Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 5;68(Pt 10):m1239–m1240. doi: 10.1107/S160053681203680X

Diaqua­tris­(nitrato-κ2 O,O′){2,2′-[pyridine-2,6-diylbis(methyl­ene­oxy)]dibenzaldehyde-κO 1}dysprosium(III)–2,2′-[pyridine-2,6-diylbis(methyl­ene­oxy)]dibenzaldehyde (1/1)

Sara Luisa Rodríguez de Luna a, Perla Elizondo a, Sylvain Bernès a,*, Marcos Flores-Alamo b, Leyda E López a
PMCID: PMC3470130  PMID: 23125574

Abstract

The title compound, [Dy(NO3)3(C21H17NO4)(H2O)2]·C21H17NO4, may be considered as an organic–metalorganic 1:1 co-crystal, in which the two dialdehyde mol­ecules act as a ligand and as an organic moiety, respectively. The DyIII atom coordinates nine O atoms from the organic ligand, bidentate nitrate ions and water mol­ecules, approximating a square-face-tricapped trigonal–prismatic geometry. The coordinated dialdehyde is not planar: the uncoordinated oxybenzaldehyde group is twisted by 39.96 (4)° from the rest of the ligand. In contrast, the free organic moiety is almost planar, with an r.m.s. deviation of 0.15 Å. In the crystal, segregated stacks of dialdehyde are formed in the [100] direction. For the complex, the shortest π–π contact is found at 3.781 (2) Å, and for the free ligand, at 3.785 (2) Å. The crystal structure is further stabilized by O—H⋯O and O—H⋯N hydrogen bonds in which coordinated water mol­ecules are the donor groups.

Related literature  

For the X-ray structure of the free ligand and other rare-earth complexes based on this ligand, see: Rodríguez De Luna et al. (2010). For isotypic complexes, see: Garza Rodríguez (2010). For the nomenclature of 9-coordinated metal centers, see: IUPAC (2005).graphic file with name e-68-m1239-scheme1.jpg

Experimental  

Crystal data  

  • [Dy(NO3)3(C21H17NO4)(H2O)2]·C21H17NO4

  • M r = 1079.27

  • Triclinic, Inline graphic

  • a = 7.7552 (3) Å

  • b = 16.1249 (8) Å

  • c = 17.7178 (7) Å

  • α = 75.531 (4)°

  • β = 85.173 (3)°

  • γ = 88.398 (4)°

  • V = 2137.71 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.84 mm−1

  • T = 136 K

  • 0.43 × 0.26 × 0.12 mm

Data collection  

  • Agilent Xcalibur Atlas Gemini diffractometer

  • Absorption correction: analytical [CrysAlis PRO (Agilent, 2010); based on expressions derived by Clark & Reid (1995)] T min = 0.599, T max = 0.816

  • 15907 measured reflections

  • 8436 independent reflections

  • 7464 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.066

  • S = 1.05

  • 8436 reflections

  • 616 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.95 e Å−3

  • Δρmin = −0.88 e Å−3

Data collection: CrysAlis CCD (Agilent, 2010); cell refinement: CrysAlis CCD (Agilent, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203680X/vn2050sup1.cif

e-68-m1239-sup1.cif (53.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203680X/vn2050Isup2.hkl

e-68-m1239-Isup2.hkl (412.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Dy1—O1 2.435 (2)
Dy1—O5 2.327 (2)
Dy1—O6 2.320 (2)
Dy1—O7 2.410 (2)
Dy1—O8 2.437 (2)
Dy1—O10 2.443 (2)
Dy1—O11 2.429 (2)
Dy1—O13 2.460 (2)
Dy1—O14 2.403 (2)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯N1i 0.76 (4) 1.97 (4) 2.724 (3) 173 (4)
O5—H52⋯O12ii 0.73 (3) 2.19 (4) 2.907 (3) 168 (4)
O6—H61⋯O4iii 0.71 (3) 2.10 (3) 2.797 (3) 169 (4)
O6—H62⋯N51iii 0.86 (3) 1.86 (4) 2.712 (3) 177 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the PAICyT program (Programa de Apoyo a la Investigación Científica y Tecnológica), Universidad Autónoma de Nuevo León, for supporting this work (project No. CE 600–10).

supplementary crystallographic information

Comment

Lanthanides (Ln) are well known for giving high and rather unpredictable coordination numbers, in the range 8 to 12. For example, in the case of O-donor ligands, the coordination sphere may be completed by water molecules. Such modifications are reflected in the flexible coordination geometry of these complexes, which, in turn, has consequences on the physical properties characteristics of these metals.

