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Abstract
High-throughput biological experiments commonly result in a list of genes or proteins of interest.
In order to understand the observed changes of the genes and to generate new hypotheses, one
needs to understand the functions and roles of the genes and how those functions relate to the
experimental conditions. Typically, statistical tests are performed in order to detect enriched Gene
Ontology categories or Pathways, i.e. the categories are observed in the genes of interest more
often than is expected by chance. Depending on the number of genes and the complexity and
quantity of functions in which they are involved, such an analysis can easily result in hundreds of
enriched terms. To this end we developed DEFOG, a web-based application that facilitates the
functional analysis of gene sets by hierarchically organizing the genes into functionally related
modules. Our computational pipeline utilizes three powerful tools to achieve this goal: (1)
GeneMANIA creates a functional consensus network of the genes of interest based on gene-list-
specific data fusion of hundreds of genomic networks from publicly available sources; (2)
Transitivity Clustering organizes those genes into a clear hierarchy of functionally related groups,
and (3) Ontologizer performs a Gene Ontology enrichment analysis on the resulting gene clusters.
DEFOG integrates this computational pipeline within an easy-to-use web interface, thus allowing
for a novel visual analysis of gene sets that aids in the discovery of potentially important
biological mechanisms and facilitates the creation of new hypotheses. DEFOG is available at
http://www.mooneygroup.org/defog.

Introduction
Modern methods in molecular biology yield lists of genes or proteins with common
functional profiles, for example, differentially expressed genes under varying conditions. In
order to identify common traits between these genes, statistical tests are typically applied
utilizing functional or pathway annotations. The Gene Ontology (GO)1 is among the most
widely used sources for such an analysis, and a variety of methods have been developed that
utilize GO in this manner. BiNGO2, GOEAST3, GOLEM4 and DAVID5 are examples of
popular analysis tools based on GO.

Term enrichment analysis on gene sets is often complicated by a high degree of overlapping
GO terms annotated to the test genes, leading to high numbers of statistically enriched
terms. Even after correction for multiple hypothesis testing, a list of 100+ genes can easily
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result in hundreds of enriched terms, leading to unfocused conclusions and misguided
hypotheses. Different strategies have been developed to overcome this problem. The Gene
Ontology Consortium, for instance, provides a slim version of GO that is less specific,
leading to a reduced number of overrepresented terms. However, the resulting enriched
concepts are often too general to be useful. Ontologizer6, an enrichment analysis tool,
approaches the problem by incorporating the hierarchical structure of GO into their
statistics, thus reducing the number of annotated terms due to parent-child inheritance.
Additionally, DAVID approaches the problem by clustering concepts together based on
Cohen’s kappa statistic as a measure of gene-term annotation similarity. This latter approach
organizes the enriched terms into similar groups, however the number of terms remains the
same.

Another method that can be used to understand the functional content of a given list of genes
is to organize the list of genes prior to analysis. DAVID, for instance, allows users to cluster
genes based on common annotations, again using Cohen’s kappa statistic7. Kurki et. al.8

follow a similar approach by hierarchically clustering genes based on common GO
annotations or co-regulation. In various other methods, genes have been grouped together
using biological networks, such as protein-protein-interaction9,10 networks (PPI), co-
expression networks11-14, or sequence similarity networks15-17. However, to our knowledge
there are no tools that utilize multiple high-throughput gene similarity networks in order to
identify clusters of functionally related genes.

Data fusion of multiple biological data sources such as PPI networks, gene expression data
or sequence similarity information has been successfully applied in gene prioritization and
gene function prediction method that are mostly based on guild-by-association
principles18,19. A logical step is, to use this information in an unsupervised or semi-
supervised approach, i.e. clustering, for detecting groups of functionally similar genes. With
DEFOG we present a novel method that performs such an analysis for a given gene list.
DEFOG aids in the understanding of the functional content of a given gene list by
organizing the genes into functionally related groups based on data fusion of experimentally
derived gene similarity networks. For this task, DEFOG utilizes a computational pipeline
that combines three powerful analysis tools. Similarities between genes are calculated using
GeneMANIA19,20, followed by hierarchical clustering with Transitivity Clustering21,22, and
finally followed by an enrichment analysis for each cluster with Ontologizer. Results are
presented as a hierarchical graph of gene clusters. Each hierarchical level represents
increasing specificity, resulting in smaller clusters with higher functional similarity between
the genes.

In the remainder of this paper we will describe the methodology and motivation behind the
development and utilization of each component of DEFOG. Furthermore we apply DEFOG
on two publicly available gene sets as test cases. For the first use-case, we utilize the
primary interactors of the Huntingtin protein in the human PPI network to serve as an
example of a disease-related gene set. For the second use-case, we selected a highly diverse
set of genes, the GenAge23,24 database, the contents of which are known to be involved in
human aging. In both cases DEFOG successfully creates a hierarchy that allows researchers
to better understand the functional sub-modules hidden within the input set of genes.

