involving 10 genes and considers the steady-state 
distribution as the characteristic to be validated. Keeping in 
mind Einstein’s dictum, we need to make some predictions 
involving the steady-state distribution. Let us suppose we have 
access to steady-state data, for instance, 200 gene-expression 
microarrays. Each array gives us one 10-gene state-vector 
measurement in the steady state. From these we form an ob-
served steady-state distribution, say by simply taking the em-
pirical distribution. We then compute a metric between the 
steady-state distribution of the proposed model and the ob-
served steady-state distribution. For the sake of demonstration, 
we take the L1 distance between the distributions, defined by 

 1observemodel ||||  = 

=

m

j

jj
1

observemodel |)()(| , 

where m is the number of states. Letting d denote the dis-
tance, we require a value c based on a null distribution so 
that the model is accepted if d  c and rejected if d > c. To 
construct the null distribution we generate 10,000 empirical 

Table 1. Logical Regulatory Functions for a Mutated Boolean Cell Cycle Network 

Order Gene Regulating Function 

x1 CycD Extra-Cellular Signals 

x2 Rb CycBCycACycECycD  

x3 E2F CycBCycARb  

x4 CycE RbFE2  

x5 CycA ))101(20()2( UbcHCdhCdcRbCycAFE  

x6 Cdc20 CycB 

x7 Cdh1 20)( CdcCycBCycA  

x8 UbcH10 ))20(101(1 CycBCycACdcUbcHCdhCdh  

x9 CycB 120 CdhCdc  
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steady-state distributions from the model, each generated by 
selecting 200 random points from the steady state, and then 
compute the L1 distance for each of the 10,000 distributions 
to generate a null distribution for the L1 distance, D. The 
critical value c for this null distribution can then be chosen 
so that the probability of D > c, meaning D > c given the 
model, is less than some agreed upon small value . The 
model is then rejected or accepted based upon whether the 
observed L1 distance d exceeds or does not exceed c, respec-
tively. Note the pragmatics involved: choice of characteristic 
(steady-state distribution), sample size (200), formation of 
the steady-state distribution from the data (the empirical dis-
tribution), choice of metric (L1 distance), and choice of deci-
sion criterion (D > c and ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Connectivity graph for mutated Boolean cell cycle net-

work. 

 
 

 

 

 

 

 

 

 

 

Fig. (4). Steady-state distribution for mutated Boolean cell cycle 

network. 

 To further illustrate the pragmatics involved, let us con-
sider another validation procedure for the same network. 
This time we use the connectivity graph, whose vertices are 
genes and whose edges indicate some degree of regulatory 
effect between the genes. Given data, in this case, time-
course expression measurements, we apply some algorithm 
to construct a connectivity graph from the data [59, 60] and 
then compute the Hamming distance, h, between the con-
structed graph and the true connectivity graph for the net-
work, the Hamming distance between graphs G1 and G2 be-
ing the number of edges in G1 not in G2 plus the number of 

edges in G2 not in G1. The null distribution for the Hamming 
distance is constructed by generating 10,000 data sets from 
the model, constructing 10,000 connectivity graphs from the 
data via the same algorithm, and then computing 10,000 
Hamming distances to form the null distribution for the 
Hamming distance H. From there we proceed as in the case 
of the steady-state distribution, this time the critical region 
being H > c. Note again the pragmatics involved: character-
istic (connectivity graph), sample size (200), formation of 
the connectivity graph from data (the chosen algorithm), the 
choice of metric (Hamming distance), and choice of decision 
criterion (H > c and ).  

 If one chooses to use a number of characteristics, then the 
likelihood of at least one observed metric exceeding the 
critical value is no longer . This is the problem of multiple 
comparisons and a correction factor needs to be employed. 
Since this is purely a statistical problem, we shall not discuss 
it further.  

 Strictly speaking, a model should be validated based on 
the concordance of model-based predictions and future 
measurements; however, one may gain some degree of vali-
dation by checking predictions against existing experimental 
results in the literature. This is problematic because it is dif-
ficult to judge whether the model has been developed inde-
pendently of the known results and because it is unlikely that 
a previous experimental protocol would be consistent with 
that required for testing the newly proposed model; neverthe-
less, absent the resources to perform a proper hypothesis test, 
concordance, or lack thereof, with the literature at least lets 
one check model feasibility. A good example of this kind 
occurs in [61], where a differential-equation model is con-
structed to characterize nutritional stress response in E. Coli, 
the model is reduced to a graphical model, and the long-run 
behavior of the reduced model is compared to experimental 
results in the literature. 

