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Abstract
Although radiotherapy represents one of the most effective treatment modalities for patients with cancer, inherent
and/or acquired resistance of cancer cells to radiotherapy is often an impediment to effective treatment. Diverse strat-
egies have been developed to improve the efficacy of radiotherapy. The ubiquitin-proteasome system (UPS) operates
in numerous vital biologic processes by controlling the protein turnover in cells. Ubiquitination is central to the UPS
pathway, and it relies on the E3 ubiquitin ligases to catalyze the covalent attachment of ubiquitin to its protein sub-
strates. Cullin-based RING ligases (CRLs) are the largest family of E3 ligases that are responsible for the ubiquitination
and destruction of numerous cancer-relevant proteins. Its deregulation has been linked tomany human cancers, mak-
ing it an attractive target for therapeutic intervention. This review discusses how targeting the ubiquitin-proteasome
system, particularly CRLs, is an exciting new strategy for radiosensitization in cancer and, specifically, focuses on
MLN4924, a recently discovered small-molecule inhibitor of the NEDD8-activating enzyme, which is being character-
ized as a novel radiosensitizing agent against cancer cells by inactivating CRL E3 ubiquitin ligases.
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Introduction
Cancer is a large group of highly complex diseases with dramatically
different biologic behaviors. Even within cancers of the same organ,
the extent of therapeutic response varies considerably, making it un-
likely that any single agent would cure all cancers or even cancers of a
single organ. Radiation therapy represents one of the most clinically
effective forms of treatment [1]. It is frequently applied as a single
treatment modality with curative intent or, more often, combined
with surgery and/or chemotherapy to maximize the therapeutic effect
[2]. Treatment outcome of patients with cancer receiving radiotherapy
has improved in recent decades, mainly because of optimized thera-
peutic plans and technological advancements in the precise delivery
of radiation to the targeted tumor tissues [3]. However, in many pa-
tients, disease recurs locally after radiotherapy. Although some treat-
ment failures can be explained by the traditionally accepted clinical
factors, such as tumor stage and grade, many failures remain un-
explained [1]. It is now increasingly recognized that multiple biologic
factors of tumors may contribute to radioresistance and, thereby, have a
potential role in determining treatment outcome of patients. Examples
include the intrinsic radioresistance of tumor cells, the existence of
radioresistant cancer stem cells, repopulation of surviving cells after
radiotherapy, repair of radiation-induced damage, the vasculature, as
well as the extent of hypoxia and inflammation within tumors [1].
These factors associated with radioresistance have been extensively
studied in both the preclinical and clinical settings, leading to the de-
velopment of diverse strategies, including targeted agents to overcome
or modulate them with the goal of improving radiotherapy efficacy.

The ubiquitin-proteasome system (UPS) is responsible for the timely
degradation of many regulatory proteins within the cell [4] and also
mediates various nondegradative functions [5]. Abnormal regulation
of UPS has been implicated in a growing number of human diseases,
notably in cancer [6]. Ubiquitination plays a central role in the UPS
pathway and relies on the E3 ligases to catalyze the covalent attachment
of ubiquitin to its protein substrates, which usually confers a recognition
signal for proteasome targeting [4,7]. Cullin-based RING ligases (CRLs)
are the largest family of E3 ubiquitin ligases that control the ubiquitina-
tion and proteasomal degradation of numerous cancer-relevant proteins
[8], thus representing potential therapeutic targets in cancer [9,10].
Here, we provide an overview of CRL E3 ligases and discuss how gen-
eral targeting of the UPS as well as selective targeting of CRL E3 ligases
are being used for radiosensitization of cancer cells.
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Ubiquitin and CRL E3 Ligases
Posttranslational modification of proteins by ubiquitin or ubiquitin-
like proteins (e.g., NEDD8, SUMO-1, SUMO-2, SUMO-3, FUBI,
HUB1, ISG15, FAT10, URM1, UFM1, ATG12, and ATG8) repre-
sents one of the most prevalent mechanisms for regulating most aspects
of cell physiology [4,7,11,12]. As a bona fide modifier, ubiquitin is a
highly conserved protein of 76 amino acids that can be covalently
attached to other proteins through a stepwise cascade of three enzymes,
i.e., E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating
enzyme), and finally E3 (ubiquitin ligase), thereby influencing protein fate
and function [4]. Ubiquitination typically acts as a degradation signal
for the 26S proteasome (poly-ubiquitylation) [13] and also serves non-
proteolytic roles (Lys63-linked poly- or mono-ubiquitylation) in regulat-
ing the nuclear factor kappaB (NF-κB) signaling pathway [14,15], DNA
replication and repair [16,17], as well as intracellular trafficking [13,18].