Methods and motivation
The DEFOG web application consists of a three component computational pipeline that
serves as the backend of our software (Fig. 1), while the frontend employs a user-friendly
web-based visualization utility.
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Collection of network data and creation of the consensus network using GeneMANIA
The first (and one of the most important) steps in our computational pipeline is the creation
of the consensus network, which is subsequently used to identify functionally closely related
groups of genes.

Biological networks can differ greatly from each other. PPI networks, for instance, are
typically binary networks, while co-expression relationships can be represented with weights
on the edges. Even if all of the networks in existence were the same type of network, it
would be difficult to combine them, since different weights might mean completely different
things in different networks. For instance, in the case of all binary networks, the underlying
rule that defines whether an edge exists might be much more strict in one network than in
another. To overcome this problem we chose to utilize the GeneMANIA19 software, which
integrates a network fusion algorithm that accounts for these differences in networks and
assigns weights to networks based on the contribution of each network in connecting the
genes of interest.

GeneMANIA is a gene function prediction method that employs various biological networks
to predict related genes within the genome that are functionally most similar to an input set
of genes. The utilized networks are publicly available PPI networks, co-expression
networks, co-localization networks, shared pathway networks, and shared protein domain
networks. GeneMANIA obtained over 1380 networks for six model organisms and human
(353 networks for human) from Gene Expression Omnibus25, BioGRID26, I2D27, and
Pathway Commons (which includes data from BioGRID, Memorial Sloan-Kettering Cancer
Center, Human Protein Reference Database28, HumanCyc29, Systems Biology Center New
York, IntAct30, MINT31, NCI-Nature Pathway Interaction Database, and Reactome32). The
similarity between two genes is calculated by combining these networks with different
weights for each network. In GeneMANIA, and thus also in DEFOG, a user can decide
between three different weighting options: (1) equal weighting for all data sources, (2) equal
weighting for categories, such as PPI networks or co-expression networks, or (3) a more
advanced algorithm that determines the weight based on the contribution of each network to
the inter-connectivity of the input set of genes.

More specifically, the GeneMANIA advanced network fusion method combines a variety of
networks using ridge regression to minimize the difference between the consensus network
and a target network. The aim is to find a weighting for each network such that, in the
consensus network (the weighted sum of the included networks), genes from the input list of
genes have a high similarity to each other and little similarity to other genes in the
background. The underlying idea is that the input genes have a functional relationship to
each other due to their selection or experiment. One can now utilize this relationship,
together with established interactions to create new hypotheses. Networks that play a key
role in connecting the input list of genes might be important for the experimental design or
selection criteria of interest and thus have more impact in the follow up analyses than
networks which have many connections between the input genes and the background.

DEFOG applies the GeneMANIA network fusion method to retrieve a consensus similarity
network for a given gene. The similarity used in the next step of DEFOG’s pipeline, is
defined for two genes as the weighted sum of all chosen gene networks/similarities where
the weights are obtained via GeneMANIA as described above. A user may choose construct
a similarity using either all available networks, or the default set of networks (see http://
www.genemania.org/ for the current default set), or limit the analysis to a single network
type.
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Furthermore, GeneMANIA performs gene ID translation between multiple identifier types.
DEFOG utilizes this function to allow for the analysis of lists of genes using a variety of
different identifiers (i.e. - gene symbols and ids from Entrez Gene33, Ensemble34, Refseq35,
and UniProt36).

Hierarchically organize genes with Transitivity Clustering
In the next step of our analysis pipeline, we use the gene-list-specific consensus network
from GeneMANIA to organize the genes into functional modules.

There are three basic methods for clustering data: (1) partition the data into non-overlapping
groups, (2) organize the elements into clusters, where one element can be assigned to
multiple groups, or (3) create a hierarchical clustering topology where each level in the
hierarchy represents a data partitioning and all groups in one level are either equal to, or are
subgroups of the clusters in the level above.

The first option strongly depends on the parameters of the chosen clustering algorithm, e.g.
using a clustering method like k-means37 requires one to specify the expected number of
clusters. Having a choice of parameters is necessary for all partitional clustering algorithms
that are of interest to us, since parameter-free methods have no flexibility and would likely
not detect important functional gene clusters. It is difficult, however, to estimate these
clustering parameters in advance, as we don’t know how many functional modules are
expected from a novel dataset. The number of interesting functional groups may also vary
depending on the input set of genes, which eliminates the option of detecting one fixed set of
parameters via manual evaluations. An overlapping clustering method would add some
flexibility and some interesting information. Since genes might be involved in multiple
different functions one could argue that this would be the best choice. Unfortunately we face
the same difficulties as in the partitional clustering, i.e. we don’t know and can’t estimate
the appropriate size or number of functional groups. In order to give an organized
representation of the modular structure of the gene set with respect to the consensus
similarity network, we apply a hierarchical clustering method. By choosing this method, it is
no longer possible for genes to belong to multiple groups. However, this is compensated by
an intrinsic gain of flexibility and, thus, a less likely loss of information. Another advantage
of a hierarchical structure is that the relationships between the clusters are implicit in the
method, allowing for an overall gain of information.