 We close this section by noting that we have been con-
sidering the scientific validity of a model, not the perform-
ance of an inference procedure that aims to produce a model 
from data. The validity of an inference procedure is evalu-
ated relative to its ability to infer a hypothetical model from 
sample points generated by the model, perhaps perturbed by 
noise [62, 63]. 

KNOWLEDGE DISCOVERY 

 Because biological knowledge involves stochastic non-
linear systems exhibiting extensive parallelism, redundancy, 
and feedback, it is difficult to form conceptualizations and 
difficult to design experiments to aid in conceptualization. 
Because scientific knowledge is constituted within the 
framework of mathematics, one must address within that 
framework the twin issue of formulating biological knowl-
edge and obtaining observations that facilitate such formula-
tion.  

 The formulation of a scientific theory presupposes prior 
knowledge. The creative process involves integrating prior 
knowledge, in the form of mathematical propositions, with 
observations. Data in the absence of knowledge leaves one 
with a virtually unbounded model space in which to config-
ure mathematical theories. This would be like having a ran-
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dom proposition generator that generates models to fit the 
data – an enterprise that has not been entirely forsaken in the 
scientific community [64-66]. Even if one begins with a 
model structure, say the assumption that the model must 
consist of a system of stochastic differential equations, the 
model space remains exceedingly large. The scientist must 
come to the table with sufficient knowledge of the problem 
that he or she can formulate a small class of models for 
which it remains only necessary to utilize data to estimate 
some set of parameters to instantiate the model.  

 Prior knowledge can be roughly divided into two types. 
We refer to the first as “biological organizational principles.” 
As the name implies, these are general principles that con-
strain and focus the conceptualization on feasible systems 
and constrain the model space for inference. Some examples 
of such principles in the context of network models are: con-
nectivity constraints (e.g. distribution laws), dynamics (e.g. 
criticality), functionality requirements (e.g. robustness to 
environmental perturbations), energy efficiency, etc. A sec-
ond kind of knowledge concerns existing relations among 
the variables of interest that constrain the model by requiring 
it to be consistent with these prior relations. Examples of 
these relations include known regulatory mechanisms among 
transcription factors and their target genes, protein-protein 
interactions, and targets of microRNAs. 

 In sum, the discovery process requires the discoverer to 
carry a large toolbox. This toolbox needs a wide array of 
mathematical structures within which one can conceptualize 
and it needs an array of biological organizational principles 
which the scientist can apply to model formulation. This 
demand puts limitations on the discovery of biological 
knowledge. This is particularly true in regard to the mathe-
matical requirement. Owing to stochasticity, highly multi-
variate interaction, nonlinearity, distributed control, and 
asynchronous timing, the mathematics of biological systems 
is more difficult than that of most engineering disciplines. 
Hence, the mathematical limiting effect on the development 
of biological knowledge is greater than that in engineering. 

 While mathematical knowledge is beneficial because it 
provides formal structures for conceptualization, science is 
not simply mathematics. The scientist requires observations 
upon which to cogitate when conceptualizing. For the an-
cient and medieval scientists, observations were haphazard 
and useful observations were dependent on good fortune. It 
was Francis Bacon, in the Novum Organum (1620), who 
articulated the modern conception of experiment when he 
wrote, “The true method of experience…first lights the can-
dle, and then by means of the candle shows the way; com-
mencing as it does with experience duly ordered and di-
gested, not bungling or erratic, and from it educing axioms, 
and from established axioms again new experiments” [67]. 

 It was Galileo who first made this concept central to sci-
entific practice. The post-Galilean scientist chooses how 
Nature is to be probed so as to focus attention on those as-
pects of Nature that correspond to the issue at hand. He or 
she does not approach Nature blindly in the hope that some 
nugget might fall from the sky. To arrive at a model, or con-
ceptualization, the scientist begins with ideas, which one 
might see as preliminary conceptualizations, from which he 
or she designs experiments. Reflecting on Galileo and the 

planned experiment, Immanuel Kant made one of the most 
momentous judgments in human history when he wrote, “To 
this single idea must the revolution be ascribed, by which, 
after groping in the dark for so many centuries, natural sci-
ence was at length conducted into the path of certain pro-
gress” [68]. 

