
www.landesbioscience.com	 Epigenetics	 1173

Epigenetics 7:10, 1173–1187; October 2012; © 2012 Landes Bioscience

 Research paper research paper

*Correspondence to: Walter Stunkel, Chunming Ding and Joanna Holbrook; Email: walter_stunkel@sics.a-star.edu.sg, ding_chunming@sics.a-star.edu.sg  
and Joanna_Holbrook@sics.a-star.edu.sg
Submitted: 06/11/12; Revised: 09/04/12; Accepted: 09/07/12
http://dx.doi.org/10.4161/epi.22102

Introduction

DNA methylation is the most stable of all epigenetic modifica-
tions and regulates transcriptional activity.1,2 During develop-
ment, the pattern of DNA methylation is dynamic. Differentiated 
cells develop a stable DNA methylation pattern that regulates 
tissue-specific transcriptomes.3 However, it is also clear that 
epigenetic marks, including DNA methylation, are subject to 
environmental regulation well beyond the point of cell differ-
entiation4 and can be actively modified throughout life and so 
has potential as a mediator for environmental effects on disease 
and transgenerational transmission.5,6 There is evidence of DNA 
methylation changes in response to in utero environment7,8 and 
early life.9 DNA methylation is substantially changed with age 
across the life course10 and across relatively small intervals, at least 

The Infinium Human Methylation450 BeadChip ArrayTM (Infinium 450K) is an important tool for studying epigenetic 
patterns associated with disease. This array offers a high-throughput, low cost alternative to more comprehensive 
sequencing-based methodologies. Here we compare data generated by interrogation of the same seven clinical 
samples by Infinium 450K and reduced representation bisulfite sequencing (RRBS). This is the largest data set comparing 
Infinium 450K array to the comprehensive RRBS methodology reported so far. We show good agreement between the 
two methodologies. A read depth of four or more reads in the RRBS data was sufficient to achieve good agreement 
with Infinium 450K. However, we observe that intermediate methylation values (20–80%) are more variable between 
technologies than values at the extremes of the bimodal methylation distribution. We describe careful processing of 
Infinium 450K data to correct for known limitations and batch effects. Using methodologies proposed by others and 
newly implemented and combined in this report, agreement of Infinium 450K data with independent techniques can be 
vastly improved.
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in children.11 Methylation profiling across the whole genome (or 
methylome) is used as a discovery tool to identify differentially 
methylated regions important in disease.12 Combination of meth-
ylome measures with cohort studies (epigenome wide association 
studies or EWASs) represents new opportunities to elucidate 
specific DNA methylation marks that are associated with com-
plex human disease.13,14 The challenge is that of establishing the 
validity of technologies that are more suitable for use with large 
samples as well as the development of ideal analytical approaches.

Here we study two commonly used methodologies to mea-
sure the methylome in human samples (Infinium 450K and 
RRBS). Both assays assess methylation at single CpG resolution 
and producing a quantitative signal. Both utilize sodium bisulfite 
(NaHSO

3
) treatment of DNA to convert unmethylated cytosines 

to uracils.15 Methylated cytosines are protected from conversion. 
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well-defined set of genomic regions with moderate to high CpG 
density.21 The resulting DNA library is sequenced using NGS 
approaches. Reads are aligned to the genome and the % methyla-
tion values are calculated from the ratio of reads containing an 
unconverted cytosine at the CpG positions compared with reads 
containing a thymine.

Good agreement between methylation values produced by 
the Infinium 27K array and RRBS has been observed before in 
homogeneous cell line samples.22 Comparison of CpG % meth-
ylation values from genomic DNA from the HUES6 human ES 
cell line assayed by the Infinium 27K array and RRBS returned a 
Pearson’s r value of 0.92.

Here we study the concordance of methylome profiles gen-
erated by the new Infinium 450K array and a modified RRBS 
methodology in heterogeneous clinical samples, such as may be 
included in a EWAS study. We find good levels of concordance 
in the raw data. Agreement between the two techniques is greatly 
improved by careful processing of the Infinium 450K data to 
correct known limitations. The newly developed analysis meth-
ods are described and new code is made available to the research 
community. We believe that the results described here are useful 
to researchers selecting methylome measurement methodologies 
for EWAS experiments and processing Infinium 450K data from 
such studies.

Results

CpG Coverage on heterogeneous clinical samples is relatively 
stable between samples, and technologies overlap by an aver-
age of 64,951 CpGs per sample. Methylome data was generated 
using both Infinium 450K array (n = 72) and RRBS methodol-
ogy (n = 7) (see Table S1 for sample characteristics and Table S2 
for schematic).

The raw data from both methodologies in the seven com-
mon samples with no quality cut-offs were compared for CpG 
coverage (Table 1). The average number of CpGs covered (at 
any read depth) in the seven samples by RRBS was 6,052,399  
(SD = 496,344) and the average number of CpGs shared by 
both Infinium 450K and RRBS was 104,335 (SD = 8,602). 

After amplification (which coverts uracils to thymines), the cyto-
sine to thymine signal ratio is proportional to the level of meth-
ylation at any given position.

