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Abstract: The combination of high power laser beams with microfluidic
delivery of cells is at the heart of high-throughput, single-cell analysis and
disease diagnosis with an optical stretcher. So far, the challenges arising
from this combination have been addressed by externally aligning optical
fibres with microfluidic glass capillaries, which has a limited potential for
integration into lab-on-a-chip environments. Here we demonstrate the
successful production and use of a monolithic glass chip for optical
stretching of white blood cells, featuring microfluidic channels and optical
waveguides directly written into bulk glass by femtosecond laser pulses.
The performance of this novel chip is compared to the standard capillary
configuration. The robustness, durability and potential for intricate flow
patterns provided by this monolithic optical stretcher chip suggest its use for
future diagnostic and biotechnological applications.
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1. Introduction

Methods for single cell analysis are gaining increasing importance in unravelling biological
complexity due to the well-recognized diversity in cell populations [1]. Towards this end,
optical stretching is a powerful technique to monitor the mechanical properties of single
suspended cells as inherent functional cell marker by means of the application of optical
forces [2]. In contrast to other cell mechanics measurement techniques [3,4] optical stretching
is contactless, avoiding probe-induced artefacts, and high-throughput and its potential has
been already demonstrated in several scientific reports [5—9]. Evidence has been given on how
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cell deformability can provide important insights, for example, into the ability of cancer cells
to migrate and metastasize [5,9] or into the differentiation of stem cells [7,8].

At present, an optical stretcher is usually composed of two optical fibres placed such that
the fibre ends face each other, so as to emit two counter-propagating laser beams that create a
dual-beam optical trap. Delivery of the cells into the trapping region is accomplished through
a microfluidic channel able to guarantee a controlled flow [2,6,10]. The cells are trapped by
the laser beams and then stretched by increasing the laser power. The measurement of the cell
mechanical properties is accomplished by evaluating the cell elongation as a function of the
applied optical force [11].

The setup alignment is usually guaranteed by assembling discrete optical and fluidic
components on glass or polymeric substrates with the help of lithographically produced

AOS MOS

optical
waveguide

microfluidic
channel

SU-8 optical fibre

optical fibre

microfluidic
channel

optical fibre

Fig. 1. Comparison of experimental setups. (a) 3D rendering, (b) 2D schematic diagram of the
optical trapping region including relevant dimensions in pm, and (c) picture of the assembled
optical stretcher (AOS). (d-f) Corresponding panels for the monolithic optical stretcher (MOS).
2w, indicates the mode field diameter of the fibre (b) and waveguide (e).
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grooves [Figs. 1(a)-1(c)] [6]. Although the effectiveness of this approach has been widely
demonstrated, it presents a few drawbacks. The presence of small discrete elements, which
must be accurately mounted and aligned, makes the assembly difficult and cumbersome. In
addition, this implementation is limited since it consists of only one straight microchannel and
therefore it is not suitable for introducing additional valuable functions, e.g., mixing or sorting
of the samples under test.

Combination on the same substrate of optical waveguides and microchannels for
integrated lab-on-a-chip analysis is an extremely relevant research topic and several
fabrication technologies have been proposed [12—-16]. Recently, a handy, miniaturized and
low-cost integrated chip has been demonstrated [17,18], in which microfluidic circuits and
optical waveguides for cell trapping and stretching are fabricated in the same glass substrate
by femtosecond laser micromachining [19]. Femtosecond laser technology [20] can provide
direct writing of both optical waveguides [21] and microfluidic channels if combined with
chemical etching [22,23], thus enabling the fabrication of optofluidic devices with novel
layouts and functions [24,25]. The main advantages are extreme flexibility, three-dimensional
capabilities and reliable, permanent alignment of optical and fluidic components with a
precision better than 100 nm. At present the main limitation of these monolithic optical
stretchers is due to a residual roughness [26] of the channel walls that induces optical
distortions thus reducing the cell imaging quality. In addition, up to now, femtosecond laser
fabricated optical stretchers have been tested only on red blood cells [17,18], which are easy
to handle but represent only a limited niche of all the samples that can be analysed through an
optical stretcher (in particular they are significantly smaller than most cells, and much more
deformable).