In humans, there are two E1 enzymes, at least 38 E2 enzymes [19],
and hundreds of E3 enzymes [8]. The E3 ligases are responsible for
substrate specificity [8] and are subdivided into two major classes
characterized by the presence of either a HECT or a RING domain
within them [4,8,20]. RING domain–containing E3 ligases have
more than 600 members, comprising about 95% of human E3 ligases
[8]. Among the RING-based E3 ligases, the CRLs are the largest
family of multiunit ubiquitin ligases that control the turnover of ap-
proximately 20% of all ubiquitinated proteins through proteasome-
mediated degradation [21]. Within the CRL complex, cullin serves
as a molecular scaffold and interacts at its C terminus with the RING
finger protein, creating the catalytic core of the ligase, whereas its
N terminus interacts directly or indirectly (through an adapter protein)
with the substrate-recognition subunit (SRS). It is this SRS that confers
specificity toward its substrate proteins [22]. In human and mouse,
there are eight cullins (cullins 1–3, 4A, 4B, 5, 7, and 9) [22] and
two RING family members, RING box protein-1 (RBX1) and
RBX2, also known as sensitive to apoptosis gene (SAG) [8,23,24].
Both RBX1 and RBX2 are capable of binding to six members of the
human cullin family (cullins 1–3, 4A, 4B, and 5) under overexpressed
conditions [25] and demonstrate in vitro E3 ubiquitin ligase activity
when complexed with cullin 1 [26]. A potential difference between
RBX1 and RBX2 lies in that RBX1 is constitutively expressed, whereas
RBX2/SAG seems to be stress-induced [27]. Furthermore, RBX1 pref-
erentially interacts with cullin 2, whereas RBX2 is selectively associated
with cullin 5, under physiological conditions [28]. The best character-
ized CRL complex is the SKP1-cullin 1–F-box protein (SCF) E3 ligase
[29–31]. SCF is also known as CRL1 [32], where cullin 1 tethers both
the RING finger protein RBX1/RBX2 and the adaptor protein SKP1,
which, in turn, binds to the F-box protein [e.g., FBXW7, beta-transducin
repeat containing protein (β-TrCP) and SKP2] [33]. The human genome
contains approximately 69 F-box proteins that can potentially form a
complex with cullin 1 [34]. Conceivably, the availability of two RBX
family members, along with eight cullins, hundreds of substrate re-
ceptors, and many adaptor proteins allows for the assembly of a multi-
tude of CRLs in eukaryotic cells, imparting these enzymes with key
regulatory functions in protein homeostasis.

Notably, most CRLs, if not all, are activated by neddylation
through attachment of ubiquitin-like protein (NEDD8) to cullin,
therefore preventing the inhibitory binding by the cullin-associated
neddylation-dissociated protein (CAND1) [35–38]. The conformation-
based mechanisms that explain these activating roles of neddylation
have been discussed previously [36,38,39]. Neddylation, through a
process analogous to ubiquitination, involves an enzymatic cascade
through the sequential activity of E1, E2, and E3, resulting in the
covalent attachment of NEDD8 to its substrates. The NEDD8 cas-
cade is currently known to contain a single E1, NEDD8-activating
enzyme (NAE), two E2s, UBE2M (also known as UBC12), UBE2F
[40–43], and a few candidate E3s, such as RBX1 [44,45], SCCRO
(DCN1) [46], and IAP [47]. Owing to the critical role of neddyla-
tion in the activation of CRLs, it provides an alternative approach
to modulate CRL activity by controlling the NEDD8 cascade, as
discussed below.