Illumina produce Infinium 450K arrays that use target-
specific probes to interrogate individual CpGs in bisulfite con-
verted and amplified DNA. Although the coverage offered by 
such arrays is far inferior to sequencing-based methods, their 
throughput, resolution and cost effectiveness has made them an 
increasingly widely used platform for the first wave of EWASs.13 
Infinium 450K arrays contain two different chemistries. Type 1 
assays employ two probes per CpG locus. The 3' terminus of each 
probe is designed to match either the protected cytosine (meth-
ylated) or the thymine (converted) base. Type II assays utilize 
one probe per locus. The 3' terminus of the probe complements 
the base directly upstream of the query site while a single base 
extension results in the addition of a labeled G or A base, comple-
mentary to either the cytosine or thymine residue, in both probe 
types. Methylation levels are reported as the ratio of the methyl-
ated probe intensity and the overall intensity (sum of the methyl-
ated and unmethylated probe intensities), this statistic is known 
as the β-value and varies between 0–100%.16

As with any high-throughput genomic data, Infinium arrays 
are prone to technical artifacts. Batch effects have been reported 
for the Infinium 450K precursor, the Infinium 27K array, which 
includes only type I assays.17 Single channel adjustment and then 
normalization on pooled two-color signals was proposed in the 
release of R package “lumi”18 and was shown to remove mild 
batch effects and improve data quality. The range of β-values 
obtained from the Infinium 450K specific type II assays has been 
observed to be smaller than that of Type I assays. Dedeurwaerder 
et al.19 suggested a “peak based correction” of the type II range to 
that of type I. Control probes are included in the Infinium 450K 
array to, among other purposes, assay the signal from individual 
channels. Illumina suggest control probe correction of the values 
from type II assays to take into account any imbalances between 
the channels.

RRBS involves digestion of genomic DNA with methylation 
sensitive restriction enzymes, size selection bisulfite conversion 
and library amplification.20 It targets bisulfite sequencing to a 

Table 1. Number of CpGs covered by RRBS and shared with Infinium 450K across the seven samples

Sample Number of 
CpGs covered 

by RRBS

Number of CpGs 
shared with Infinium 

450K

Number of CpGs 
covered by RRBS 

(Nreads ≥ 4)

Number of CpGs shared 
with Infinium 450K 

(Nreads ≥ 4)

Pearson R

(RRBS Nreads ≥ 4)

Spearman R

(RRBS Nreads ≥ 4)

1 6,715,332 113,571 2,846,600 65,702 0.96 0.82

2 6,658,349 114,336 3,027,004 69,041 0.96 0.83

3 6,250,352 109,113 2,990,478 68,749 0.96 0.84

4 5,838,715 101,765 2,628,619 60,641 0.95 0.83

5 5,462,059 93,562 2,607,467 61,366 0.96 0.82

6 5,817,127 93,693 2,703,504 60,815 0.96 0.81

7 5,624,859 104,305 2,855,611 68,346 0.94 0.82

Average 6,052,399 104,335 2,808,469 64,951

St dev 496,344 8,602 167,495 3,911

Total 42,366,793 73,0345 19,659,283 454,660 0.96 0.83
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results could be misleading. The former assumes a joint normal 
distribution24 an assumption that is obviously violated by our 
data (Fig. 3) and so probably overestimates the correlation. The 
latter is sensitive to tied values in the data,25 which is a feature of 
the “spiky” distribution of RRBS data and so probably under-
estimates the correlation. Also, both methods explicitly assume 
a linear relationship between the two variables. To examine the 
putatively nonlinear dependency between Infinium 450K and 
RRBS data we applied maximal information coefficient (MIC) is 
a newly proposed method for discovering nonlinear dependency 
in biological data sets.13 The MIC (strength) value lies between 
0 to 1 with a perfect deterministic relation having a value of 1, 
totally independent relations having a value of 0 while noisy rela-
tions lie somewhere in between. The strength of the interdepen-
dency between RRBS (Nreads ≥ 4) and the Infinium 450K data 
are 0.81. Maximum information coefficient (MIC) methodol-
ogy does not assume a joint normal distribution or rank the data 
points, however the power and robustness under different n of 
the method is under debate.14

As an alternative method to quantify agreement between the 
methylome measures, Bland-Altman plots (difference between 
the two methods plotted against the mean values from both 
methods)15 were produced. Figure 4B showed greater discor-
dance at intermediate methylation levels i.e. 20–80%, an obser-
vation also made by Roessler et al.10 Also noticeable in the plots 
is an upward trend in the type II assay values suggestive of diver-
gence at high methylation values.

Processing of Infinium 450K data by novel proposed pipe-
line, produces a step-wise improvement in agreement with 
RRBS. Infinium 450K data was signal extracted for .idat files 
to non-normalized data in GenomeStudioTM. To correct color 
imbalance, values were normalized to values from control probes 
and background subtracted (script available in Supplemental 
material). After these intra-sample normalization procedures, 
M-values (logit transformation)16 were calculated. The type 
II M-value range was fitted to the type I range as suggested 
by Dedeurwaerder et al.6 and coded in R (script available in 
Supplemental material). β-values were then calculated. Finally 
inter-sample normalization was performed by quantile normal-
ization. The concordance of the processed Infinium 450K data 
with RRBS was still significant (Table 2) but now the fitted line 
had an improved slope of 0.93 (Fig. 5A) and the Bland-Altman 
plot (Fig. 5B) showed that the upward trend for the type II assay 
datapoints no longer exists and now overlays the type I assay data.

