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Abstract
The progressive and latent nature of neurodegenerative diseases, such as Alzheimer’s disease
(AD) indicates the role of epigenetic modification in disease susceptibility. Previous studies from
our lab show that developmental exposure to lead (Pb) perturbs the expression of AD-associated
proteins. In order to better understand the role of DNA methylation as an epigenetic modifications
mechanism in gene expression regulation, an integrative study of global gene expression and
methylation profiles is essential. Given the different formats of gene expression and methylation
data, combining these data for integrative analysis can be challenging. In this paper we describe a
method to integrate and analyze gene expression and methylation arrays. Methylation array raw
data contain the signal intensities of each probe of CpG sites, whereas gene expression data
measure the signal intensity values of genes. In order to combine these data, methylation data of
CpG sites have to be associated with genes.

Keywords
Epigenetics; Gene Expression Arrays; Methylation Arrays; Bioinformatics; Lead (Pb)

1. INTRODUCTION
There are various studies indicating that global epigenetic modification, such as DNA
methylation and chromatin modification, are directly influenced by the environment, and
play an important role in the developmental origin of adult disease susceptibility (Aguilera
et al. , 2010, Dolinoy et al. , 2007, Jirtle and Skinner, 2007). This is due to the fact that
epigenetic alterations have an important effect on gene expression regulation (Movassagh et
al. , 2010). The relationship between genetics, gene expression and DNA methylation has
been mostly limited to studies focusing on specific genes and transcripts in individual cells
or tissues (Li et al. , 2009, Movassagh, Choy, 2010). However, the recent development of
genome-wide technologies provides unprecedented opportunities to expand our view of the
relationship between the genome, transcriptome and methylome. Hence, the integration of
genetic and epigenetic data promises to provide insight into the mechanisms affecting
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epigenetic alteration, and consequently gene expression and disease susceptibility. Studies
from our lab on Alzheimer’s disease (AD), which is a progressive neurodegenerative
disorder, appearing at old age, show that AD may have a developmental origin (Wu et al. ,
2008, Zawia and Basha, 2005). Lead (Pb) exposure at an early age influences the expression
and regulation of AD-related genes later in life. These studies focused on AD-related genes;
however a genome-wide analysis of gene expression and DNA methylation is essential to
assess the impact of time and environmental exposure of Pb on the genome and epigenome
maps. In this paper we describe a method to integrate and analyze gene expression and
methylation arrays. Given the different formats of gene expression and methylation data,
combining these data for integrative analysis can be challenging. Methylation array raw data
contain the signal intensities of each probe of CpG sites, whereas gene expression data
measure the signal intensity values of genes. In order to combine these data, methylation
data of CpG sites have to be associated with genes.

2. METHODS AND MATERIALS
2.1. Animal exposure

C57Bl6 mice were bred in-house at the University of Rhode Island. The experiment was
designed as in previous studies (Basha et al. , 2005, Basha et al. , 2003). Twenty-four hours
after the birth of a new mouse dam is Post-natal Day One (PND1). Male pups from the
different dams were randomized, pooled and divided into the two following groups: 1)
Control-no exposure to Pb and 2) Pb/E - in utero Exposure to Pb beginning on gestational
day 13 until PND20. All the pups born from control dams are pooled and randomly
reassigned to an unexposed mother. Once the pups are born from exposed dams, they are
randomized and reassigned randomly to mothers in order to eliminate any litter effect. In the
control conditions, the mice had freely accessible deionized drinking water. In the Pb/E
exposure, 0.2% Pb-acetate (Sigma Chemical Company, St. Louis, MO) was added to the
deionized drinking water of the pregnant female and the Pb/E dam group was exposed to the
Pb drinking water through the mother’s milk. Food was freely accessible throughout the
study. The selected time points of PND 20 and 700 represented early and late time points of
the animal for microarray analysis. The animals were sacrificed following CO2 exposure at
day twenty and at two years of age and the total frontal cortical brain regions were isolated
and stored at −80°C until future use. All animal procedures were conducted in accordance to
the protocol approved by the Institutional Animal Care and Use Committee of the University
of Rhode Island.

2.2. NimbleGen cDNA microarray
RNA from the mouse neocortex, (three biological replicates/age/condition; 12 arrays total)
was hybridized to the NimbleGen 12 × 135K array chip (Madison, WI). The samples were
sent for array hybridization to the Keck Biotechnology Resource Laboratory at Yale
University in New Haven, and the NimbleGen protocol was followed. The NimbleScan
software normalized the raw expression data using quantile normalization methods and
normalized gene calls were generated using the Robust Multichip Average (RMA) algorithm
(Bolstad et al. , 2003, Irizarry et al. , 2003).