In this work we present a new monolithic optical stretcher in which optical waveguides are
fabricated by femtosecond laser micromachining in a commercial glass microfluidic chip
[Figs. 1(d)-1(f)]. The imaging quality of the cells is greatly improved and reliable
measurements of their deformation can be accomplished. Device validation has been
performed on a biologically relevant leukaemia cell line, with typical size and stiffness for
eukaryotic cells. The deformation results are compared with those obtained by means of a
standard optical stretcher based on optical fibres aligned external to a microfluidic capillary.
The analysis of the results obtained with the two alternative approaches allows us to confirm
that the monolithic optofluidic chip is a valuable and reliable tool for optical stretching
measurements and at the same time it provides significant data that can be used to improve its
efficiency.

The validation of the monolithic chip fabricated by femtosecond lasers paves the way to
the use of the unique versatility and 3D capability of this technology to develop the next
generation of integrated optical manipulation devices, able to combine measurements of
mechanical properties with other functions such as cell sorting or spectroscopic analyses.

2. Experiments
2.1. Fabrication of an assembled optical stretcher

The fabrication procedure of an assembled optical stretcher (AOS) is reported in detail
elsewhere [6]. In summary, the optical and fluidic components to create the trap are aligned
on a single SU-8 coated glass substrate [Fig. 1(a)]. A square glass capillary (with inner side
lengths of 80 um and outer lengths of 160 um) is used to transport the cell suspension, while
two optical fibres, single mode at a wavelength of about 1 um (Hi-1060, Corning), are used to
create the dual-beam optical trap. The glass substrate is patterned with an SU-8 photoresist
structure using standard photolithographic techniques. This forms perpendicular gaps to align
and hold in place the capillary and the two optical fibres. Fibres are outside of and
perpendicular to the square capillary flow channel and they are placed in such a way as to
shine the light in the lower part of the capillary section, since cells quickly settle at the
channel bottom due to gravity. A thin slab of poly(dimethylsiloxane) (PDMS) with a 1.5 mm
hole is placed over the setup so that the trap region is centred within the hole. The hole, which
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generously encompasses the trap region, is filled with index matching gel to reduce reflection
of the laser beams and the imaging light. A glass coverslip is secured over the PDMS piece. A
typical AOS is shown in Fig. 1(c). Such a system is considered the standard setup for cell
optical stretching since it ensures high quality imaging and reliable flow control [6-9].

2.2. Fabrication of a monolithic optical stretcher

As previously mentioned, femtosecond laser micromachining (FLM) was already used for the
fabrication of a monolithic optical stretcher (MOS) in a fused silica substrate [17,18];
microfluidic channel and optical waveguides were fabricated by the same femtosecond laser,
with a subsequent step of chemical etching for the microchannel formation. This technique
guarantees an almost perfect alignment between different optical and fluidic elements,
enhanced robustness, portability and high flexibility for the implementation of further
functionalities. Such systems have been demonstrated to be effective for trapping and
stretching single red blood cells [17]. In addition, FLM capabilities enabled the fabrication of
a square cross-section channel that strongly reduced the distortion of the trapping beams and
of the cell imaging [18] with respect to channels with a circular cross-section obtained in the
first demonstration of this chip [17]. However, the microchannel inner wall roughness
(measured to be ~200 nm rms) still caused a difficult contour recognition when very small
elongations of the cells were to be observed.

In recent years, the roughness issue in microchannels fabricated by femtosecond laser
irradiation followed by chemical etching (FLICE) was addressed by using thermal post-
treatments [26,27]. Work is in progress to validate this approach for our application.