To provide a quantitative measure of agreement between the 
two technologies, the number of CpGs with values returned 
from Infinium 450K and RRBS that fall within 20%, 10% and 
5% of each other, were counted at each stage of the Infinium 
processing. At all levels we were able to demonstrate a stepwise 
improvement in agreement (Table 2), with the most dramatic 
improvement resulting from the type II assay adjustment to the 
range of type I range. In the raw data, 62% of the type I assays 
and 31% of the type II assays returned values within 5% of the 
RRBS value for the same CpG. After processing 67% of type 
I and 62% of type II assays returned values within 5% of the 
RRBS value.

When a read density cut-off of four or more reads was applied 
to the RRBS data, the average number of CpGs covered was 
reduced to 2,808,469 (SD = 167,495) and the average number 
of CpGs shared by both Infinium 450K and RRBS was 64,951  
(SD = 3,911).

The RRBS read density cut-off was set at four or more 
reads. RRBS data had a range of read densities from 1–45,972  
(Fig. 1A). Analysis of the correlation between the raw Infinium 
450K β-values and RRBS measured methylation values at the 
different read cut-offs suggested concordance climbs quickly 
between 1–4 reads (Fig. 1B). Spearman ranked r decreased after 
15 reads, assumedly due to reduced n. Four or more reads was 
enough to achieve reasonable concordance between Infinium 
450K and RRBS (i.e., Pearson’s R = 0.96, Spearman R = 0.83) 
while retaining a data set of 454,660 CpGs for downstream 
analysis (the data set is the aggregate of CpGs measured by both 
Infinium and RRBS across all seven samples). Fifty-three per-
cent of the combined data set is represented by type II assays 
and 47% by type I assays. The four or more reads cut-off is at 
the lower end of the range used by other researchers, for instance 
Bock et al.22 used five or more reads, Messiner et al.20 used ten 
or more reads.

Infinium 450K design concentrates on CpG islands, shores 
and shelves, while majority of RRBS coverage is within open-
sea, at lower read coverage cut-offs. Figure 2 shows the rela-
tive proportions of CpG coverage relative to CpG islands as 
annotated in UCSC. As previously noted,22 RRBS coverage 
tended toward regions of moderate or low CpG density, while 
the Infinium 450K design is concentrated at high CpG den-
sity. As expected, as higher Nreads cutoffs are implemented, the 
RRBS coverage of CpG islands increased while open sea cover-
age decreased. Interestingly, the proportion of shores and shelves 
covered remained relatively constant. The overlap set used for 
further analysis has an increased CpG island proportion com-
pared with either of the two methods independently.

Both data sets had a bimodal frequency distribution. Both 
the Infinium 450K and RRBS data sets for the 454,660 shared 
CpGs had a bimodal frequency distribution, approaching a 
β-distribution (Fig. 3). The RRBS distribution was irregular 
and “spiky” due to tied values produced by the reduced resolu-
tion of continuous methylation values at low read depth. In the 
RRBS frequency distribution the peaks were located at 0–0.25% 
and 99.75–100%. In the Infinium 450K type I assay data the 
peaks were at 1.75–2.25% and 97.25–97.75%. The Infinium 
450K data shows a shorter range for the type II assays with peaks 
at 5.25–5.75% and 85.75–86.25%. This phenomenon has previ-
ously been observed.19,23

An approximately linear relationship was observed between 
Infinium 450K and RRBS data, which was stable across sam-
ples. The raw β values were compared with the RRBS data 
with Nreads ≥ 4. An approximately linear relationship was 
observed significant in both Spearman and Pearson correlations  
(Fig. 4A). The slope of the fitted line was 0.83. A similar rela-
tionship was observed across all the seven samples studied inde-
pendently (Table 1). We are aware that neither Pearson’s nor 
Spearman correlation statistics are appropriate for this data and 
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Figure 1. Optimal selection of number of reads quality cut-off in RRBS data. (A) Frequency distribution of number of reads in RRBS data. X-axis is 
truncated at 200 reads but maximum in data are 45,972. (B) Correlation between Infinium 450K and RRBS values using different read cutoffs for RRBS 
data, estimated using Pearson R (black squares) and Spearman R (black circles) values. Number of CpGs shared between the two technologies and 
remaining after read cut-offs are indicated by red stars.
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Figure 2. Pie charts of CpG coverage in relation to CpG island location. (A) RRBS data average for all seven samples at Nreads ≥ 1. (B) RRBS data aver-
age for all seven samples at Nreads ≥ 4. (C) RRBS data average for all seven samples at Nreads ≥ 10. (D) Infinium 450K assays passing QC. (E) Shared 
data between RRBS (Nreads ≥ 4) and Infinium 450K (n = 454,660). (F) Relationship of proportion CpG island coverage and Nreads cutoff.
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Figure 3. Histograms of % methylation value frequency in (A) RRBS data and (B) Infinium 450K data for the 454,660 CpGs covered by both tech-
nologies. Data was plotted into 201 bins stepped by 0.5 between 0% and 100%. For RRBS data, y-axis was truncated for clarity, the peak at 0–0.25% 
extends to 180,000 and the peak at 99.75–100% extends to 28,700. For Infinium 450K data, type I assay data was indicated in red and type II in blue.
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Figure 4. The concordance of Raw Infinium 450K data vs. RRBS data (A) A scatter plot of % methylation values from RRBS (x-axis) and % methylation 
values from Infinium 450K (y-axis) over a density cloud. Density cloud is generated by the smoothed two-dimensional histogram using 50 equally 
spaced bins in both directions. A random selection of 2000 data from type I probes is plotted as red dots and another random selection of 2000 data 
from type II probes is plotted as blue dots. (B) Bland-Altman plot for raw Infinium data compared with RRBS Nreads ≥ 4. Average % methylation at 
each CpG from both methods is on the x-axis. Difference in % at each CpG over the two methods is on the y-axis. Data from Type I assays is shown in 
red, type II is shown in blue.
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agreement levels at 5%, 10% and 20% than the simpler script 
above (Table S4).