While working on the synthesis of an isotypic series of LnIII complexes with photoluminescent properties (Rodríguez De Luna et al., 2010), we realised that, occasionally, a by-product crystallized with the desired complex, although elemental analysis systematically matched the expected formula. The desired complex had formula [LnIIIL2(NO3)3(H2O)2] where L is a monodentate dialdehyde ligand, 2,2'-[pyridine-2,6-diyl-bis(methyleneoxy)]dibenzaldehyde, giving a coordination number of 10 for the metal. This compound crystallizes readily in space group C2/c. The crystallographic analysis revealed that the by-product, which crystallizes in space group P1, is isoformular, although the coordination number is reduced to 9, because one L ligand, present in the asymmetric unit, is not coordinated to the metal. The resulting formula is then [LnIIIL(NO3)3(H2O)2].L, which may be seen as an organic-metalorganic system.

So far, we have detected the presence of this new complex with Ln = HoIII, TbIII and DyIII, on the basis of unit-cell parameters (Garza Rodríguez, 2010). The X-ray characterization is however complicated by the very low yield and the poor quality of single crystals we have obtained. The present report is for Ln = DyIII, which gave a suitable refinement.

The asymmetric unit contains one complex and one free ligand (Fig. 1). The DyIII atom is bonded to the monodentate L ligand, three bidentate nitrate ions, and two water molecules, forming nine Dy—O bonds in the range 2.320 (2)–2.460 (2) Å. The resulting coordination geometry approximates a square-face-tricapped trigonal prismatic polyhedron (polyhedral symbol in the IUPAC nomenclature: TPRS-9; IUPAC, 2005), with distortions from the ideal D3h symmetry induced by the nitrate bite angles (Fig. 1, inset). The organic ligand is not planar, and the peripheral ring, C15···C21/O3/O4 is twisted by 39.96 (4)° from the rest of the ligand. The free ligand is more planar, and presents a conformation reminiscent of that observed in the crystal structure of pure L (Rodríguez De Luna et al., 2010).

The crystal structure features segregated stacks for organic and metalorganic moieties (Fig. 2). The free organic molecules are stacked in the [100] direction with π···π interactions between pyridine rings in the range 3.785 (2)–4.528 (2) Å. Because of the deviation from planarity of the whole molecule, benzaldehyde rings are less engaged in π···π interactions, with centroid-to-centroid separations in the range 4.139 (3)–5.156 (3) Å. L ligands bonded to the metals also interact in the same direction, and the most favorable π···π separation is found at 3.781 (2) Å.

Experimental

The title compound was obtained by mixing 2,2'-[pyridine-2,6-diyl-bis(methyleneoxy)]dibenzaldehyde (L, 50 mg in 15 ml of acetonitrile) and Dy(NO3)3.5H2O (100 mg in 2 ml of acetonitrile), at room temperature. The mixture was refluxed for 5 h and then cooled to room temperature. After evaporation of the solvent, a few crystals of the complex were collected.

Refinement

C-bound H atoms were placed in idealized positions, with C—H bond lengths fixed to 0.95 (aromatic CH) or 0.99 Å (methylene CH2). In the case of coordinated water molecules, H atoms were clearly detected in a difference map, and refined freely. Final O—H bond lengths span the range 0.71 (3)–0.86 (3) Å. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.2Ueq(carrier atom).

Figures

Fig. 1.

Fig. 1.

ORTEP-like view of the asymmetric unit, with displacement ellipsoids for non-H atoms at the 50% probability level. The inset represents the TPRS-9 polyhedron formed by coordinated O atoms. On the left, the actual coordination is represented, which compares well with the ideal D3 h polyhedron on the right, depicted in the IUPAC red book (IUPAC, 2005).

Fig. 2.

Fig. 2.

A part of the crystal structure, showing how L ligands interact in the crystal. Free L molecules (blue) form stacks separated from coordinated L molecules (green). All H atoms have been omitted for clarity.