As an alternative, we explored the possibility of starting from commercial microfluidic
devices made of glass. Standard photolithographic technologies for microchannel production
lead to the fabrication of channels with a rounded trapezoidal cross-section; this is due to the
etching process that starts at the surface and isotropically enlarges the access zone. Such a
rounded shape is not optimal for the optical stretcher configuration since the two counter-
propagating laser beams would encounter curved microchannel walls and would be refracted
in different directions. For this reason, the channel cross-section must have a square/
rectangular shape in order to avoid any lensing effect in imaging and any refraction effect of
the two trapping beams. Such a square/rectangular shape is achievable with standard
techniques only through deep reactive ion etching (DRIE) in fused silica. One of the
drawbacks of this technology is that the channel depth is limited to ~50 um due to
technological constraints [28]; for red blood cells this would be acceptable but for most of the
cells studied with the optical stretcher, e.g., cancer cells (~25-um size), such a channel could
lead to clogging by occasional cell clusters. Quite recently, a different technique, also based
on femtosecond laser micromachining, was commercially introduced to produce channels
with rectangular cross-section and allowing good imaging quality (Translume Inc.). A fused
silica glass slide with a thickness of 250 pm is machined with the FLICE technique to obtain a
through slot with vertical walls and arbitrary layout. Once the through slot is fabricated, it has
to be sealed on both sides [Fig. 2(a)]. For this purpose, two polished fused silica glass slides,
with a thickness of 500 um, are used as top and bottom covers; thermal bonding is performed
to seal the channel. The top layer has two through holes aligned with the slot terminations to
form the top access holes of the microchannel [Fig. 2(b)]. With such a fabrication technology
the channel cross-section results perfectly rectangular with vertical side walls that present the
same roughness previously mentioned (~200 nm rms), as they are obtained through the same
FLICE process; however, in the optical stretcher configuration, the effect of this roughness is
negligible for the waveguide mode quality [17]. In contrast, the top and bottom walls are of
optical quality, thus allowing reliable cell imaging. The commercial microfluidic chip we used
here is composed of a single straight channel: the channel has a 250-pm height (z-axis),
determined by the middle glass thickness; it has a length of 40 mm (y-axis) and a width of 100
pum (x-axis). The external size of the chip is 50.8 mm x 25.4 mm x 1.3 mm [Fig. 2(c)]. In
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e)

microchannel

waveguides
Fig. 2. Schematic representation of the microfluidic chip fabrication technique: a) three-layer
technology with the central fused silica glass slide machined by femtosecond lasers and b)
sealing of the channel with two polished glass slides. Image of the microfluidic chip c¢) without
and d) with fluidic connections to the straight microchannel. e) Phase contrast microscope
picture of femtosecond-laser-written optical waveguides integrated in the microfluidic chip
facing the channel to create the MOS.

addition, the microchip can be equipped with two connectors at the channel reservoirs in order
to easily plug in the external fluidic circuit [Fig. 2(d)].

The microfluidic chip (already sealed and commercially available) can be upgraded to a
MOS device, by the subsequent fabrication of pairs of opposite waveguides orthogonal to the
channel through femtosecond laser micromachining; the waveguides deliver the laser light for
cell trapping and stretching. The use of this commercial microfluidic chip on the one hand
solves the surface quality issue, but, on the other hand, requires writing the optical
waveguides at the considerable depth of ~730 um below the chip surface. For this reason,
waveguide writing has been specifically optimized. Optical waveguides of good quality and
single-mode at 1-um wavelength have been fabricated, with mode field diameter (at 1/e) of
9.0 um, fibre-to-waveguide coupling losses of ~1.1 dB, and propagation losses of ~1.5 dB/cm.
Several pairs of waveguides have been fabricated with different gaps between the waveguide
end-faces and at different depth with respect to the channel. The waveguides chosen to
perform trapping and stretching experiments are separated by 150 um and are placed at about
18 um from the channel bottom floor [Fig. 2(e)]. The chip edges are polished in order to
achieve a good waveguide coupling to the optical fibre. The final waveguide length is 9.4 mm
at each side.

To ensure stability, repeatability and portability of the MOS, we pigtailed two optical
fibres to the chip edge [Fig. 1(f)]: the fibre is permanently glued to the waveguide following
the standard procedure developed for photonic devices in telecommunications (typical
additional losses ~0.5 dB) [29]. The pigtails have been tested with an input power up to 2 W
per side for several minutes without showing any damage, thus proving to be suitable for cell
stretching experiments at high optical power.

We indicate the power emitted by the optical fibre per side with Pr and the power in the
centre of the channel emitted by the waveguide per side with P¢; Pr is directly measurable
knowing the laser power by a preliminary calibration of the experimental setup, while Pc can
be estimated from the characterized losses. The ratio between Pc and Py is the so-called fibre-
to-channel loss that represents the total insertion loss introduced by the waveguide between
the optical fibre output and the centre of the channel where the cell will be trapped. We
calculate the overall fibre-to-channel loss to be about 3 dB, taking into account also pigtailing
losses.