Very recently an alternative method for type I/type II assay 
distribution adjustment called SWAN (subset-quartile within 
array normalization) was published.26 It is an interesting point 
of difference that whist Dedeurwaerder et al. assume the type I 
distribution is “correct” and fit the type II value distribution to 
that of type I, Maksimovic et al. adjust both type I and type II 
values. For this data set, the SWAN processed data agreed less 
with RRBS than data processed with the full processing pipe-
line described above (Tables S3 and S4) for all but the type I 
20% bracket. Another interesting comparison is with SWAN 
processed data and type II adjustment on the raw data, here the 
picture is more mixed but the type II adjustment consistently 
produces higher levels of agreement in the 5% bracket. Therefore 
we can conclude that the peak correction method is more appro-
priate to this particular data set than SWAN. We hypothesize 
that this is because the range of the type I assay data are quite 
accurate,19,26 while the range of the more numerous type II assay 
data are less so. Fitting the type II range to the type I standard, 
as in peak-based correction results in a “type I-like” distribution. 
SWAN normalizes both assay types together and so returns a 
more “type II-like” distribution, as type II assays outnumber type 
I. As type II adjustment (either by peak-correction or SWAN) 
resulted in the greatest improvement in concordance, the selec-
tion of the most appropriate methodology at this step is critical.

Even after processing, the strikingly greater degree of dis-
cordance at intermediate methylation values is still pres-
ent. An ANOVA test confirms there is a significant difference  
(p < 0.0001, F-statistic = 84159.13) in the absolute differences 
between the assays at 0–20%, 20–80% and 80–100% processed 
b value ranges. The median absolute difference at 20–80% is 
12.89 compared to 2.03 and 4.89 at 0–20% and 20–80% 

To determine if the relatively generous Nreads ≥ 4 cut-
off in the RRBS data caused much lower levels of agree-
ment due to low resolution or erroneous values, we repeated 
the analysis at Nreads ≥ 10 (Table 3). There was a slight 
improvement in the proportion of CpGs agreeing and the 
step-wise improvement during Infinium data processing was  
repeated.

Next, to determine if the individual data processing steps 
were additive in their effects, we applied each independently to 
the raw data. Type II adjustment alone increases the number 
of type II assays within 5% of the RRBS data (Nreads ≥ 4) 
from 75,144 (31%) to 144,968 (60%). This is by far the greatest 
improvement in concordance resulting from a single processing 
step. When all steps are combined the number is 189,216 (62%) 
(Table S3), showing that the effects of processing are additive in 
improving concordance, although the effect of color adjustment 
is small compared with that of type II adjustment. Type I assays 
are not affected by type II adjustment. The processing step 
which most improves the agreement of the type I assays within 
5% of the RRBS data (Nreads ≥ 4) is color adjustment [139,888 
(66%) compared with 132,267 (62%) in the raw data]. When 
all processing steps are combined 143,022 (67%) of type I assays 
agree within 5% of the RRBS data (Nreads ≥ 4) (Table S3). 
The same pattern is seen when comparing data at RRBS Nreads 
≥ 10 (Table S4).

The control normalization procedure implemented above is 
very similar to that contained within the default processing (con-
trol normalization) in the GenomeStudioTM Software. However, 
the GenomeStudio algorithm also includes an inter-sample nor-
malization step, randomly selecting a sample as the reference. 
This is inconvenient as the β values change slightly between 
each processing run. For this data set, the GenomeStudio algo-
rithm performed similarly but consistently worse in terms of 

Table 2. Number of CpG % methylation values showing agreement within 5%, 10% and 20% ranges, between Infinium 450K and RRBS (Nreads ≥ 4) 
data, at different levels of Infinium processing

Difference 
range  

(n = 454,660)
Within 20% Within 10% Within 5%

Spearman’s 
Rank R

Pearson’s 
R2 Slope MIC

Probe type Type I Type II Type I Type II Type I Type II

Raw data
196,937 217,721 172,003 161,520 132,267 75,144 0.83 0.92 0.83 0.81

93% 90% 81% 67% 62% 31% p < 0.001 p < 0.001

After color 
adjustment

197,089 221,887 173,872 165,158 139,888 73,510 0.83 0.92 0.87 0.81

93% 92% 82% 68% 66% 30% p < 0.001 p < 0.001

After color and 
type II  

adjustment

197,089 225,828 173,872 192,004 139,888 144,070 0.83 0.93 0.92 0.81

93% 93% 82% 79% 68% 60% p < 0.001 p < 0.001

After color, 
type II and QN

197,444 226,386 175,211 195,114 143,022 149,216 0.83 0.93 0.93 0.81

93% 94% 82% 81% 67% 62% p < 0.001 p < 0.001

The greatest number of CpGs agreeing at every level, between processing level, are bolded. Overall correlation statistics are also shown (n = 454,660).
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CpG island shores (median methylation values 28–29%), shelves 
(median methylation values 84–85%) and open sea (median 
methylation value 82%) (Table 5).