Traditional, agglomerative hierarchical clustering methods38,39 start with a list of singletons
and iteratively combine the two most similar clusters in each step. For a gene set of
considerably large size, clusters of related groups are hard to detect due to the fine
granularity between potential cluster boundaries (i.e. the hierarchy has as many levels as
genes). A more structured and easier to read hierarchy can be obtained with Transitivity
Clustering (TC)21.

TC is a novel, fast, and versatile clustering approach that clusters based on a pairwise
similarity function and a similarity threshold. First, a graph is constructed, where nodes
represent the genes and an edge exists if the similarity is above the threshold. Subsequently,
clustering is accomplished by performing a minimal number of edge modifications (adding
and deleting) in order to obtain a transitive graph (i.e., a graph whose connected components
are fully connected). The resulting cliques are reported as clusters. The TC similarity
threshold can be varied to change the number and size of the resulting clusters. TC is
basically a partitional clustering method that has one density parameter, a similarity
threshold, to control the granularity of the clustering. In previous experiments we observed,
that TC produces a wider spectrum of clusterings (many small clusters and few big clusters)
when varying the density parameter in comparison to alternative methods such as Markov
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Clustering (MCL), which sometimes have difficulties detecting very small, highly connected
clusters. Furthermore TC has been successfully applied to sequence similarity, protein
interaction, and gene expression networks, showing its flexibility and applicability for a
variety of clustering tasks.

Although TC produces a partitional clustering given one similarity threshold, it can also be
used to obtain a hierarchical clustering given a sorted set of thresholds. Starting with the
most stringent (highest) threshold, TC is iteratively applied on the set of cutoffs. Once two
elements are grouped together in a previous iteration, they cannot be split at any later step.
This enforces a hierarchical clustering as defined above and preserves clustering features of
TC (For more details about TC refer to 40,41)

DEFOG utilizes TC with a set of similarity thresholds within the range of the consensus
similarity function, to obtain a well structured, informative hierarchical clustering. The set of
similarities above zero are sorted and divided into n equal sized parts (quantiles) where the
smallest similarity in each set is used as a threshold in TC. A user can specify n, which is the
maximal number of levels in the hierarchy, and thus control the granularity of the hierarchy.
The default value of 10 gives a moderate hierarchical clustering that is in most cases still
clearly organized, and contains a considerable amount of information about the division of
functional sub-modules.

Detect overrepresented GO categories with Ontologizer
The last step in our computational pipeline is to categorize and describe each cluster. Here
we follow the traditional approach of using GO to describe the functional content of each
cluster. It is common to identify statistically overrepresented GO terms in a list of candidate
genes by applying Fisher’s exact test42. This test compares the number of genes that are
annotated to a term against the expected occurrence of annotation, based on the background
annotation. In GO, a gene that is annotated to a child node is automatically annotated to all
its parents (up to the root node). A typical term-for-term test (i.e. Fisher’s exact test) treats
each term individually without considering its position in the ontology.

Ontologizer includes statistics that account for this additional information by restricting the
background set for each term to the genes contained in its parents. Thus, they distinguish
between two cases: “Parent-Child-Union” where genes that are in the union of all the parent
terms are used as background, and “Parent-Child-Intersection”, a more stringent method that
only considers genes in the background if they are present in all parent terms of the term of
interest. In addition to this modified statistic, Ontologizer provides the traditional “Term-
For-Term” analysis and all commonly used methods for multiple hypothesis correction
(Bonferroni, Bonferroni-Holm43, Benjamini-Hochberg44, Benjamini-Yekutieli45, Westfall-
Young46). Ontologizer’s flexibility makes it a perfect tool to be integrated into the DEFOG
computational pipeline.

We utilize Ontologizer to calculate the overrepresentation of GO terms for each cluster
derived from the previous TC step, using a default setting of “Term-For-Term” for the
enrichment analysis. After the analysis is complete, a user can navigate through the resulting
cluster hierarchy and gain insight into the biological underpinnings of each functionally
related sub-cluster by means of the enriched GO categories. In DEFOG we consider a GO
term to be enriched if it’s adjusted p-value (after multiple hypothesis correction) is smaller
than 0.05 and at least 3 genes of the input set are annotated to that term.