2.3. Sample under investigation

HL60 cells are used to test the MOS. The HL60 is a myeloid cell line of human promyelocytic
leukaemia cells. Promyelocytes are a neutrophil granulocyte precursor; granulocytes are a
category of white blood cells. HL60 cells, and similar NB4 cells, are considered as reference
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sample in this study since they have extensively been studied by using the AOS [7,30],
therefore their viscoelastic properties are very well characterized. For this reason, the
experimental test on HL60 cells will allow us comparing the new MOS with the AOS. HL60
cells are measured in a phosphate buffer solution (PBS).

2.4. Experimental setup

Thanks to the compactness of the MOS, the experimental setup is very simple [Fig. 3(a)]. It
includes an Yb-doped fibre laser (YLD-10-1064, IPG Photonics) giving an optical power up
to 5.5 W at 1064 nm wavelength. The laser power is split through a 50%-50% fibre coupler
and the two branches are directly spliced to the pigtailed fibres of the MOS chip. The losses of
one of the fused splices are calibrated in order to balance the power in the middle of the
fluidic channel from the two waveguides. The calibration is done by setting the trapping
position of HL60 cells at the centre of the channel [Fig. 3(b)]. All the optical fibres used in
such a setup are single mode at 1-um wavelength (Hi-1060, Corning). The microfluidic
channel reservoirs of the MOS are connected to poly(etheretherketone) (PEEK) tubing for
driving the cell suspension. The optical stretcher is placed on an inverted transmission optical
microscope equipped for phase contrast microscopy (TE2000-U, Nikon). Image capture is
accomplished by a CCD camera. The flow control is accomplished by hydrodynamic pressure
adjustments; this is done either by varying the relative heights at the tube terminations or by
using a precise pressure pump (MFCS-8, Fluigent) connected to the PEEK tubes. Dedicated
LabVIEW (National Instruments) software has been developed to perform several functions:
(i) automatic recovery of the cell contour based on image analysis; (ii) elaboration of the
collected data from trapping and stretching experiments; (iii) control of the laser power; (iv)
control of the pump pressure in different channels.

Compactness and portability of the MOS device is clearly superior to that of the AOS [as
also evident from Fig. 1(f)]. This is further demonstrated by the fact that the same device was
shipped and reliably operated in all our three laboratory locations with highly reproducible
results.

a) t1 t2

50%-50%

,’J\(\:gler
laser / ¥

\Cal-sp\;)

SP MOS chip

Fig. 3. (a) Schematic representation of the experimental setup for the MOS device: ‘SP’
indicates the fused splice, while ‘cal-SP’ indicates the splice used for trap calibration; ‘t1” and
‘2’ indicate the two PEEK tubing terminations; ‘p1’ and ‘p2’ are the two fibre pigtails. (b)
Phase contrast microscope image of an HL60 cell trapped in the MOS; optical waveguides are
also visible at the two sides.

#171920 - $15.00 USD Received 5 Jul 2012; rev. 31 Aug 2012; accepted 3 Sep 2012; published 24 Sep 2012
(C) 2012 OSA 1 October 2012 / Vol. 3, No. 10/ BIOMEDICAL OPTICS EXPRESS 2664



3. Results and discussion
3.1. Experimental results

Once the HL60 cells are introduced into the MOS, the first analysis consists in a visual
characterization. Cell imaging is clear and of very good quality: the MOS seems to provide at
least as high quality images as the AOS; the contour is indeed more defined all along the cell
membrane (Fig. 4). This effect can be explained by considering that the MOS has fewer
interfaces in the imaging light path and therefore less distortion is introduced; in addition, the
AOS has a top gel layer and likely slightly curved inner surfaces which are probably
responsible for the small reduction in image quality.

AOS MOS

Fig. 4. Comparison between phase contrast microscope images of HL60 cells trapped using (a)
the AOS and (b) the MOS device. Scale bars correspond to 10 pm.

HL60 cells have a diameter in the 16-23 um range, and all the cells passing in the MOS
device are efficiently trapped; this means that the optical waveguides are situated at the
correct position with respect to the channel bottom floor.