Crystal data

[Dy(NO3)3(C21H17NO4)(H2O)2]·C21H17NO4 Z = 2
Mr = 1079.27 F(000) = 1086
Triclinic, P1 Dx = 1.677 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.7552 (3) Å Cell parameters from 6816 reflections
b = 16.1249 (8) Å θ = 3.4–26.0°
c = 17.7178 (7) Å µ = 1.84 mm1
α = 75.531 (4)° T = 136 K
β = 85.173 (3)° Irregular, colourless
γ = 88.398 (4)° 0.43 × 0.26 × 0.12 mm
V = 2137.71 (16) Å3

Data collection

Agilent Xcalibur Atlas Gemini diffractometer 8436 independent reflections
Radiation source: Enhance (Mo) X-ray Source 7464 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
Detector resolution: 10.4685 pixels mm-1 θmax = 26.1°, θmin = 3.4°
φ and ω scans h = −9→9
Absorption correction: analytical [CrysAlis PRO (Agilent, 2010); based on expressions derived by Clark & Reid (1995)] k = −19→19
Tmin = 0.599, Tmax = 0.816 l = −20→21
15907 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.021P)2 + 0.3171P] where P = (Fo2 + 2Fc2)/3
8436 reflections (Δ/σ)max = 0.001
616 parameters Δρmax = 0.95 e Å3
0 restraints Δρmin = −0.88 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Dy1 0.314191 (17) 0.208885 (9) 0.209569 (8) 0.01740 (6)
O1 0.3943 (3) 0.27312 (13) 0.07188 (12) 0.0234 (5)
O2 0.2481 (3) 0.50508 (13) −0.02862 (12) 0.0256 (5)
O3 −0.1020 (3) 0.86057 (13) 0.08702 (12) 0.0264 (5)
O4 0.0259 (3) 0.97127 (14) 0.24948 (13) 0.0313 (5)
N1 0.0247 (3) 0.69668 (15) −0.00696 (14) 0.0161 (5)
C1 0.3563 (4) 0.3456 (2) 0.03692 (18) 0.0211 (7)
H1A 0.2981 0.3812 0.0665 0.025*
C2 0.3930 (4) 0.38191 (18) −0.04627 (17) 0.0165 (6)
C3 0.4822 (4) 0.3355 (2) −0.09437 (18) 0.0207 (7)
H3A 0.5236 0.2795 −0.0722 0.025*
C4 0.5106 (4) 0.3703 (2) −0.17365 (19) 0.0259 (7)
H4A 0.5723 0.3388 −0.2060 0.031*
C5 0.4485 (4) 0.4517 (2) −0.20566 (19) 0.0279 (8)
H5A 0.4674 0.4754 −0.2604 0.033*
C6 0.3594 (4) 0.4993 (2) −0.15972 (19) 0.0245 (7)
H6A 0.3174 0.5551 −0.1826 0.029*
C7 0.3324 (4) 0.46446 (19) −0.07995 (18) 0.0194 (7)
C8 0.1760 (4) 0.58838 (18) −0.05739 (18) 0.0210 (7)
H8A 0.0827 0.5856 −0.0915 0.025*
H8B 0.2663 0.6278 −0.0883 0.025*
C9 0.1047 (4) 0.61991 (18) 0.01229 (17) 0.0164 (6)
C10 0.1242 (4) 0.57589 (19) 0.08854 (18) 0.0208 (7)
H10A 0.1813 0.5218 0.1000 0.025*
C11 0.0588 (4) 0.6122 (2) 0.14780 (18) 0.0240 (7)
H11A 0.0693 0.5830 0.2009 0.029*
C12 −0.0220 (4) 0.6911 (2) 0.12971 (18) 0.0221 (7)
H12A −0.0668 0.7171 0.1699 0.027*
C13 −0.0365 (4) 0.73145 (18) 0.05210 (17) 0.0175 (6)
C14 −0.1237 (4) 0.81730 (18) 0.02744 (17) 0.0185 (6)
H14A −0.0699 0.8503 −0.0235 0.022*