Targeting the UPS and Radiosensitization
Aberrant UPS function has been strongly associated with cancer, and
its pharmacologic inhibition has proved efficacious in the treatment of
cancers [48]. Bortezomib (Velcade, PS-341) is the first commercially
available proteasome inhibitor approved for clinical use in treating se-
lected human cancers [49,50], whereas next-generation compounds,
such as carfizomib, MLN9708, and CEP18770, are in clinical devel-
opment [51]. By blocking the active sites in the 20S proteasome,
bortezomib disrupts the entire UPS. Although bortezomib has dem-
onstrated clinical efficacy as a single agent and in combination with
chemotherapy in multiple myeloma and mantle cell lymphoma, its
overall success has been limited because of a lack of response in other
malignancies and drug-associated toxicity [52–54].

In the setting of radiation therapy, general proteasome inhibition has
been shown to impart tumor cell radiosensitization in many preclinical
models and is thought to involve modulation of proteins involved in
apoptosis, cell cycle, and DNA double-strand break repair [55–57]
(see Table 1). In particular, bortezomib has demonstrated radiosensitiz-
ing properties in a number of tumor cell models and in association with
stabilization of p38 mitogen-activated protein kinase (MAPK) [58] and
inhibition of NF-κB [59] or cancerous inhibitor of protein phosphatase
2A [60]. Other proteasome inhibitors in clinical (marizomib) and pre-
clinical studies (MG-132) also showed radiosensitizing activity in glioma,
prostate, and lung cancer cells [61–63] (Table 1). Whereas bortezomib
combined with chemoradiation is an active area of clinical investigation,
initial studies suggest that toxicity is a significant concern [64,65]. Taken
together, these studies with general proteasome inhibitors have provided
proof-of-concept that proteasome inhibition is a worthwhile strategy for
sensitizing tumor cells to radiation and chemotherapy but underscore
the importance of developing agents with better selectivity.

One approach to circumvent the toxicity associated with general
proteasome inhibitors is to directly target the E3 ligases, because each
E3 ligase is responsible for a subset of cellular protein substrates. In
contrast to general proteasome inhibition that has a broad impact
on total cellular proteolysis, specific E3 ligase inhibition is expected
to selectively stabilize a subset of cellular proteins, thus avoiding
unwanted stabilization of other cellular proteins that may have delete-
rious effects on normal cells. Therefore, it is expected that a greater
therapeutic window could be achieved with agents that target specific
components of the UPS rather than the entire UPS.

Targeting CRL Components and Radiosensitization
CRLs represent the largest known class of E3 ubiquitin ligases and
are fundamental in controlling protein homeostasis, thus regulating
various biologic processes including cell cycle progression, gene tran-
scription, signal transduction, and DNA replication among others
[8,32,66]. Not surprisingly, deregulation of CRL has been associated
with uncontrolled proliferation, genomic instability, and cancer [66].
Among the components of CRL, some have been defined as oncogenes
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(e.g., SKP2) that are frequently amplified and/or overexpressed in
cancers, whereas others act as tumor suppressors (e.g., FBXW7) that
are often found to be mutated in cancer [48,67,68]. The oncogenic
properties of some CRLs make them potential targets for therapeutic
intervention. The CRL components with attractive potential as radio-
sensitizing targets in cancer cells are discussed below.
RBX1/RBX2
Our previous and recent studies showed that RBX1 and RBX2,