Removal of batch effects contributes to improved concor-
dance of processed Infinium 450K data and RRBS. The color 

respectively (Table 4). This is also true of the SWAN processed data  
(Table S5). In agreement with this observation, CpG islands 
which tend to be hypomethylated (median methylation values 
= 3% so tend to be within the highly concordant 0–20% cat-
egory) have higher levels of agreement between technologies than 

Figure 5. Processed Infinium 450K data vs. RRBS data. (A) A scatter plot of % methylation values from RRBS (x-axis) and % methylation values from In-
finium 450K (y-axis) over a density cloud. Density cloud is generated as in Figure 4A. (B) Bland-Altman plot for processed Infinium 450K data compared 
with RRBS Nreads ≥ 4 is generated as in Figure 4B.
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of methylome variation in umbilical cord tissues with these and 
other phenotypes.

Discussion

The Infinium 27K array produces methylation estimates with 
a good concordance to the results from other methylome esti-
mation techniques.22 The expanded Infinium 450K array incor-
porating the new type II assays, has a high level of agreement 
with the 27K,16,32 and detects differential methylation with high 
sensitivity.32 Bibikova et al.16 showed a linear correlation mea-
sured by Pearson’s R2 of 0.95 and 0.96 over 189,821 and 167,996 
CpGs in a normal and tumor sample respectively, between whole 
genome bisulfite sequencing (WGBS) and Infinium 450K. This 
is comparable to Pearson’s R2 statistic returned by our data set 
(R2 = 0.94, n = 387,789) at the Nreads ≥ 10 cut-off the authors 
applied to the WGBS data set. The authors showed an error dis-
tribution containing 10,000s of CpGs with differences between 
WGBS and Infinium 450K of more than 20%. Roessler et al.23 
found 63.8% of the 340 CpGs studied in cell lines and 60.5% of 
the 352 CpGs studied across primary tumor specimens showed 
a difference between Infinium 450K and pyrosequencing of 
less than 10%. This is a lower level of agreement than we see 
in our raw data (73% of 454,660 assays agree within 10%) and 
much lower than after Infinium 450K data processing (82% of 
454,660 agree within 10%), Table 2. The discrepancy could be 
due to the less sensitive nature of the pyrosequencing comparison 
or the more variable nature of the malignant tissues under study. 
The authors also found little improvement in the concordance 
of their Infinium 450K data with pyrosequencing after type II 
peak correction. This may be due to the small number of CpGs 
studied.

Although Infinium 450K arrays are primarily designed for 
comparison between samples, not quantification of methylation 
in a single sample, it is important to demonstrate a linear rela-
tionship with methylation with minimal biases among assays. 
In a typical comparative study, values returned for an individual 
assay are first compared with each other to detect methylation 

adjustment and inter-sample quantile normalization steps of 
the Infinium 450K data processing, which should theoretically 
improve artifactual batch effects, resulted in greater agreement 
with RRBS data (Tables 2 and 3). We have previously noted 
batch effects by array hybridization in Infinium 450K data 
(unpublished observations). Therefore, we interrogated 72 
umbilical cord samples run across six arrays. This sample set 
includes the seven samples also studied by RRBS and described 
above. The number of CpGs with differential methylation values 
(p < 0.01) between the array batches was calculated by ANOVA. 
In the unprocessed data 163,438 (38%) CpGs were differentially 
methylated between the arrays. After processing, this number was 
reduced to 58,532 (14%). After FDR correction the numbers at p 
≤ 0.2 were 233.650 (55%) before processing and 123,611 (29%) 
after processing. (Fig. 6; Tables S6 and 7). Therefore, although 
an array-batch effect was still present and may necessitate batch-
effect-removal methodologies such as “COMBAT,”17,27 it was 
much reduced by data processing. To determine if processing had 
reduced variation in all directions (not just batch), the ANOVA 
test was also applied to gender and gestational age, phenotypes 
expected to associate with differential methylation (refs 28 and 
29 and refs. 30 and 31, respectively). For gender, methylation 
levels at 29,642 (7%) of the CpGs were associated in the raw data 
and 48,436 (11%) were associated in the processed data. After 
FDR correction (p ≤ 0.2) 41,108 (10%) assays were differential 
before processing and 73,595 (17%) were differential after pro-
cessing. For gestational age 3,842 (0.9%) CpGs had methylation 
levels differential for gestational age (< 37 weeks or > 38 weeks) 
in the raw data, compared with 8,454 (2%) probes in the pro-
cessed data. After FDR correction (p ≤ 0.2) 104 (0.02%) were 
differential before processing and 179 (0.04%) were differential 
after processing. Therefore, one of the factors improving the con-
cordance between the Infinium 450K processed data and RRBS 
data, seems to be reduction in the batch effects in Infinium 450K 
data. The resulting decrease in batch-related variation appears 
to have the advantage of increasing power to detect differential 
methylation associating with biological phenotypes. Further 
study is warranted on the robustness and biological implications 

Table 3. Number of CpG % methylation values showing agreement within 5%, 10% and 20% ranges, between Infinium 450K and RRBS (Nreads ≥ 10) 
data, at different levels of Infinium processing

Difference range  
(n = 387,789)