H14B −0.2482 0.8101 0.0222 0.022*
C15 −0.1588 (4) 0.94333 (19) 0.07654 (18) 0.0213 (7)
C16 −0.2499 (4) 0.9860 (2) 0.01378 (19) 0.0230 (7)
H16A −0.2743 0.9586 −0.0257 0.028*
C17 −0.3046 (4) 1.0697 (2) 0.0099 (2) 0.0261 (7)
H17A −0.3662 1.0995 −0.0330 0.031*
C18 −0.2714 (4) 1.1104 (2) 0.0669 (2) 0.0291 (8)
H18A −0.3119 1.1672 0.0639 0.035*
C19 −0.1788 (4) 1.06780 (19) 0.12838 (19) 0.0245 (7)
H19A −0.1550 1.0959 0.1675 0.029*
C20 −0.1196 (4) 0.98422 (19) 0.13412 (18) 0.0202 (7)
C21 −0.0134 (4) 0.9414 (2) 0.19675 (19) 0.0261 (7)
H21A 0.0286 0.8855 0.1963 0.031*
O5 0.0475 (3) 0.24740 (15) 0.15929 (14) 0.0233 (5)
H51 0.026 (4) 0.259 (2) 0.117 (2) 0.028*
H52 −0.029 (4) 0.244 (2) 0.187 (2) 0.028*
O6 0.1312 (3) 0.11311 (14) 0.29763 (13) 0.0206 (5)
H61 0.092 (5) 0.079 (2) 0.286 (2) 0.025*
H62 0.150 (4) 0.097 (2) 0.346 (2) 0.025*
N2 0.2136 (4) 0.36004 (18) 0.25775 (16) 0.0277 (6)
N3 0.6425 (3) 0.22608 (17) 0.26502 (16) 0.0239 (6)
N4 0.3919 (3) 0.04582 (16) 0.17732 (15) 0.0228 (6)
O7 0.3260 (3) 0.36027 (13) 0.20041 (13) 0.0285 (5)
O8 0.1607 (3) 0.28687 (13) 0.29638 (12) 0.0251 (5)
O9 0.1582 (4) 0.42612 (15) 0.27163 (16) 0.0473 (7)
O10 0.6228 (3) 0.24169 (14) 0.19230 (12) 0.0252 (5)
O11 0.5087 (3) 0.20311 (14) 0.31135 (12) 0.0239 (5)
O12 0.7836 (3) 0.23299 (18) 0.28843 (15) 0.0424 (7)
O13 0.4666 (3) 0.07017 (13) 0.22969 (12) 0.0250 (5)
O14 0.2866 (3) 0.10068 (13) 0.13961 (12) 0.0242 (5)
O15 0.4164 (3) −0.02375 (13) 0.16444 (13) 0.0301 (5)
O51 0.6068 (4) 0.64204 (18) 0.57161 (17) 0.0580 (8)
O52 0.4043 (3) 0.85788 (14) 0.45072 (13) 0.0301 (5)
O53 −0.0234 (3) 1.21517 (14) 0.53723 (13) 0.0331 (6)
O54 −0.1747 (3) 1.27365 (19) 0.73601 (16) 0.0518 (8)
N51 0.1880 (3) 1.05765 (15) 0.45113 (14) 0.0179 (5)
C51 0.5413 (5) 0.7050 (2) 0.5331 (2) 0.0361 (9)
H51A 0.4657 0.7376 0.5597 0.043*
C52 0.5697 (4) 0.7354 (2) 0.4473 (2) 0.0274 (8)
C53 0.6692 (5) 0.6861 (2) 0.4054 (2) 0.0374 (9)
H53A 0.7203 0.6341 0.4326 0.045*
C54 0.6948 (5) 0.7116 (3) 0.3246 (2) 0.0444 (10)
H54A 0.7638 0.6778 0.2966 0.053*
C55 0.6194 (5) 0.7863 (2) 0.2855 (2) 0.0365 (9)
H55A 0.6358 0.8036 0.2300 0.044*
C56 0.5196 (4) 0.8369 (2) 0.3254 (2) 0.0285 (8)
H56A 0.4681 0.8885 0.2976 0.034*
C57 0.4961 (4) 0.8113 (2) 0.40600 (19) 0.0239 (7)
C58 0.3267 (4) 0.93714 (19) 0.41339 (18) 0.0219 (7)
H58A 0.2264 0.9267 0.3861 0.026*
H58B 0.4114 0.9726 0.3745 0.026*
C59 0.2691 (4) 0.98224 (19) 0.47611 (17) 0.0182 (6)
C60 0.2996 (4) 0.9489 (2) 0.55383 (18) 0.0223 (7)
H60A 0.3567 0.8952 0.5699 0.027*