Visualization of hierarchically organized gene cluster
For the graphical representation of the results, we utilized Cytoscape Web47. Fig. 2 shows a
typical outcome of an analysis with DEFOG. Each node represents a group of genes, where
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the number in each node is the size of the respective gene cluster. Nodes are connected to
another node if they are a subset of the parent node. The hierarchy is intuitively drawn from
top to bottom (i.e. - all input genes are in the largest cluster at the top of the graph, and the
lower the position in the graph the more specific and smaller the clusters get). Additionally,
the node color and the node size reflect the cluster size. To further improve and clarify the
cluster visualization, all clusters with fewer genes than a user-defined threshold are excluded
from the results.

A user can navigate the output of DEFOG on the results page by either clicking or double-
clicking on nodes. A single click opens a table below the graph, containing all enriched GO
categories for the selected cluster. A double-click reveals more information about the cluster
itself, including the list of genes that comprise the selected cluster and the ability to export
the GO enrichment table as a tab-delimited text file. Additionally, the user can download the
complete hierarchical clustering together with all enriched terms for each cluster. Finally,
registered users on the system retain the ability to store, manage, and revisit previous
experiments, thus maintaining a flexible and intuitive user experience.

Implementation
The implementation of DEFOG utilizes Drupal, jQuery and Cytoscape Web48,47 as an
interface, an Apache web server and MySQL database system to handle the query system
and JAVA for the backend calculations. The end-user requires only a modern web browser
with JavaScript enabled and Adobe Flash installed to access DEFOG. All components
(GeneMANIA, Transitivity Clustering, Ontologizer, and the actual DEFOG pipeline) are
locally installed and are executed on our servers. Results are written to our local MySQL
database. Every job is assigned a unique id that allows revisiting the results even as a guest
or sharing the result-url with colleagues.

DEFOG allows users to specify several parameters to fine-tune the analyses. Although the
default parameters are sufficient for most applications, it might make sense to change, for
instance, the backgrounds set of genes, or restrict the analysis to PPI networks, or use a
different statistic for the enrichment analysis. A complete list of options that are available
can be found in Table 1.

Results
Use-cases: examples of biological applications of DEFOG

In order to assess the usefulness of DEFOG as an annotation tool, two sets of genes/proteins
related to human conditions were chosen as use-cases for extended analysis. For use-case
#1, proteins related to Huntington’s disease were selected for analysis. Huntington’s disease
(HD) is a heritable progressive neurodegenerative disease that affects hundreds of thousands
of people worldwide49. The disease is caused by an autosomal dominant mutation in the
Huntingtin gene (HTT), which is characterized by a polyglutamine (CAG) expansion in
exon 1. The protein-protein binding partners of HTT have been a topic of intense study, not
only due to their potential as targets for the treatment of HD, but also as a means to
understanding the biology of the disease. Many of the proven PPI partners with HTT are
curated in the Human Protein Reference Database (HPRD28). Here, we have chosen the
primary interactors with HTT as use-case #1 for DEFOG, which consists of 59 proteins that
have been shown to interact directly with HTT (Table 2, Fig 3).

For use-case #2, the genes contained within the GenAge24 database were chosen for
extended analysis. The Human Ageing Genomics Resources (HAGR) maintains a manually
curated database of genes related to aging, both from humans and model organisms. These
genes have many diverse functions and are difficult to classify as a set. The aging-related
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human gene database contains 261 genes (Supplemental Table 1) and it was these genes that
were chosen for analysis in use-case #2.

The results for each of the use cases can be interactively explored on the DEFOG website.
For use-case #1, go to http://www.mooneygroup.org/defog-results?jobid=uc1, and for use-
case # 2 go to http://www.mooneygroup.org/defog-results?jobid=uc2.

Huntington’s Disease Primary Interactors: Use-case #1
The proteins for use-case #1 were submitted to DEFOG as a list of UniProt IDs using the
default settings for the tool. Of the 59 proteins submitted, 56 were recognized and used for
analysis. The lower number of recognized genes can be explained by differences in Ids for
different UniProt releases or differences in the background. DEFOG utilizes the
GeneMANIA gene concept including their mapping between different identifiers. There, the
background genes are obtained from Ensemble. As the mapping is a snapshot of a specific
time and an input gene list might be obtained at a different time point, some genes have
changes in their identifiers and can consequently not be found in our background. DEFOG
clustered the proteins into 12 groups of genes in nine hierarchical levels (Fig 2a), each
partitioning the genes into more specific functional groups. The first level of clustering
reduced the genes into a slightly more concise single cluster followed by an even more
concise cluster of similar terms, and a cluster with no enriched terms. The third level of
clustering revealed a seven-protein cluster annotated with terms related to nuclear
transcription factor regulation. Level four showed a small seven-protein cytoplasmic
endocytosis cluster, while the two terminal clusters contained clusters made up of negative
regulation of transcription and nuclear localization of gene expression clusters. In an effort
to further define the functional clusters represented in use-case #1, the protein list was
resubmitted to DEFOG using 20 levels of clustering, instead of the default 10. The graph of
the resulting clusters (Fig 2b) shows that, while there is greater granularity in the clusters,
the basic information is similar to the results as demonstrated using the DEFOG’s default
settings. Thus, in this case, the increased sensitivity did not provide added information.