two family members of the RING component of CRL found in human
and mouse, are frequently overexpressed in many types of human
cancer [69–71]. In multiple human cancer cell lines, knockdown of
either RBX1 or RBX2 suppresses cancer cell growth and survival
[70,71]. This impaired growth and survival in response to RBX1 or
RBX2 knockdown appears to involve the induction of apoptosis and
senescence or only apoptosis in the case of RBX2 [70,71]. Similarly,
ectopic expression of RBX2 protects cells from apoptosis induced by a
variety of stresses including metal ions and redox compounds [23,72],
nitric oxide [73], neurotoxin and 1-methyl-4-phenylpyridinium [74],
heat shock [75], UV irradiation [76], and ischemia/hypoxia both in vitro
[77] and in vivo [78,79]. Taken together, these results support the no-
tion that cancer cells are more reliant on RBX1/RBX2 overexpression
for their survival, thus more sensitive to RBX1/RBX2 targeting. Be-
cause every individual member of CRL ligase family requires either
RBX1 or RBX2 for activity, targeted inhibition of RBX1/RBX2 would
lead to general inactivation of the entire family of CRL ligases, thus
having broader anticancer effects.
It is well established that radiation induces DNA damage and that

G2 arrest is a crucial response to DNA damage in most cancer cells
[80]. On the basis of the finding that RBX1 silencing triggers DNA
double-strand breaks, leading to G2 arrest [70], it is conceivable that
knockdown of RBX1 may sensitize otherwise resistant cancer cells
to radiotherapy by redistributing them to G2, a more radiosensitive
phase of cell cycle. This hypothesis is supported by our finding that
RBX1 silencing indeed sensitizes human cancer cells to radiation
[81]. The underlying mechanism for RBX1 silencing–mediated
radiosensitization is likely attributable to the accumulation of DNA
replication licensing proteins CDT1 and ORC1, two known CRL
substrates [32], which leads to DNA double-strand breaks, DNA
damage response, and G2 arrest, rendering cancer cells more sensitive
to radiation [81].
RBX2 is a dual-function protein with CRL-independent anti-

oxidant activity, when acting alone, or CRL-dependent E3 ligase
activity, when forming a complex with other CRL components
[24,27,82]. Analogous to RBX1, RBX2 silencing also sensitizes other-
wise resistant cancer cells to radiation [71]. However, distinct from
RBX1, RBX2 silencing–mediated radiosensitization in human cancer
cells appears to be mechanistically linked with accumulation of the
proapoptotic protein, NOXA [71]. However, as shown in an Rbx2
knockout model, complete elimination of Rbx2 expression sensitized
mouse embryonic stem cells to radiation-induced cell killing through
mechanisms involving an increase in steady-state levels of intracellular
reactive oxygen species because of the abrogation of antioxidant activ-
ity of Rbx2, as well as the decreased NF-κB activation associated with
accumulation of inhibitor κB (IκB) [83]. These findings further sup-
port the notion that RBX2 plays a protective role in response to DNA
damage and, when absent, sensitizes cells to radiation-induced cell
death, suggesting its potential as a novel target for radiosensitization.

Cullins
The cullins are a family of eight members, which do not have in-

trinsic catalytic activity, when acting alone, but instead are molecular
scaffolds that facilitate the assembly of modular CRL complexes and
mediate the transfer of ubiquitin from the E2-conjugating enzyme to
the substrate proteins [22]. Cullin 1 is overexpressed in 40% of lung
cancers [84], whereas cullin 4A expression is elevated in multiple cancer
types, such as breast [85–87], hepatocellular [88], and mesothelioma
[89]. Overexpression of cullin 4A in MCF10A cells abrogated the
G2/M cell cycle checkpoint in response to radiation-induced DNA
damage [90]. Because the biologic effects of the cullin proteins are re-
liant upon their SRSs [F-box, Bric-a-Brac, Tramtrack Broad-complex
(BTB), von Hippel-Lindau (VHL) and suppressor of cytokine signaling
(SOCS) proteins] and corresponding substrates, cullins themselves are
not conventional oncoproteins or tumor suppressors. However, cullin
overexpression could increase CRL activity in cancer cells, promoting
uncontrolled proliferation. Thus, cullin 1 and cullin 4A are potential
anticancer targets that when inhibited may shift cells to a more con-
trolled growth state. Given that CDT1 and WEE1 are the substrates of
cullin 1– and cullin 4A–based CRL and their accumulation is responsible
for radiosensitization in pancreatic cancer cells [91], targeting either cullin 1
or cullin 4A might be a potential sensitization strategy for radiotherapy.