Stretching experiments are performed [Figs. 5(a) and 5(b)] by applying a step-like laser
light power increase to the HL60 cells: the cell is trapped with a power P equal to Ppown =
180 mW applied for 2 s, then the step-like stimulus increases the power Pr to a value Pyp for 4
s, finally the power Pr is decreased to the same initial Ppowy for other 2 s, and then the cell is
released. Stretching experiments are performed for different Pyp values in order to study the
cell deformation properties for step stresses of different amplitude. For each value of Pyp
about 40-60 HL60 cells are stretched to collect enough data for a statistical analysis.
Moreover, for each value of Pyp the cell response is analysed in terms of deformation as a
function of time. Cell deformation, or strain, &(¢) is defined as follows:

_Al@) _ 10—,

t
&(1) L L

; M

where /, is the initial size along the beam axis of the trapped cell and /(¢) is the cell size during
the stretching process as a function of time. As shown in Fig. 5(c), the cell response has the
typical behaviour given by a stretched viscoelastic body. From the analysis of such a curve
many data can be derived, like rise time constant, maximum deformation, fall time constant,
residual cell deformation, cell compliance, steady-state viscosity and plateau modulus [11].
All these data can be used to evaluate important mechanical properties of the cell cytoskeleton
under investigation. As expected, the cell elongation increases for higher stretching powers,
confirming that cells more complex than red blood cells, like HL60 cells, can be reliably
stretched using the MOS. Moreover, the shape of the cell response to the optical stimulus
follows the one already measured with the AOS [7].

The simplest way to characterize the creep compliance of the cells as measured here is to
compare the peak deformation: it is possible to derive the peak deformation reached for each
value of Pr = Pyp with the MOS. The same experiment was previously accomplished with the
AOS on HL60 cells. Taking into account the fibre-to-channel losses for both devices as
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previously measured, we can plot the peak deformation of the cell as a function of the power
per side at the channel Pc (Fig. 6). In both systems the plot is a straight line. However, the
slopes of the straight lines for the two systems are different: in order to obtain the same Apeak
deformation the AOS requires lower power if compared with the MOS, in particular P"°% =
0.6 PM5. In other words, this indicates that the same power delivered at the microchannel in
the two devices has a different efficiency in stretching the cells. To gain further insight we
performed a careful theoretical modelling of the two systems as discussed in the following
section.

2475 W
—2.25W
2138 W
—1.913 W
—1.463 W
—1.35W
—1.238 W
—1.125W

deformation [%]

—1.013 W

time [s]

Fig. 5. Phase contrast microscope images of (a) trapped and (b) stretched HL60 cell in a MOS
stretching experiment with automatic contour recognition. (c) HL60 response to step-like
increase in applied optical stress for different stretching power values. The inset represents the
temporal shape of the step-like optical stimulus applied at the fibre output Pr. The plot
represents the average deformation of about 40 — 60 cells each as a function of time for
different values of Pyp of the step stimulus.

3.2. Theoretical analysis

With the aim of explaining why the same power Pc in the channel provides different cell
deformations in the AOS and MOS, we used the same exact analytical model for the
computation of optical stresses induced on the surface of spheroidal objects already described
in Ref. 31, based on generalized Lorenz-Mie theory, which confirms theoretical explanations
of optical stretching based on ray optics [32,33]. Once the stress distribution on the cell is
calculated, we indicate with oy the peak stress, i.e., the maximum force per area in the
direction of the light beam axis, with &(7) the cell strain as a function of time, and with GF the
so-called geometric factor that takes into account the azimuthal distribution of stress and the
architecture of the cell being deformed [11]. Now we can also introduce the tensile creep
compliance D(f), which is the strain normalized by the stress applied and is a function of the
cell intrinsic viscoelastic features only: for a given cell the compliance is determined

#171920 - $15.00 USD Received 5 Jul 2012; rev. 31 Aug 2012; accepted 3 Sep 2012; published 24 Sep 2012
(C) 2012 OSA 1 October 2012 / Vol. 3, No. 10/ BIOMEDICAL OPTICS EXPRESS 2666



regardless of the type of experimental elongation test performed. The compliance D(¢) is
defined as follows:

_ e e
D(t)_ao-GF_PC-GGF’ @

from which we can simply write:
Evux = Dy - B - GGF, (€))

where GGF is defined as the global geometric factor that includes all the geometrical features
of the optical stretcher device; in particular, the GGF depends on the geometrical
configuration of the optical stretcher (e.g., waveguide distance from the cell, waveguide mode
size) that directly influences the relation between the optical power and the applied stress
distribution on the cell. Given the optical power P and the cell compliance D, the observed
strain ¢ depends on the global geometric factor GGF of the system, i.e., they are linearly
proportional. Thus, the GGF can be used as a figure of merit to evaluate the stretching
efficiency of the device.