In order to understand the experimental relationships that lead to the creation of the
clustering, we look at one example of a cluster with 7 genes (Fig 2a:*). The seven clustered
genes of this specific submodule were more closely analyzed using GeneMANIA
(specifically, we obtained the contribution of each network to the consensus network as
described in the methods section) and the graph was visualized (Fig 4). All of the genes
were linked by physical interactions by GeneMANIA, with the majority of the similarities
coming from analyses performed on Pathway Commons50,51. In addition, there were
similarities in metabolic pathways as defined by Pathway Commons – NCI Nature, which
showed that RASA1, EGFR, GRB2, and AP2A2 to be physical interactors within a pathway.
The proteins with the highest similarity in the network were AP2A2 and IKBKAP, and the
edge type was a physical interaction.

The DEFOG GO enrichment results for this cluster showed a number of interesting
categories (Supplemental Table 2). Namely, the terms endocytic vesicle, membrane-
bounded vesicle, cell-cell signalling, and signalling pathway are all terms that describe a
very specific function for genes in this cluster. These data suggest that this cluster of genes
is involved in intra-cellular signalling, secretion and absorption via clathrin-coated pits and
the related cellular processed that are involved with that process.

Human Aging-related Genes: Use-case #2
The DEFOG results for use-case #2, the aging-related human gene set, revealed a much
different set of results than in use-case #1. First, the number of clusters that DEFOG
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generated were far greater than those seen in use-case #1, requiring that the number of
clustering levels be reduced from 10 to 5 in order to reduce the number of effective clusters
for analysis. The resulting cluster graph, while much more complex than in use-case #1, was
much simpler than the graph generated using DEFOG’s default settings (Fig 2c). Since the
analysis of these results would be quite complex, a simple approach is taken here. The major
sub-clusters occurring one level above the terminal clusters in the graph were looked at
more closely in order to identify the major functional subdivisions within this dataset. The
DEFOG analysis indicates that the aging genes are broken up into the following functional
units: hormone-related signalling (Fig 2c:1), apoptosis (Fig 2c:2), regulation of
phosphorylation (Fig 2c:3), DNA damage response (Fig 2c:4), transcription factor regulation
(Fig 2c:5), nucleotide-excision repair (Fig 2c:6), transcription factor DNA-binding activity
(Fig 2c:7), cholesterol regulation (Fig 2c:8), regulation of signal transduction via MAPKKK
cascades (Fig 2c:9), and regulation of signal transduction via the JAK-STAT cascade (Fig
2c:10). These major functional categories correlate well with what is known about aging
systems in the body and the pathways that are affected during aging52-54. Despite the
disparate nature of the gene functions within the GenAge gene list, DEFOG was able to
group the genes into functional categories that are both useful and informative on many
levels.

Discussion
GO enrichment analyses are commonplace in today’s high-throughput genomics era.
Researchers in all disciplines utilize such tools in an effort to apply broad biological
meaning to complex lists of genes. Unfortunately, most of the popular enrichment tools
return long lists of annotations from one or more sources of functional annotation
information (ontologies, etc) leaving the researcher with a far more complicated list of terms
to synthesize than the original gene list. There have been many approaches and tools
implemented to try to solve this problem, but the efforts have proven to be met with limited
success. GO, though useful, is still manually curated by the GO consortium and is subject
both to annotation lag (too much data to keep up with) and annotation bias due to the
volume of research available on any one subject55. Thus, more actively studied areas will
have more annotations than lesser areas of research. Additionally, mathematical approaches
alone are not enough to ascribe the proper biological meaning to a set of genes using
functional annotations. Since GO (and other functional annotation databases) are based on
experimental data, it follows that an initial classification of the input gene list using
functional information would help classify the genes of interest. With the release of
GeneMANIA, which provides this experimental functional association data in the form of
networks, it becomes possible to pre-define functional groups of genes within gene lists
prior to performing GO enrichment analyses. DEFOG accomplishes this by creating a
consensus network from GeneMANIA’s functional association networks, followed by
network-based hierarchical clustering of the resulting network. These functionally
associated clusters of genes are then run through GO enrichment analyses. The result is a
more concise listing of GO terms as they pertain to increasingly specific functional groups
of genes.