 Complexity trumps good fortune: the more complex the 
environment, the more the need for experimental design. 
This is evident in the words of Hans Reichenbach: “As long 
as we depend on the observation of occurrences not involv-
ing our assistance, the observable happenings are usually the 
product of so many factors that we cannot determine the con-
tribution of each individual factor to the total result” [69]. 
Think of all the factors at work in a living cell. 

 Today we have a well-developed statistical theory of 
experimental design to assist the scientist in planning an ex-
periment. Douglas Montgomery emphasizes the importance 
of design when he writes, “By the statistical design of ex-
periments, we refer to the process of planning the experiment 
so that appropriate data will be collected, which may be ana-
lyzed by statistical methods resulting in valid and objective 
conclusions. The statistical approach to experimental design 
is necessary if we wish to draw meaningful conclusions from 
the data” [70]. All too often researchers collect data without 
a clear idea of what analysis is to be performed on the data, a 
form of stamp collecting as famously stated by Ernest Ru-
therford [71]; or planning to use methods that have never 
been justified for such data – or even been shown to be un-
justified. Perhaps such groping in the dark may find gold 
when probing some simple humanly designed system, but 
the chances are slim to null in the hyper-complex environ-
ment of biology.  

 The need for designed experiments places a double bur-
den on the scientist, the need for mathematical knowledge 
with which to formulate potential relations to be embodied in 
a model and for biological knowledge with which to con-
strain the model space and articulate relevant experiments. 
As for what experiments to choose, here we depend on the 
intuition, one might even say cunning, of the scientist. The 
advancement and direction of science depends on choices. 
Erwin Schrodinger writes, “Consider the number of experi-
ments which have actually furnished data on which the struc-
ture of physical science is based. That number is undoubt-
edly large. But it is infinitesimal when compared to the 
number of experiments that might have been carried out, but 
never actually have been. Therefore, a selection has been 
made in choosing the raw material on which the present 
structure of science is built.” [72]. A bit of meditation on the 
structure of the cell and one comes quickly to the conclusion 
that biologists had better exhibit quite a bit of cunning. 

HUMAN INTELLECTUAL CAPACITY 

 The requirements of the discovery process make it clear 
that, in addition to the limitations imposed by mathematical 
theory, computation, statistics, and experimentation, we are 
faced with fundamental limitations in terms of human intel-
lectual capacity. The fact that there is a hard upper bound 
here can be seen by analogy. If we throw a ball to Maggie, 
she has outstanding ability to assess its trajectory, run swiftly 
to the area where she expects it to bounce, and then redirect 
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her movement to catch the ball in her mouth before it hits the 
ground again. Her ability to swiftly gain knowledge is evi-
denced by how fast she learned all of this during the first 
initial tosses of the ball. But she cannot understand the dif-
ferential equations to formalize these actions into a scientific 
theory. Her limitations in this direction are hardwired and 
she has no idea of what lies beyond that hardwiring. We are 
no different in this final respect, except that our limits lay 
farther out. We can understand the requisite differential 
equations but, like Maggie, we have no idea of what lies 
beyond our hardwiring. If there are categories beyond our 
hardwiring that are necessary for better scientific modeling, 
be it physics or biology, then we are both incapable of doing 
it and unaware of what it is that we cannot do. 

 Be that as it may, as a species we possess significant 
mathematical knowledge and therefore our practical problem 
is to put a good deal of that into our toolboxes. A scientist’s 
creative capacity is expanded by expanding his or her 
mathematical toolbox, as well his or her store of biological 
knowledge. Together, these form the knowledge base, which 
must be sufficiently large – that is, the base must contain the 
requisite knowledge required for a particular creative act. To 
formulate his theory of general relativity, Einstein had to 
learn Riemannian geometry. Had such a theory not existed, 
he would have been in the position of Newton, who had to 
invent the calculus to advance physical knowledge. Very few 
of us will ever make fundamental mathematical discoveries 
to advance science; the vast majority will have to be content 
with thinking in the framework of existing mathematical 
theories and, if necessary, like Einstein, expand our mathe-
matical knowledge when necessary. There have been efforts 
in biological sciences to expand the mathematical framework 
[73, 74]. 