C61 0.2456 (4) 0.9951 (2) 0.60731 (18) 0.0247 (7)
H61A 0.2641 0.9734 0.6610 0.030*
C62 0.1645 (4) 1.0730 (2) 0.58215 (18) 0.0226 (7)
H62A 0.1284 1.1062 0.6181 0.027*
C63 0.1363 (4) 1.10250 (19) 0.50375 (17) 0.0178 (6)
C64 0.0520 (4) 1.18726 (19) 0.47187 (18) 0.0226 (7)
H64A 0.1388 1.2290 0.4415 0.027*
H64B −0.0379 1.1812 0.4372 0.027*
C65 −0.0895 (4) 1.2957 (2) 0.5271 (2) 0.0305 (8)
C66 −0.1002 (6) 1.3522 (2) 0.4560 (2) 0.0495 (11)
H66A −0.0590 1.3371 0.4092 0.059*
C67 −0.1727 (9) 1.4322 (3) 0.4539 (3) 0.099 (2)
H67A −0.1809 1.4725 0.4050 0.118*
C68 −0.2332 (9) 1.4540 (3) 0.5219 (4) 0.105 (2)
H68A −0.2861 1.5084 0.5191 0.126*
C69 −0.2182 (6) 1.3984 (3) 0.5933 (3) 0.0601 (13)
H69A −0.2561 1.4151 0.6398 0.072*
C70 −0.1479 (4) 1.3182 (2) 0.5976 (2) 0.0332 (8)
C71 −0.1374 (4) 1.2578 (3) 0.6730 (2) 0.0374 (9)
H71A −0.0982 1.2014 0.6732 0.045*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Dy1 0.01950 (8) 0.01749 (9) 0.01499 (8) 0.00244 (6) −0.00209 (6) −0.00368 (6)
O1 0.0267 (11) 0.0203 (12) 0.0201 (12) 0.0047 (10) −0.0035 (10) 0.0006 (9)
O2 0.0428 (13) 0.0166 (11) 0.0159 (11) 0.0112 (10) 0.0027 (10) −0.0040 (9)
O3 0.0444 (14) 0.0177 (12) 0.0212 (12) 0.0081 (10) −0.0105 (10) −0.0107 (10)
O4 0.0441 (14) 0.0335 (14) 0.0193 (12) −0.0114 (11) 0.0020 (11) −0.0122 (10)
N1 0.0185 (12) 0.0154 (13) 0.0158 (13) 0.0002 (10) −0.0013 (10) −0.0062 (11)
C1 0.0221 (16) 0.0213 (17) 0.0204 (17) 0.0013 (13) 0.0009 (13) −0.0069 (14)
C2 0.0163 (14) 0.0161 (15) 0.0161 (16) −0.0004 (12) 0.0028 (12) −0.0036 (12)
C3 0.0202 (15) 0.0203 (16) 0.0231 (17) 0.0006 (13) 0.0013 (13) −0.0089 (14)
C4 0.0267 (17) 0.0289 (19) 0.0245 (18) 0.0006 (15) 0.0077 (14) −0.0145 (15)
C5 0.0331 (18) 0.033 (2) 0.0169 (17) −0.0031 (15) 0.0046 (14) −0.0064 (15)
C6 0.0295 (17) 0.0226 (17) 0.0194 (17) 0.0033 (14) 0.0037 (14) −0.0035 (14)
C7 0.0221 (15) 0.0179 (16) 0.0193 (16) −0.0020 (13) 0.0011 (13) −0.0070 (13)
C8 0.0279 (16) 0.0150 (16) 0.0186 (16) 0.0029 (13) −0.0007 (13) −0.0022 (13)
C9 0.0179 (14) 0.0174 (16) 0.0152 (15) −0.0031 (12) 0.0012 (12) −0.0070 (12)
C10 0.0276 (16) 0.0144 (16) 0.0207 (17) 0.0021 (13) −0.0061 (14) −0.0040 (13)
C11 0.0337 (18) 0.0238 (18) 0.0160 (16) 0.0006 (15) −0.0061 (14) −0.0063 (14)
C12 0.0277 (16) 0.0223 (17) 0.0190 (17) 0.0022 (14) −0.0005 (14) −0.0107 (14)
C13 0.0182 (15) 0.0184 (16) 0.0176 (16) −0.0016 (12) −0.0035 (13) −0.0070 (13)
C14 0.0244 (16) 0.0187 (16) 0.0151 (15) 0.0039 (13) −0.0039 (13) −0.0089 (13)
C15 0.0246 (16) 0.0170 (16) 0.0222 (17) 0.0002 (13) 0.0055 (14) −0.0074 (13)