DEFOG’s user interface is designed to allow flexible navigation of the various levels of
specificity of output from the clustering/enrichment analysis. The user can browse GO
categories enriched in clusters in the higher, less specific levels of the results graph, or
explore the distal branches of the graph where there are fewer genes and higher specificity in
the enriched GO terms. Thus, DEFOG allows the user to thoroughly explore their dataset
without getting lost in large numbers of unrelated GO terms.
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To illustrate the usefulness of DEFOG in biological applications, two use-case experiments
were performed using existing datasets of differing nature. The first use-case consisted of a
cohesive, highly-related set of proteins that are known to directly interact with the human
Huntingtin (HTT) protein, as maintained by the HPRD knowledgebase. DEFOG’s analysis
of this list of proteins resulted in a concise set of protein clusters that were highly
functionally related and divided into increasingly specific functional groups. Despite the
high degree of relatedness of the genes, the clustering technique employed in DEFOG
allowed for the definition of several key biological groups associated with Huntington’s
disease. The presence of mutant HTT is known to dysregulate transcription factors56-59, and
thus is known to subsequently alter normal gene expression levels leading to progression of
neurodegeneration60,61. Additionally, various vesicle-mediated functions are known to be
altered in Huntington’s disease62-64. The DEFOG analysis clearly separated these functional
associations into discernable groups in a manner that would improve the functional
classification of a novel gene set of this type.

The second use-case illustrates a different perspective on the usefulness of DEFOG. In this
experiment, we utilized a set of manually curated aging-related genes from the GenAge
database. Aging is among the most complex and widely functionally distributed biological
processes currently being researched52. As such, the GenAge gene list is equally disparate in
gene function. Since many high-throughput genomic research paradigms result in large lists
of functionally unrelated genes, it was posited that the GenAge database would provide a
simplified real-world example of this type of data and how DEFOG can decipher the
overarching functional relationships among the submitted genes.

As described in the results section (and illustrated in Fig 3c), DEFOG produced a large
graph with many branches from the source gene list, thus representing the wide array of
gene functions represented by GenAge. As expected, creating a functional association
network from these genes using GeneMANIA followed by hierarchical clustering of the
network produced clusters, which clearly defined the various functional groupings of genes
listed in GenAge. As outlined in the results, 10 major functional groups could be gleaned
from this gene list and these groups are all known to play major roles in the processes of
aging53. The resulting graph and GO enrichment analyses could be used as a starting point
for an extensive bioinformatics analysis of the GenAge gene list, leading to novel functional
gene associations with regards to aging, or detection of novel laboratory targets through
function prediction. A promising scenario for the utilization of DEFOG in an integrative
manner could be to apply existing gene prioritization methods on each of the functional
modules individually. Using the gene modules in this way would result in a more specific
grouping of genes that would likely improve the performance of such prediction algorithms.
In contrast, using the whole, very diverse set of genes would likely result in less accurate
predictions.

With DEFOG we presented a method that organizes genes into functional modules based on
data fusion of multiple biological networks. We emphasized usability and functionality in
the development as reflected by the easy-to-use web-interface of DEFOG that still allows a
variety of manual intervention. As with any other gene set enrichment analysis tool it is
crucial to select the right input data, i.e. the choice of the input genes, the background genes
and which networks should be used for clustering. Also, it is important to carefully interpret
the resulting enriched GO terms for each cluster. While DEFOG presents an organization
into functional related sub-modules it has its limitations and might still miscategorise genes.
For example, the strict (non overlapping) clustering does not allow a gene to be present in
more than one cluster per level of the hierarchy. Genes that are involved in multiple
different functions thus have to be assigned to one set of other similar genes and
consequently be missing connections to genes from other functions they are involved in.
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However, the hierarchical structure of DEFOG reduces this effect since the genes might be
in the same cluster, just one level higher in the hierarchy. We further like to point out, that
the clustering with subsequent GO enrichment of each cluster might result in false positive
detection of enriched terms that are an artefact of the clustering. We believe, however, that
the additional information a researcher gets outweighs this drawback and that DEFOG is
designed as a hypothesis generation aid, which naturally requires follow up analyses.

In future releases of DEFOG we will integrate additional annotation sources aside from GO.
This will extend the realm of testable hypothesis and thus improve the usability of DEFOG.
We further will implement additional visualizations that allow a user to understand the
biological networks that lead to the observed clustering.