A theoretical analysis has been conducted to study the GGF of the two systems starting
from their geometrical layout, with the aim of identifying the parameter(s) actually causing
the 60% reduced efficiency of the MOS device compared to the AOS one. We calculate the
GGF as a function of the mode field diameter 2w, at the fibre (AOS)/waveguide (MOS)
output. Two curves are plotted, one for each optical stretcher system, as shown in Fig. 7. The
curves overlap to a great extent: this means that differences in fibre/waveguide separation,
channel size, fibre/waveguide position, and all the other geometrical factors are already well-
optimized in the MOS. The main difference is the beam waist size: the mode field diameter at
the fibre output in the AOS is smaller than the mode field diameter at the waveguide output in
the MOS, 6.2 pm vs. 9.0 pm, respectively, which exactly accounts for the difference of about
60% in the GGF values. It is therefore evident that the stretching efficiency difference is due
to the difference in beam waist sizes. This indicates the direction for future work:
femtosecond laser micromachining will be optimized to write optical waveguides with smaller
mode field diameter. In principle, the efficiency could be even improved with respect to the
AOS if a mode size smaller than 6.2 pm at 1 pm wavelength were obtained. Reducing the
mode size requires a higher refractive index change, which is not trivial with femtosecond
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Fig. 6. Plot of the peak deformation of HL60 cells, for the MOS and AOS devices, as a
function of the power Pc delivered by each waveguide/fibre at the microchannel. The peak
deformation is linearly proportional to the power for both the devices but with different slopes.
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Fig. 7. Plot of the GGF as a function of the beam waist size 2w, for both AOS and MOS
devices.

laser waveguide writing; however, recent results [34,35] show that a significant mode size
reduction is possible.

4. Conclusions

A monolithic optical stretcher has been fabricated in a commercial microfluidic chip by direct
implementation of optical waveguides through femtosecond laser writing. Such an optical
stretcher proved to be effective for optical trapping and stretching of cells that are more
complex than red blood cells previously tested.

The system was successfully compared with the assembled optical stretcher, which is
currently considered as the gold standard. Measurements on well-characterized HL60 cells
revealed that the image quality in the monolithic optical stretcher is even slightly superior.
Measurements of HL60 cell compliance were possible in the entire range of interest and the
viscoelastic cell behaviour was found to be in very good agreement with previous analyses
performed with the assembled system. Nevertheless, a lower stretching efficiency of the
monolithic stretcher was shown; detailed studies attributed it to a larger beam waist size at the
waveguide output caused by a larger mode field diameter of the waveguide. Future work will
aim at enhancing the global stretching efficiency of the monolithic system by carefully
designing the waveguide properties. Nevertheless, current performance already enables the
use of this device with many biologically relevant samples and the robustness and portability
will allow using it in clinical environments. In addition, further advanced functionalities can
be integrated on-chip, e.g., waveguide couplers to directly monitor the optical power during
stretching experiments, fluorescence measurements, Raman spectroscopy, as well as single
cell sorting. This will pave the way to the realization of a lab-on-a-chip for extensive analyses
and manipulation, including mechanical phenotyping by optical stretching at the single cell
level.

Acknowledgments

We acknowledge partial financial support by Fondazione Cariplo through the project
“Optofluidic chips for the study of cancer cell mechanical properties and invasive capacities.”

#171920 - $15.00 USD Received 5 Jul 2012; rev. 31 Aug 2012; accepted 3 Sep 2012; published 24 Sep 2012
(C) 2012 OSA 1 October 2012 / Vol. 3, No. 10/ BIOMEDICAL OPTICS EXPRESS 2668