Substrate-recognition Subunit
SRSs recognize and recruit target substrates to the CRL complexes.

Different cullins are known to use distinct classes of SRS, such as F-box
proteins for SCF/CRL1, VHL-box for cullin 2, BTB proteins for
cullin 3, DCAF proteins for cullin 4A/B, and SOCS-box proteins for
cullin 5 [22]. The human genome contains about 69 F-box proteins that
provide specificity for the particular substrate to be degraded [34].
Among them, only three are well characterized, namely, oncogenic
Table 1. Radiosensitization of Human Cancer Cells by UPS Inhibitors.
Developmental Stages
 Radiosensitization Activity
 Cancer Types
 References
UPS inhibitors

Bortezomib
 Clinical use
 Yes
 Prostate, gastric, cervical, rectal, esophageal, lung,

and liver cancers; lymphoma; and central
nervous system malignancies
[58–60,64,116–118,129]
Marizomib
 Phase 1
 Yes
 Glioma
 [63]

MG-132
 Preclinical
 Yes
 Prostate and lung cancers; Hodgkin’s lymphoma;

and melanoma

[55,61,62,130,131]
CRL inhibitor

MLN4924
 Phase 1
 Yes
 Pancreatic, lung, and breast cancers
 [91,119]
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SKP2, tumor suppressive FBXW7, and β-TrCP, which is considered
either oncogenic or tumor suppressive in a substrate-dependent manner
[67,68]. Given that SKP2 and β-TrCP have documented oncogenic
activities, we focus on these two F-box proteins as potential therapeutic
targets in cancer.

SKP2. SKP2 is the SRS of the SCFSKP2 ubiquitin ligase complex
and mediates the degradation of several negative cell cycle regulators
including p27, p21, p130, and p57, thus, positively regulating the
G1/S transition [67]. Extensive studies have defined the oncogenic
role of SKP2 in many human cancer types, including gastric [92],
colon [93], and breast [94] cancers. Overexpression of SKP2 is asso-
ciated with decreased p27 levels, which is an indicator of poor prog-
nosis [66]. Elevated expression of SKP2 was shown to promote the
radioresistance of esophageal squamous cell carcinoma, which nega-
tively correlated with the survival of patients undergoing radiotherapy
[95]. Likewise, depletion of SKP2 through genetic approaches inhib-
its the growth of many cancer cell lines [9] and also sensitizes esoph-
ageal squamous cell carcinoma to radiation-induced cell death [95].
These findings suggest that pharmacological inhibition of the SKP2
pathway may have therapeutic efficacy in cancer. Consistently, using
high-throughput screening, Chen et al. recently identified an agent,
compound A, which inhibits SCFSkp2 by preventing incorporation of
SKP2 into the SCFSkp2 ligase [96]. Compound A treatment caused
accumulation of SCFSKP2 substrates (e.g., p27) and consequently
induced G1 cell cycle arrest as well as SCFSkp2- and p27-dependent
cell killing [96]. It is conceivable that compound A in combination
with radiation may have a therapeutic benefit, although it remains to
be determined experimentally.