Conclusions
DEFOG provides an innovative approach to the analysis of gene sets. The resulting
hierarchical classification serves two important purposes. First, it identifies groups of
functionally related genes within a submitted gene set and second, the hierarchical
organization of tables of enriched terms allows for a visual analysis of the functional
content, potentially revealing important mechanisms that would have remained undetected
within a single, long list of enriched terms.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Insight, innovation, integration

The software described in this manuscript helps to solve a common problem in high-
throughput genomics and proteomics. Researchers in Integrative Biology strive to reduce
the complexity of their datasets to a smaller set of biological descriptions in order to
properly frame the scope of their discoveries and gain insight into the biological
underpinnings of their research. Current tools for term enrichment analyses fall short of
this goal. With DEFOG, we innovate upon these prior methods by organizing gene lists
into functionally relevant groups prior to Gene Ontology enrichment analysis, thus
reducing the dimensionality of complex datasets. The result is the integration of
functional association data and biological annotations in a manner conducive to
discovery and hypothesis generation.
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Fig 1.
The DEFOG workflow. First, GeneMANIA assembles biological networks from multiple
sources and combines them into a consensus gene similarity network. Second, hierarchical
clustering is performed using Transitivity Clustering. Finally, Ontologizer is applied to
detect statistically overrepresented gene ontology terms in each cluster. Colors represent
different levels of specificity.
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Fig. 2.
Use-case clustering graphs from the output of DEFOG. A) represents the cluster graph from
use-case #1 (HTT primaries) run with the default DEFOG settings. B) represents the same
data as A, but with the clustering levels changed from 10 to 20. C) shows the resulting graph
from running use-case #2 (GenAge) through DEFOG, with the clustering levels set to 5.
Darker shaded, larger nodes represent larger clusters, with numbers representing the size of
a cluster, i.e. the number of genes in that cluster. Gene groups with less than 5 genes are
excluded from this graphical representation (default setting for DEFOG). Asterisks indicate
nodes focused on for analysis and red numbers are specific markers for extended discussion.
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Fig 3.
GeneMANIA analysis of the genes from a cluster with 7 genes (Fig 2a:*) in use-case #1,
HPRD HTT PPI. The seven genes (nodes) were represented were connected by functional
similarity information (edges) from the GeneMANIA networks. Edge colors represent the
following: blue – physical interactions, violet – co-expression data, magenta – co-
localization, orange – predicted interactions, and green – pathways. Increasing edge
thickness represents increasing similarity as defined by GeneMANIA’s normalized
maximum weight.
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Fig 4.
Visualization of the HTT primary interacting proteins from HPRD that were used as use-
case #1 for DEFOG. Nodes are proteins, and edges are similarity as defined in the consensus
network within GeneMANIA. Edge thickness represents the degree of similarity between
linked nodes, such that thickness increases as similarity increases.
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Table 1

List of all input parameters of DEFOG

Option Description Values Explanation

Organism

Required: The
organism where the
genes of interest
originate

H.sapiens human

M. musculus mouse

D. melanogaster fly

C. elegans worm

S. cerevisiae yeast

A. thaliana arabidopsis

Input genes Required: List of
genes of interest

Accepted seperators:
tab, comma,
newline, semicolon,
whitespace.
Accepted ids: Entrez
Gene, UniProt,
Ensemble, RefSeq

Text field where genes
can be inserted.

Background
genes

List of background
genes for the statistic see above Optional

Networks
Networks that are
used to create
consensus network

coexp co-expression

coloc co-localization

gi genetic interaction

pi protein interaction

predict predicted interaction

spd shared protein domains

other all other interactions

all include all available
networks

preferred gi, pi, coexp

default see www.genemania.org

Combining
method

Weighting scheme
to merge networks

automatic advanced GeneMANIA
weighting scheme

average all networks have the
same weight

average_category
all network types (pi, gi,
etc.) have the same
weight

Maximal
hierarchy
depth

Maximum number
of levels in the
hierarchy

1-30

Minimal
cluster size

Minium size of
clusters to be
included in the
display

1-30

Statistic
Statistic that is
applied to determine
enriched categories

Term-For-Term Standard Fishers’s exact
test

Parent-Child-Union
All genes that are
annotated to parent are
in the background

Parent-Child-
Intersection

Only genes that are
annotated to every
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Option Description Values Explanation

parent are in the
background

Multiple
hypothesis
correction

Method to adjust the
p-value of the
statistic to correct
for false discovery
due to multiple
hypotheses testing

Bonferroni

Standard multiple
hypothesis corrections.