2.3. NimbleGen cDNA methylation array
DNA from the neocortex of three animals per age and condition was extracted from brain
samples using standard procedures per the QIAamp kit. These data from these two groups
was utilized for this analysis: C20 and E700. For preparation for the microarray, DNA was
isolated and methylated according to the methlyated DNA immunopreciptation (MeDIP)
protocol from the Weber group (Weber et al. , 2005). Nimblegen (Madison, WI) tilling
arrays were used to scan 16,000 CpG islands in promoter regions. The samples were sent for
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array hybridization to the Keck Biotechnology Resource Laboratory at Yale University in
New Haven, and the NimbleGen protocol was followed. The fluorescent images were
imported to the NimbleScan software and images were extracted.

2.4. Bioinformatics
The R programming language and Bioconductor Library(Gentleman et al. , 2004) were used
to manage and analyze the microarray data. In addition, custom written code using Perl was
used for data preparation. We averaged the normalized data of the three samples for each
age group. The gene expression data of age group control PND20(C20) was used as the base
values to identify the two fold changes in other age groups. DNA methylation data of
control PND 20 (C20) and exposed PND 700 (E700) were normalized to be correlated with
gene expression data. We mapped the averaged normalized data of DNA methylation of
CpG probes to the nearest gene using Perl scripts based on Ensembl gene annotation (Flicek
et al. , 2011). We retained only the subset of probes associated with genes that were
represented on the Nimblegen gene expression microarray. This resulted in the retention of
15,035 genes associated with the methylation data of CpG probs. Then, the methylation data
were linearly transformed to the gene expression data range to allow for a proper correlation.
Differential gene expression and differential methylation of C20 and E700 samples were
scatter plotted using the “plot” function available in R. The correlation analysis were
performed using the “cor.test” fucntion in R. Genes with ≥2 fold change between C20 and
E700 in gene expression were identified which resulted in 563 genes that have associated
methylation data. Gene expression and Methylation signal intensity values of these genes
were drawn in a circular view using CIRCOS visualization software (Krzywinski et al. ,
2009). Statistically significant genes in differential expression (down- or up-regulation)
between C20 and E700 samples were determined using student t-test with p value ≤0.01.
This resulted in 165 genes, however, only 50 genes have associated methylation data. Then
the differential gene expression and differential methylation of these genes were line plotted.

3. RESULTS AND DISCUSSION
The results of two groups: control PND 20 (C20) and Pb-exposed PND 700 (E700), with
three animals averaged for each group, are presented. C20 was not compared to E20 because
our analysis showed little differences occurring at this early stage (Dosunmu et al., 2012).
We determined the relationship between differential gene expression and the differential
methylation of (E700 -C20) groups by creating scatter plot, as shown in Figure
1.Hypermethylated genes that were down-regulated clustered in the top left quadrant which
is consistent with the hypothesis of the role of DNA methylation in gene silencing. Other
quadrants, which consisted of much smaller sets of genes, did not exhibit a clear correlation
between gene expression and methylation. These genomic and epigenomic reference maps
suggest that the overall impact of early life exposure to Pb is to repress genes in old age;
however, select sets of genes appear to have altered expression not directly related to DNA
methylation and may involve other epigenetic pathways (See lower quadrants of Figure 1).

To visualize whole genome, transcriptome and methylome of genes with ≥2 fold change, we
used CIRCOS software. The circular view of gene expression and DNA methylation of C20
and E700 in correspondence to genes and chromosome can be used to find a correlation in a
certain region on the chromosome or to find a clear correlation for specific genes. This
global view when amplified in view can help one appreciate the relationship between
chromosomes, gene expression and DNA methylation and how it may change over time.

Finally, plotting gene expression and methylation profile of significant genes alongside each
other in a line plot as shown in Figure 3, revealed a significant inverse-correlation between
gene expression and methylation signals. We also found that the methylation pattern early in
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life is maintained in old age with minor changes related to reprogrammed developmental
exposure. Consistent with gene expression profiling, the methylation profiles show that only
a small percent of genes are affected by the developmental exposure to Pb. It is important to
note here that this is a whole tissue analysis and that cell-type specificity in both gene
expression and DNA methylation exists. However, the changes late in life compared to early
life maybe attributed to neurons because they last the life of the animal, while glial cells
have a lot of turnover during the lifespan.

4. CONCLUSION
Our data show that the gene expression changes are latent. However, the integration of
genomic and epigenomic data reveals that the effects of early Pb exposure on the
methylation of genes maybe persistent. DNA hypermethylation is shown to have a strong
correlation with the down-regulation of gene expression suggesting that early life exposure
to Pb interferes with the methylation pattern of genes, which is then sustained throughout
life, and has an impact on an animal’s ability to respond in old age.