Within 20% Within 10% Within 5%
Spearman’s 

rank R
Pearson’s R2 Slope MIC

Probe type Type I Type II Type I Type II Type I Type II

Raw data
166,565 192,635 147,047 145,040 114,131 69,159 0.83 0.93 0.84 0.83

94% 92% 83% 69% 64% 33% p < 0.001 p < 0.001

After color  
adjustment

166,723 195,934 148,589 148,186 119,916 67,879 0.83 0.93 0.88 0.83

94% 93% 84% 71% 67% 32% p < 0.001 p < 0.001

After color and type II 
adjustment

166,723 199,332 148,589 172,073 119,916 130,431 0.83 0.94 0.93 0.83

94% 95% 84% 82% 67% 62% p < 0.001 p < 0.001

After color, type II 
and QN

167,026 199,786 149,690 174,764 122,500 135,190 0.83 0.94 0.95 0.83

94% 95% 84% 83% 69% 64% p < 0.001 p < 0.001

The greatest number of CpGs agreeing at every level, between processing level, are bolded. Overall correlation statistics are also shown (n = 387,789).
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A limitation of our study is that both the comparator tech-
niques depend on bisulfite conversion, which is vulnerable to both 
inappropriate and failed conversion at a rate of up to 4%.34,35 The 
two data sets are produced from independent bisulfite conver-
sions so conversion errors may account for some of the mismatch 
observed. Also our combined data set is biased toward CpG 
islands (Fig. 2E). Both methodologies may be prone to artifacts 
at high CpG densities due to multiple CpGs being present in 
the probe or read, causing hybridization bias or alignment error, 
respectively. Hence the agreement calculated from our combined 
data set may underestimate the agreement that would be found if 
both technologies sampled the whole genome. Conversely, CpG 
islands are usually hypomethylated skewing our data set to meth-
ylation values in the 0–20% methylation range where higher 
levels of agreement were found (Table 4). This phenomenon 
seems to have a stronger effect than the artifacts found at high 
CpG densities as levels of agreement between Infinium 450K and 
RRBS are indeed higher in CpG islands, than in other locations 
(Table 5).

It should be noted that this data describes extremely hetero-
geneous clinical samples. Umbilical cord tissue (often the only 
somatic tissue source available at birth) includes multiple cell 
types and so measured methylation levels cannot be attributed to 
specific cell lineages but are instead a composite of methylation 
in all the cell types assayed. In this study the methylomes of two 
pieces of the same cord were assayed using separate techniques. 
Some discordance may be expected as the two tissue pieces may 
have different proportions of cell types. However, the agreement 
we saw is in line with what other investigators have seen using 
two methods to measure the same tissue sample. Therefore, our 
results suggest that soma-wide, individual-specific methylation 
variation may be detectable even in this heterogeneous tissue.

differences, so differences in range or sensitivity 
between assays seem less important. However, 
subsequently the differential values for each 
assay (e.g., p value from a two-group test, 
regression coefficient, fold change or absolute 
methylation difference) are ranked against each 
other to determine the most promising changes 
for further validation or as input for pathway 
analysis. In the raw Infinium 450K data studied 
here, the range of the type II assays is smaller 
than that for type I; consequently the p values 
are likely to be higher and the fold changes lower 
for type II compared with type I. This would 
result in the type II assays tending to achieve 
lower ranks than type I assays, and so bias and 
reduced power in the study. Both the type II 
range adjustment proposed by Dedeurwaerder 
et al.19 and executed in this study and the 
SWAN method proposed by Maksimovic et 
al.26 will remove these artifacts and so allow an 
unbiased ranking of assay signals.

A related point is that batch effects have been 
demonstrated on the Infinium 27K arrays17 due 
to type I assays from different hybridizations 
(i.e., arrays) having different ranges between the red and green 
signals. These effects are likely to be greater on the Infinium 
450K arrays due to additional scope for the color balance specific 
to each hybridization run to affect the reported β values (type 
II assays rely on a comparison of red and green signals). Color 
balance adjustments as suggested by others17,18 are included in 
the processing methodology described here. Processing on this 
data set reduced batch effects by array and appeared to increase 
capacity to detect true phenotypic variation. Methods like these 
will be essential to enable multi-array, multi-day and multi-cen-
ter studies.

It is very likely that 2nd and 3rd generation sequencing 
approaches to methylome estimation will eventually succeed 
Infinium 450K arrays. The RRBS approach described here offers 
approximately six times the coverage of the Infinium 450K array. 
The processing time for 48 samples on Infinium arrays (including 
data analysis) is 5 days, whereas the RRBS analysis takes about 
14 days per 8–16 samples. Infinium 450K requires less starting 
DNA (between 0.5 to 2 μg, compared with 5 μg for RRBS) and 
is compatible with DNA samples extracted from FFPE preserved 
tissue. Currently the Infinium 450K offers a high-throughput 
low cost alternative for large studies, enabling the processing of 
the hundreds or thousands of samples required for EWAS.13,33 
We observe that in clinical samples intermediate methylation 
values (20–80%) are more variable between technologies than 
values at the extremes of the bimodal methylation distribution. 
This is in agreement with the findings of Roessler et al.23 but 
demonstrated across many more CpGs and using a different 
comparator technology (RRBS as opposed to pyrosequencing). 
As Infinium 450K is the common technique in these two stud-
ies it seems probable that the higher error rate at intermediate 
methylation values is a feature of the Infinium 450K technology.

Figure 6. Percentage of assays with methylation values significantly associated with: array 
on which sample was run, gestational age (GA) or gender; before (blue bars) and after (red 
bars) data processing, in the set of 72 samples.
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a dating ultrasound (10–12 weeks) followed by an additional 
scan at 18–22 weeks. The babies were all of Chinese ethnic ori-
gin and male. They were conceived without assisted conception 
techniques. They were within the normal birth weight range 
(2,734–3,565 g) and had gestational ages classified as near-term 
(37 weeks–39 weeks and 6 days). The maternal ages varied 
between 26–36 years.