 To think formally about biological networks, one must 
think in terms of mathematical categories that pertain to dy-
namical networks; otherwise, the thinking will be too limited 
in scope and depth. This limitation can only be overcome by 
greater knowledge, that is, by education. Absent a solid educa-

tion, one cannot go beyond the superficial, especially in a sub-
ject such as biology (and medicine) that requires mathematical 
breadth in difficult areas like stochastic processes. Until this 
level of education is attained by working biologists, both biol-
ogy and medicine will inevitably be limited because the hu-
man capacity for conceptualization will be lacking.  

 When it comes to creative capacity in biology, we must 
recognize that we humans, who tend to think linearly, deter-
ministically, and univariately, must step outside of our ordi-
nary mental categories and think nonlinearly, stochastically, 
and multivariately. This is not easy. Our ordinary intuition 
fails. One sees this when researchers believe that the more 
measurements they make, the more knowledge they will 
gain. While such a conclusion may be a product of “common 
sense,” it can be quite wrong.  

 For instance, consider the “peaking phenomenon” in 
classification, where, if one increases the number of meas-
urements by measuring more features while keeping the 
number of measurements per feature constant, then it is 
commonplace for the performance of the designed classifier 
to first improve with more measurements and then degrade 
as more and more measurements are included in the design 
procedure [75, 76]. Fig. (5) illustrates the peaking phenome-
non for classification [76]. It graphically displays the classi-
fier error (vertical axis), which is the probability of an error 
when classifying any future observation, as a function of the 
sample size and the number of features (horizontal axes), 
when using linear discriminant analysis for classification in a 
particular Gaussian model. For a fixed sample size, the error 
first decreases as more features are used (meaning using 
more measurements) and then it begins to increase when the 
number of features passes some optimal value. It should be 
noted that this example is archetypal and the actual situation 
can be much more complicated [77]. 

 Budding scientists must be wrenched from the categories 
of the everyday world and forced to think in the world of 
biological processes, a world very different from the one 
with which humans are familiar. As a society we need to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). Peaking phenomenon. 
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recognize that there will be few who can make this transition 
of thought processes and that these must be identified and 
rigorously educated from an early age. This view was 
strongly espoused by A. N. Kolmogorov [78]. 

 The full extent of this re-categorization of human think-
ing comes when we recognize that scientific knowledge is 
not synonymous with human intelligibility regarding Nature. 
This was appreciated by Newton, who recognized that his 
gravitational laws did not provide some kind of direct 
knowledge of Nature; rather, they described behavior. This 
limitation is natural because human sensation provides ob-
servations of phenomena, not of a natural order behind the 
phenomena. James Jeans puts the matter in practical terms:  

• A mathematical formula can never tell us what a thing is, 
but only how it behaves; it can only specify an object 
through its properties. And these are unlikely to coincide 
in toto with the properties of any single macroscopic ob-
ject of our everyday life…. We need no longer discuss 
whether light consists of particles or waves; we know all 
there is to be known about it if we have found a mathe-
matical formula which accurately describes its behavior, 
and we can think of it as either particles or waves accord-
ing to our mood and the convenience of the moment [79]. 

 It is a form of naïve realism to believe that collecting a 
large library of facts about molecular interactions will lead to 
fundamental knowledge. Perhaps one may regard each fact 
as intelligible in its own right (although there certainly are 
epistemological issues with such an assumption), but one has 
no reason to expect that system behavior will be intelligible. 
Just as we have no experience with interactions at the quan-
tum level, we have no experience with systems having hun-
dreds of thousands of components interacting asynchro-
nously, nonlinearly, multivariately, and stochastically. It 
would be naïve in the extreme to believe that the global be-
havior of such systems will be intelligible, that such systems 
can be represented outside the confines of complex mathe-
matics, and that the behavior of such systems can be pre-
dicted absent the mathematical derivation of system charac-
teristics.  

CONCLUDING REMARKS 

 It is important to recognize limiting factors in the quest 
for knowledge because otherwise one might spend an inordi-
nate amount of time and energy trying to solve a problem 
without realizing that one of these factors is blocking the 
way. An example of this conundrum occurs when one gets 
stuck trying to work with an overly complex mathematical 
model and fails to recognize that a reduced model will make 
the problem tractable. Another, in the opposite direction, is 
when one is stuck trying to model phenomena with an insuf-
ficient mathematical model owing to a lack of mathematical 
knowledge, for instance, trying to model an inherently sto-
chastic process deterministically. Awareness of limitations 
facilitates efforts to push them back when necessary. 