Acknowledgments
This research was supported by the Intramural Research Program of the National Institutes of Health (NIH),
National Institute of Environmental Health Sciences (NIEHS) and by grants (ES013022 and AG027246) from the
NIH awarded to NHZ. The research core facility was funded (P20RR016457) by the National Center for Research
Resources (NCRR), a component of NIH.

REFERENCES
Aguilera O, Fernandez AF, Munoz A, Fraga MF. Epigenetics and environment: a complex

relationship. J Appl Physiol. 2010; 109:243–51. [PubMed: 20378707]

Basha MR, Murali M, Siddiqi HK, Ghosal K, Siddiqi OK, Lashuel HA, et al. Lead (Pb) exposure and
its effect on APP proteolysis and Abeta aggregation. FASEB J. 2005; 19:2083–4. [PubMed:
16230335]

Basha MR, Wei W, Brydie M, Razmiafshari M, Zawia NH. Lead-induced developmental perturbations
in hippocampal Sp1 DNA-binding are prevented by zinc supplementation: in vivo evidence for Pb
and Zn competition. Int J Dev Neurosci. 2003; 21:1–12. [PubMed: 12565691]

Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high
density oligonucleotide array data based on variance and bias. Bioinformatics. 2003; 19:185–93.
[PubMed: 12538238]

Dolinoy DC, Weidman JR, Jirtle RL. Epigenetic gene regulation: linking early developmental
environment to adult disease. Reprod Toxicol. 2007; 23:297–307. [PubMed: 17046196]

Dosunmu R, Alashwal H, Zawia NH. Genome-wide expression and methylation profiling in the aged
rodent brain due to early-life Pb exposure and its relevance to aging. Mech Ageing Dev. 2012 doi:
10.1016/j.mad.2012.05.003.

Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, et al. Ensembl 2011. Nucleic Acids Res.
2011; 39:D800–6. [PubMed: 21045057]

Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open
software development for computational biology and bioinformatics. Genome Biol. 2004; 5:R80.
[PubMed: 15461798]

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration,
normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics.
2003; 4:249–64. [PubMed: 12925520]

Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;
8:253–62. [PubMed: 17363974]

Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: an information
aesthetic for comparative genomics. Genome Res. 2009; 19:1639–45. [PubMed: 19541911]

Alashwal et al. Page 4

Neurotoxicology. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P, et al. Integrated analysis of DNA
methylation and gene expression reveals specific signaling pathways associated with platinum
resistance in ovarian cancer. BMC Med Genomics. 2009; 2:34. [PubMed: 19505326]

Movassagh M, Choy MK, Goddard M, Bennett MR, Down TA, Foo RS. Differential DNA
methylation correlates with differential expression of angiogenic factors in human heart failure.
PLoS One. 2010; 5:e8564. [PubMed: 20084101]

Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, et al. Chromosome-wide and
promoter-specific analyses identify sites of differential DNA methylation in normal and
transformed human cells. Nat Genet. 2005; 37:853–62. [PubMed: 16007088]

Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, et al. Alzheimer’s disease
(AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb):
evidence for a developmental origin and environmental link for AD. J Neurosci. 2008; 28:3–9.
[PubMed: 18171917]

Zawia NH, Basha MR. Environmental risk factors and the developmental basis for Alzheimer’s
disease. Rev Neurosci. 2005; 16:325–37. [PubMed: 16519009]

Alashwal et al. Page 5

Neurotoxicology. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 1. Differential Gene Expression and Methylation Correlation
A scatter plot of differential gene expression of control PND20 and developmentally-
exposed PND700 (E700 - C20) vs the differential methylation of control PND20 and
developmentally-exposed PND700 (E700 - C20). Methylation signal intensity data were
linearly transformed.

Alashwal et al. Page 6

Neurotoxicology. Author manuscript; available in PMC 2013 December 01.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 2. Gene Expression and Methylation Profile
A circular representation of the genes with ≥2 fold change (563 genes) in gene expression of
control PND20 and developmentally-exposed PND700. The tracks from the outside
represent: (1) Genes, (2) Chromosomes, (3) Gene Expression of Control PND20, (4)
Methylation of Control PND20, (5) Gene Expression of developmentally-exposedPND700,
(6) Methylation of developmentally-exposed PND700.
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Figure 3. Significant Genes Differential Profile
A line plot of the differential gene expression and methylation of significant genes (50
genes). Differential gene expression of control PND20 and developmentally-exposed
PND700 (E700 - C20) vs the differential methylation of control PND20 and
developmentally-exposed PND700 (E700 - C20). Methylation data were linearly transferred
and log2 was applied to gene expression and methylation signal intensity values.
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