β-TrCP. β-TrCP, with two family members of β-TrCP1 and β-
TrCP2 (also known as HOS), acts as the SRS of the SCFβ-TrCP com-
plex and promotes ubiquitination and degradation of various cellular
proteins [66,67]. However, whether β-TrCP is an oncoprotein or a
tumor suppressor seems to be substrate-dependent. In some tissues,
β-TrCP acts as an oncoprotein for proteasomal degradation of
tumor suppressors (e.g., IκB, PDCD4, and BimEL1) [9]. Thus, it
is anticipated that, in transgenic mice, overexpression of β-TrCP1 in
mammary gland, intestine, liver, and kidney would stimulate tumor
formation [97,98]. Consistent with its role in promoting tumorigen-
esis, β-TrCP1 overexpression was found in human breast cancers and
β-TrCP1 inhibition sensitizes breast cancer cells to chemotherapy
[99]. Similarly, up-regulation of β-TrCP1 increased NF-κB activity
and chemoresistance, whereas β-TrCP1 knockdown decreased NF-κB
activity and chemoresistance in pancreatic cancer cells [100] and sen-
sitized cervical cancer cells to apoptosis [101]. Given the important
role of NF-κB in mediating tumor radioresistance [102], targeting
β-TrCP might represent an effective strategy for radiosensitization. In-
deed, inhibition of β-TrCP2 was found to sensitize human melanoma
cells to apoptosis induced by various anticancer agents, including ion-
izing radiation [103]. However, the development of inhibitors that
selectively disrupt the binding between β-TrCP and tumor suppressive
substrates, but not oncogenic substrates, is likely to be a challenge.

Targeting the CRL and Radiosensitization
Underscoring the importance of CRL E3 ligases as potential thera-
peutic targets, abnormal activation of CRL E3 ligases has been dem-
onstrated in many types of cancer, resulting in the aberrant turnover
of numerous cancer-related proteins [10,66]. Efforts to identify spe-
cific small-molecule inhibitors of CRL E3 ligases are well underway
and three such inhibitors have recently been reported [96,104,105],
although the anticancer properties of these newly identified inhibitors
remain to be determined [104,105]. Importantly, the discovery of
MLN4924 as a small-molecule inhibitor of NAE, capable of inactivating
CRL through blocking cullin neddylation [21], has opened up an alter-
native strategy for targeting CRL activity. Mechanistically, MLN4924
binds to NAE to form a tight-binding NEDD8-MLN4924 adduct,
which resembles the first intermediate of the reaction catalyzed by
the NAE, but cannot be further used in subsequent intraenzyme reac-
tions, thus inhibiting the activity of the NEDD8 E1 enzyme [106]. In
contrast to bortezomib, MLN4924 appears to be more specific because
it does not inhibit bulk proteasomal degradation [21]. In preclinical
studies, MLN4924, by inactivating CRL E3 ubiquitin ligase, causes
the accumulation of several SCF E3 substrates to induce apoptosis
[21,107–110] and senescence [111–113], thus inhibiting growth of a
variety of human cancer cells both in vitro and in vivo. Importantly,
MLN4924 was found to inhibit cancer cell growth but was well toler-
ated under various dose levels and treatment regimens in several mouse
xenograft models [21,91], suggesting cancer cell selectivity. MLN4924
is currently being evaluated in a number of phase I clinical trials against
some solid tumors and hematologic malignancies [114,115]. Most re-
cently released trial results on cancer patients with metastatic melanoma
and other solid tumors showed that MLN4924 indeed targets CRL
ligases and leads to disease stabilization with mostly grade 1 or 2 adverse
effects, including fatigue, diarrhea, nausea, vomiting, and anemia
(http://www.takeda.com/press/article_41890.html).