 Here we come face to face with a different kind of human 
issue, one that is not technical, but one that is nonetheless 
very relevant to the progress of science: the desire for 
knowledge, or the lack thereof. As we have noted previously, 
it is rare for a scientist to develop a fundamentally new do-

main of mathematics, yet it is often the case that mathemati-
cal problems within an existing domain must be solved to 
advance science. A salient contemporary biological example 
concerns phenotype classification based on genomic fea-
tures, in particular, gene expressions, where we are con-
fronted with extremely large feature sets and small samples. 
Very little is known in regard to feature selection and error 
estimation in this environment, especially as to what condi-
tions are required to facilitate good feature selection and 
error estimation [80, 81]. Nevertheless, rather than attack the 
root problems by obtaining the necessary mathematical and 
statistical knowledge for expanding our scientific knowl-
edge, a host of papers has been published without the possi-
bility of knowing whether the results are scientifically mean-
ingful, in many cases, being virtually certain that they are 
not.  

 To illustrate the point, consider error estimation via 
“cross-validation,” a method often employed in genomic 
classification. The basic idea is to first design a classifier by 
some method and then to estimate its error in the following 
manner: randomly partition the sample data into a collection 
of disjoint subsamples, for each subsample design a new 
“surrogate” classifier on the data not in the subsample, com-
pute the numerical (counting) error of this classifier on the 
subsample, repeat the procedure for all subsamples, and then 
average the numerical errors of the surrogate classifiers to 
estimate the error of the originally designed classifier. The 
most basic form of cross-validation is to use subsamples of 
size one, so that the surrogate classifiers are all designed by 
leaving out a single data point, hence, the “leave-one-out” 
error estimate. Fig. (6) shows a scatter plot and linear regres-
sion line for the leave-one-out estimate (horizontal axis) and 
true error (vertical axis) [82]. What we observe is typical for 
small samples. Not only do we see large variance, just as 
strikingly we observe negligible regression between the true 
and estimated errors. Indeed, it has been mathematically 
shown that there can be negative correlation between the true 
and estimated errors in some basic models [83].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Scatter plot and regression line for leave-one-out error 

estimation. 
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 Earlier we discussed the danger of depending on com-
mon sense, in the sense that even in the presence of what 
seems like a reasonable mathematical method, rigorous proof 
is needed to establish the accuracy of the method. But with 
cross-validation, not only are we given no mathematical 
proof of its accuracy, where is the common sense? Is it intui-
tive to estimate classifier error rate on future observations by 
designing surrogate classifiers on portions of a small sample 
and averaging the errors they make on the portions left out? 
Some simple hand computations with pencil and paper will 
likely convince one otherwise. Nevertheless, in the absence 
of intuition or proof that cross-validation provides accurate 
estimates with small samples, and much evidence to the con-
trary [84, 85], a host of papers has used it and other related 
approaches. Should we be surprised that the results are not 
reproducible [86]? In fact, the performance of leave-one-out 
has been mathematically characterized for discrete classifica-
tion [87] and linear discriminant analysis in a Gaussian 
model [88, 89] and it can be accurate when the true error is 
very small, but this requires the assumption of prior knowl-
edge. Moreover, given the appropriate prior knowledge, the 
leave-one-out estimate can be calibrated to produce a better 
result [90]. But as typically used, on small samples without 
prior knowledge, cross-validation estimation is meaningless. 

 The issue here is one of purpose. Do we as a community 
sufficiently desire knowledge to address the difficult prob-
lems standing in the way of knowledge? There can be no 
doubt that human beings possess the intellectual capacity to 
solve many of the problems because, as a species, we have 
solved harder problems, so this is not an issue of human ca-
pacity; rather, it is an issue of human choice.  

 In this regard, we close with some words of the Spanish 
philosopher Jose Ortega y Gasset: “Has any thought been 
given to the number of things that must remain active in 
men’s souls in order that there may still continue to be ‘men 
of science’ in real truth? Is it seriously thought that as long 
as there are dollars there will be science?” [91]. 
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