Sample handling. DNA from 72 umbilical cord samples 
(Table S1 for demographic information), were run across six 
Infinium arrays in three different experimental batches. Seven of 
the umbilical cord samples were interrogated by both Infinium 
450K arrays and RRBS. The seven samples were handled com-
pletely separately for Infinium and RRBS, i.e., one tissue piece was 
processed for Infinium 450K and one was processed for RRBS. 
Sample 1 is the only exception, for sample 1 the same DNA 
extraction was used in both the Infinium and RRBS. In the first 
experimental day sample 1 was interrogated on Infinium450K 
in a batch that included 21 other samples, not also interrogated 
by RRBS. On the second experimental day, samples 2, 3 and 4 
were interrogated on Infinium450K alongside 19 other samples, 
not also interrogated by RRBS. On the third experimental day, 
samples 5, 6 and 7 were interrogated on Infinium 450K, along-
side 19 other samples not also interrogated by RRBS. On each 
experimental day two Infinium450K arrays were run. For the 
second experimental day, samples 2 and 4 were run on the same 
array while sample 3 was run on a different array. For the third 
experimental day samples 5 and 6 were run on the same array, 
while sample 7 was run on a different array (see Table S1 for 
sample characteristics and Table S2 for schematic).

In conclusion, methylome data generated on heterogeneous 
clinical samples shows very good reproducibility between the 
Infinium 450K and RRBS platforms. We have demonstrated 
that with careful processing, using methodologies proposed by 
others16,18,19 and newly implemented and combined by us, lin-
earity of Infinium 450K data against independent techniques 
can be vastly improved. However, intermediate β values show 
more variability from RRBS than values at the extremes. 
Infinium 450K and RRBS techniques are complimentary in 
that they sample different subsets of the methylome although 
both are biased toward CpG islands. All current technologies 
for assessing genome wide DNA methylation have their unique 
advantages. Factors such as coverage, processing time and the 
sensitivity desired at intermediate values of methylation will be 
key determinants for choosing the most suitable approach for 
EWAS studies.

Methods

Samples. Seven umbilical cord samples were from babies born 
at the KK Women’s and Children’s Hospital (KKH) and the 
National University Hospital (NUH), in Singapore. These hos-
pitals are part of the GUSTO birth cohort study. Written paren-
tal consent to participate in the study was given and hard copies 
are stored by the GUSTO data team. Ethical approval for the 
study and the consent forms and contents was granted, by the 
ethics boards of both KKH and NUH, which are centralized 
Institute Review Board (CIRB) and Domain Specific Review 
Board (DSRB), respectively. Gestational age was defined from 

Table 4. Number of CpG % methylation values showing agreement or not (within 10%), between processed Infinium 450K and RRBS data (Nreads ≥ 4), 
at different % methylation value ranges

Infinium

β value range

Difference

< 10%

Difference

> 10%

Total Median absolute  
difference

Standard deviation of  
absolute difference

x ≤ 20% 257,897 14,671 272,568 2.00 3.96

95% 5%

20% < x ≤ 80% 29,573 46,720 76,293 13.24 12.44

39% 61%

80% < x ≤ 100% 82,855 22,944 105,799 4.94 9.31

78% 22%

Table 5. Number of CpG % methylation values showing agreement (within 10%), between processed Infinium 450K and RRBS data (Nreads ≥ 4), at dif-
ferent CpG location categories

CpG location category Within 10% Total % Within 10%
Average methylation 

value overall
Median methylation 

value
Standard deviation

Islands 238,359 271,566 88% 16 3 29

N Shore 32,959 43,640 76% 41 28 38

S Shore 30,802 40,249 77% 42 29 38

N Shelf 8,724 12,815 68% 73 84 28

S Shelf 7,200 10,478 69% 73 85 28

Open Sea 53,288 75,912 70% 66 82 33
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At this point, β-values were calculated for further analysis. 
β-values are the ratio of the methylated probe intensity and the 
overall intensity, β-value for an ith interrogated CpG site:

 

Where y
i,methy

 and y
i,unmethy

 are the intensities measured by the 
ith methylated and unmethylated probes respectively, averaged 
over the replicate beads. a is a constant offset, by default 100. 
Therefore β-values range between 0–1 with 0 representing no 
methylation and 1 representing 100% methylation. R protocol is 
supplied in the Supplemental Materials.

β-values were further processed to scale the % methylation 
range of the type2 probes to the type 1 probes using the pro-
cedure suggested by reference 19, R protocol is supplied in the 
Supplemental Materials.