Given that general proteasome inhibition using bortezomib has
been demonstrated to sensitize tumor cells to radiation [58,59,116–
118], whether MLN4924 can radiosensitize in a tumor cell–selective
manner is an important question. Our recent studies showed that
knockdown of RBX1/RBX2, which mimics inhibition of CRL activ-
ity, induced tumor cell radiosensitization [71,81], thus suggesting
that MLN4924 may act as a radiosensitizing agent. We, therefore,
tested this hypothesis and found that indeed MLN4924 possesses
potent radiosensitizing activity in pancreatic, lung, and breast cancer
cells but, importantly, not in normal lung fibroblasts [91,119], dem-
onstrating the tumor cell selectivity of MLN4924-mediated radiosen-
sitization. The radiosensitizing mechanisms of MLN4924 are causally
related to the accumulation of a subset of CRL substrates within cells
[91,119]. In pancreatic cancer cells, MLN4924 treatment caused the
accumulation of several CRL substrates, including CDT1, WEE1,
and NOXA, in parallel with an enhancement of radiation-induced
DNA damage, aneuploidy, G2/M phase cell cycle arrest, and apoptosis
[91]. Knockdown of CDT1 and WEE1 partially rescued MLN4924-
induced aneuploidy, G2/M arrest, and radiosensitization, indicating a
causal role of CDT1 andWEE1 accumulation in MLN4924-mediated
radiosensitization. Similarly, MLN4924 displayed potent radio-
sensitizing activity in a human pancreatic tumor xenograft model with
minimal toxicity [91]. However, the radiosensitization effect of
MLN4924 on breast cancer cells appears to mainly depend on the
accumulation of p21, a well-known CRL substrate associated with
cell growth arrest, apoptosis, and DNA damage response. This is sup-
ported by the finding that p21 accumulates in response to combined
MLN4924 and radiation treatment and that transient silencing of p21
partially rescues MLN4924-induced G2/M arrest and radiosensitiza-
tion [119]. Taken together, these findings suggest that the mecha-
nisms of MLN4924-mediated radiosensitization may be dependent
on specific tumor cell types.
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Conclusions and Perspectives
The data summarized in this review clearly show that blockage of
global protein degradation by general proteasome inhibitors (such
as bortezomib) or inactivation of CRL E3s by siRNA silencing of
CRL components or small-molecule inhibitors (e.g., MLN4924)
can achieve radiosensitization in various human cancer cells (Figure 1).
Although MLN4924 should be less toxic than bortezomib because of
its selective inactivation of one type of E3 ligase rather than general
inhibition of proteolysis, for the future development of MLN4924
as an anticancer or radiosensitizing agent, some intrinsic specificity
issues are worth considering. First, MLN4924 is an NAE inhibitor
and would likely inhibit, in addition to cullins, other cellular neddylation
reactions [37,38], although cullins are the only known physiological
substrates [36,38]. Second, in addition to causing accumulation of
some tumor suppressors (e.g., p21, p27, IκBα, DEPTOR, NOXA,
or PDCD4), our unpublished data also showed that MLN4924 could
cause accumulation of some oncogenic proteins (e.g., c-Jun, cyclin D1,
c-Myc, or Notch1), all of which are known CRL substrates [66,120] in
a cell line–dependent manner. Thus, the net outcome of MLN4924
action will depend on the interaction of these substrates in a cell
context, temporal, and spatial dependent manner. Third, two re-
cent studies showed that cancer cells could develop resistance to
MLN4924 by selecting rare clones with heterozygous mutations in
the targeting enzyme NAEβ [121,122]. Nevertheless, given the fact
that human cancer harbors multiple mutations with alterations in mul-
tiple signaling pathways [123,124], it is unlikely that drugs that target a
Figure 1. Cancer cell radiosensitization by inactivation of CRL E3:
Inactivation of CRL ligase activity by siRNA silencing of its com-
ponents (e.g., RBX1/RBX2) or by the small-molecule MLN4924
which inhibits cullin neddylation, causes accumulation of CRL sub-
strates. Accumulation of some of these substrates, such as CDT1,
WEE1, and p21, leading to altered DNA damage response and G2/M
arrest, was found to be causally related to MLN4924-mediated
radiosensitization in a cancer cell type–dependent manner.
single mutated gene product/single pathway would be effective. Be-
cause MLN4924 targets multiple signaling pathways by inactivating
CRL E3s, it would be likely more efficacious as a single anticancer or
radiosensitizing agent. Finally, quantitative proteomic analysis at the
unbiased global level in a variety of MLN4924-treated cancer cells
[125–128], when performed in combination with radiation, would
likely identify potential targets as well as biomarkers for radiosensitiza-
tion. Thus, future mechanistic characterization of MLN4924 or other
CRL E3 inhibitors and development of these inhibitors as a novel class
of radiosensitizers would eventually benefit cancer patients by enhanc-
ing the efficacy of radiotherapy.
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