Bonferroni-Holm

Benjamini-Hochberg

Benjamini-Yekutieli

Wesfall-Young
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Table 2

Protein list for use-case #1, which consists of the primary HTT interactors as defined by the HPRD
knowledgebase

HPRD
ID

Gene
Symbol Gene ID UniProt Accession Gene Name

09690 SIN3A 25942 Q96ST3 SIN3A

10995 PRPF40A 55660 O75400,Q05C41 PRP40 pre-mRNA processing factor 40 homolog A

05936 PACSIN1 29993 Q9BY11,Q5TZC3 Protein kinase C and casein kinase substrate in neurons 1

03461 HIP1 3092 O00291,Q8TDA4 Huntingtin interacting protein 1

09090 SYMPK 8189 Q92797 Symplekin

06712 UTP14A 10813 Q9BVJ6,B4DQ08 UTP14, U3 small nucleolar ribonucleoprotein, homolog A

00579 EGFR 1956 P00533 EGF receptor

01859 TP53 7157 Q53GA5,P04637,Q3LRW5 p53

02374 F8A1 8263 P23610 Factor VIII associated gene 1

18665 F8A2 474383 P23610 Coagulation factor VIII-associated (intronic transcript) 2

18666 F8A3 474384 P23610 Coagulation factor VIII-associated (intronic transcript) 3

01261 AKT1 207 P31749,B3KVH4,B0LPE5 AKT1

01852 TUBB 203068 P07437,Q5SU16 Tubulin, beta

02534 CREBBP 1387 Q92793,Q4LE28 CREBBP

14382 MED31 51003 Q9Y3C7 Mediator of RNA polymerase II transcription, subunit 31
homolog

10412 HIP1R 9026 B3KN98,O75146,B3KQW8 Huntingtin interacting protein 12

00713 GAPDH 2597 P04406 Glyceraldehyde 3 phosphate dehydrogenase

17212 KIAA1377 57562 Q9P2H0 KIAA1377 protein

03891 OPTN 10133 Q96CV9 Optineurin

03913 CRMP1 1400 Q14194,Q4W5F1,Q96I11 Collapsin response mediator protein 1

01796 SP1 6667 P08047 Transcription factor Sp1

03321 CASP6 839 P55212 Caspase 6

06577 GIT1 28964 B4DGU9,Q9Y2X7,Q59FC3 GIT1

15333 SH3GLB1 51100 Q9Y371 SH3 domain GRB2 like endophilin B1

02799 CASP3 836 P42574 Caspase 3, apoptosis-related cysteine peptidase

04763 IKBKAP 8518 O95163,Q8N516 IKAP

01451 PFN2 5217 P35080 Profilin 2

19386 CXorf27 25763 O75409 Huntingtin interacting protein M

06612 GPRASP2 114928 Q96D09,B3KW05 GASP2

04015 CTBP1 1487 Q13363,Q4W5N3,Q7Z2Q5 C-terminal binding protein 1

01994 CBS 875 P35520,Q9NTF0 Cystathionine beta synthase

02511 TBP 6908 P20226 TATA box binding protein

10393 TCERG1 10915 O14776 Transcription elongation regulator 1

05142 TRIP10 9322 Q15642 Thyroid hormone receptor interactor 10

06910 PIAS4 51588 Q8N2W9 PIASY
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HPRD
ID

Gene
Symbol Gene ID UniProt Accession Gene Name

13724 C15orf63 25764 Q9NX55 Huntingtin interacting protein K

11797 TAF4 6874 O00268 TBP associated factor 4

04540 SAP30 8819 O75446 Sin3 associated polypeptide 30KD

02911 NCOR1 9611 O75376 Nuclear receptor corepressor 1

00745 RASA1 5921 P20936 RasGAP

01825 TGM2 7052 P21980 Transglutaminase 2

01071 XRCC6 2547 P12956,B1AHC8 Ku antigen, 70kDa

08990 REST 5978 Q13127 RE1 silencing transcription factor

09071 CHD3 1107 Q2TAZ1,B3KWV4,Q12873 Chromodomain helicase DNA binding protein 3

03955 PDK2 5164 Q15119 Pyruvate dehydrogenase kinase, isoenzyme 2

11043 SETD2 29072 Q9BYW2 Huntingtin interacting protein 1

09212 FEZ1 9638 Q99689 Fasciculation and elongation protein zeta 1 (zygin I)

00150 GRB2 2885 P62993,B0LPF3 Grb2

00977 CASP1 834 P29466 Caspase 1

06256 AP2A2 161 O94973 Adaptor related protein complex 2, alpha2 subunit

04528 SH3GL3 6457 Q99963 SH3 containing GRB2 like protein 3

11044 PRPF40B 25766 Q6NWY9 Huntingtin interacting protein C

04199 DLG4 1742 P78352 Discs, large homolog 4

12243 MTSS1 9788 O43312 Metastasis suppressor 1

13723 FICD 11153 Q9BVA6 Huntingtin interacting protein E

04165 UBE2K 3093 P61086,C9JGP1 Ubiquitin conjugating enzyme E2-25K

02533 MAP3K10 4294 Q02779 MAP3K10

08927 TPR 7175 P12270,Q99968 Translocated promoter region

09697 ZDHHC17 23390 Q8IUH5 HIP14

03554 SUMO1 7341 A8MUS8,P63165 SMT3 suppressor of mif two 3 homolog 1

02972 HAP1 9001 P54257 Huntingtin associated protein 1
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