RRBS. The full details of the experimental procedure for 
RRBS are elaborated in Lee YK, 2012, submitted. Briefly, 5 μg  
genomic DNA was fragmented by sequential restriction enzyme 
digestion for 2 h each by 150 U each of MspI and TaqαI (Catalog 
Nos.: R0106S and R0149M, New England Biolabs) at opti-
mal temperatures, according to manufacturer’s instructions. 
The digested product was purified with the QIAquick PCR 
Purification Kit (Catalog No: 28106, QIAGEN GmbH). End-
repair and adaptor ligation were performed using the ChIP-Seq 
Sample Preparation Kit (Catalog No.: IP-102-1001, Illumina). 
Illumina’s RRBS for Methylation Analysis protocol was followed, 
except that 10 μL of the methylation adaptor oligo was used and 
the ligation was performed for 15 min at 20°C in the adaptor-
ligation step. The purified fragments were then bisulphite treated 
using the EZ-96 DNA Methylation-Gold Kit (Catalog No.: 
D5007, Zymo Research), according to manufacturer’s instruc-
tions. The converted DNA was amplified with 1x reaction buffer, 
additional 1.5 mM of MgCl

2
, 300 μM of dNTP mix, 500 nM 

each of PCR primer PE 1.0 and 2.0, and 2.5 U of HotStarTaq 
DNA polymerase. The thermocycling condition was 15 min 
at 94°C for heat activation, and 8–12 cycles of 20 sec at 94°C,  
30 sec at 65°C and 30 sec at 72°C, followed by a 5 min final 
extension at 72°C. The enriched fragments were purified by 
gel electrophoresis and quantified by Agilent 2100 Bioanalyzer 
(Agilent Technologies). Sequencing was performed on the 
Illumina Genome Analyzer IIx platform, as per manufac-
turer’s instructions. Data analysis was performed using an in-
house developed pipeline (Lee YK, 2012, submitted). Briefly, 
the paired-end 36 nt reads were filtered based on their Phred 
scores, using a cut off of 30, which indicates a base calling error 
of approximately 0.001. All reads were then converted in silico 
based on their C/G base count ratios. Two reference genomes 
were created, obtained by either converting all cytosines to 
thymines, or all guanines to adenosines. The converted reads 
were aligned to both genomes using the Bowtie algorithm.36 
Read mapping efficiency obtained was between 60–70% of 
the filtered reads. Bisulfite conversion efficiency was higher  
(estimated by Bisulfite Conversion Rate = (nonCpG C→T)/

Infinium 450K methylation assay. Genomic DNA meth-
ylation analysis followed the manufacturers’ instructions. After 
extraction of genomic DNA from frozen umbilical cord speci-
mens according to standard procedures, 1 mg was bisulfite con-
verted using EZ-96 DNA Methylation™ Gold Kit (Catalog 
No.: D5007, Zymo Research). Successful conversion was con-
firmed via methylation-specific PCR prior to proceeding with 
subsequent steps of the Infinium assay protocol. The bisulfite 
converted genomic DNA was isothermally amplified at 37°C for 
22 h, enzymatically fragmented, purified and hybridized on an 
Infinium® HumanMethlyation 450 BeadChip (C No.: WD-314-
1002, Illumina Inc.) at 48°C for 18 h. After which, the BeadChip 
was then washed to remove any un-hybridized or non-specific 
hybridized DNA. Labeled single-base extension was performed 
on primers hybridized with DNA, and the hybridized DNA was 
removed. The extended primers were stained with multiple lay-
ers of fluorescence, the BeadChip was then coated using a pro-
prietary solution and scanned using the Illumina® iScan system. 
The image data were processed with the Genome Studio™ 
Methylation Module software.

Infinium 450K data processing. Signal extraction was per-
formed in GenomeStudioTM Methylation Module on the inten-
sity files (.idat) produced by the Illumina iSCAN system. Raw β 
values were extracted from Genome studio without further data 
processing (i.e., no background subtraction or normalization).

CpGs with two beads or less for either methylated or unmeth-
ylated signal, for any sample; or with signal detection p values 
(calculated from the individual bead intensities) more than 0.05, 
for any sample were discarded for all samples. 1.9% of the data 
was removed at this step, leaving 129,236 type1 probes and 
347,123 type II probes for subsequent analysis.

Full data (i.e., both signals and control profile file) were also 
extracted from GenomeStudio for further processing. Signals 
were classified as red (signal A for type II and red channel  
type I) or green (signal B for type II and green channel type I). 
The green signals were normalized to the red channel signals by 
multiplying them by the product of the red channel control value 
divided by the green channel control value. Control values were 
obtained from the control profile file. Background subtraction 
was performed on the assays from both channels using the nega-
tive probe control values (the green negative control value was 
adjusted in the same way).

Green channel signal: 

Red channel signal: Xr-Nr
Where Xg and Xr are the green and red channel signals, respec-

tively, Cg and Cr are the normalization control values from the 
control profile for green and red channels, respectively, and Ng 
and Nr are the negative control values for the green and red chan-
nels, respectively. R protocol is supplied in the Supplemental 
Materials.
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(nonCpG C→C + nonCpG C→T) · 100%) than 99% in  
all cases.

Polymorphisms overlapping with CpGs may introduce abnor-
malities. CpG sites with percentage of dinucleotides other than 
“CG” or “TG” greater than 20% of all reads were excluded from 
further analysis.

CpG location mapping. The genomic coordinates of CpG 
Islands were downloaded from UCSC (hg 19, table: cpgIslan-
dExt, total: 28,691, accessed on: May 10th, 2012). CpG Island 
shores were defined as up to 2-kb regions from the CpG Island 
Start or End as per convention.32,37,38 CpG Island shelves were 
next defined as another 2 kb from the shore boundaries, as speci-
fied in Table 1: Group Methylation Profile Table, Infinium HD 
Assay in GenomeStudio Methylation Module v1.8 User Guide 
from Illumina. CpGs upstream of CpG Islands were prefixed as 
North (N) while downstream CpGs were prefixed as South (S).

Data visualization. High density scatter plots (Figs. 4A 
and 5A) were generated in Matlab using a smoothed density 
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