C16 0.0232 (16) 0.0235 (17) 0.0230 (17) 0.0008 (14) −0.0011 (14) −0.0076 (14)
C17 0.0236 (16) 0.0246 (18) 0.0294 (19) 0.0028 (14) 0.0017 (15) −0.0067 (15)
C18 0.0270 (17) 0.0197 (17) 0.041 (2) 0.0015 (14) 0.0062 (16) −0.0111 (16)
C19 0.0246 (16) 0.0228 (17) 0.0286 (19) −0.0055 (14) 0.0079 (14) −0.0136 (15)
C20 0.0231 (15) 0.0201 (16) 0.0177 (16) −0.0036 (13) 0.0063 (13) −0.0078 (13)
C21 0.0332 (18) 0.0243 (18) 0.0219 (18) −0.0039 (15) 0.0044 (15) −0.0093 (15)
O5 0.0219 (12) 0.0332 (13) 0.0132 (12) 0.0063 (10) −0.0001 (10) −0.0037 (11)
O6 0.0272 (12) 0.0218 (13) 0.0137 (11) −0.0034 (10) −0.0024 (10) −0.0053 (10)
N2 0.0370 (16) 0.0272 (17) 0.0196 (15) 0.0022 (13) −0.0014 (13) −0.0077 (13)
N3 0.0205 (14) 0.0262 (15) 0.0253 (16) 0.0043 (12) −0.0045 (12) −0.0062 (12)
N4 0.0302 (15) 0.0198 (15) 0.0170 (14) 0.0022 (12) 0.0039 (12) −0.0045 (12)
O7 0.0399 (13) 0.0237 (12) 0.0209 (12) −0.0045 (10) 0.0055 (11) −0.0060 (10)
O8 0.0316 (12) 0.0209 (12) 0.0205 (12) −0.0005 (10) −0.0007 (10) −0.0011 (10)
O9 0.077 (2) 0.0240 (14) 0.0404 (16) 0.0164 (14) 0.0043 (14) −0.0112 (12)
O10 0.0271 (12) 0.0312 (13) 0.0158 (12) −0.0012 (10) −0.0016 (9) −0.0029 (10)
O11 0.0202 (11) 0.0332 (13) 0.0176 (12) 0.0012 (10) −0.0009 (9) −0.0055 (10)
O12 0.0208 (12) 0.0715 (19) 0.0357 (15) −0.0012 (12) −0.0079 (11) −0.0128 (14)
O13 0.0272 (12) 0.0265 (12) 0.0228 (12) 0.0061 (10) −0.0047 (10) −0.0090 (10)
O14 0.0349 (12) 0.0212 (12) 0.0161 (11) 0.0071 (10) −0.0061 (10) −0.0033 (9)
O15 0.0445 (14) 0.0171 (12) 0.0293 (13) 0.0045 (10) 0.0012 (11) −0.0086 (10)
O51 0.084 (2) 0.0463 (17) 0.0405 (17) 0.0355 (17) −0.0179 (16) −0.0053 (14)
O52 0.0435 (14) 0.0244 (12) 0.0208 (12) 0.0154 (11) −0.0006 (11) −0.0049 (10)
O53 0.0537 (15) 0.0250 (13) 0.0215 (13) 0.0138 (11) 0.0022 (11) −0.0104 (10)
O54 0.0451 (16) 0.084 (2) 0.0402 (17) 0.0168 (15) −0.0043 (13) −0.0427 (16)
N51 0.0216 (13) 0.0179 (13) 0.0140 (13) −0.0004 (11) −0.0001 (11) −0.0041 (11)
C51 0.049 (2) 0.031 (2) 0.029 (2) 0.0160 (18) −0.0084 (18) −0.0084 (17)
C52 0.0276 (17) 0.0278 (19) 0.0288 (19) 0.0035 (15) −0.0062 (15) −0.0099 (15)
C53 0.041 (2) 0.030 (2) 0.042 (2) 0.0139 (17) −0.0028 (18) −0.0109 (18)
C54 0.049 (2) 0.042 (2) 0.045 (3) 0.0113 (19) 0.010 (2) −0.021 (2)
C55 0.043 (2) 0.040 (2) 0.028 (2) −0.0011 (18) 0.0044 (17) −0.0139 (17)
C56 0.0352 (19) 0.0259 (18) 0.0248 (19) 0.0005 (15) 0.0009 (15) −0.0080 (15)
C57 0.0238 (16) 0.0230 (17) 0.0273 (18) 0.0005 (14) −0.0008 (14) −0.0112 (15)
C58 0.0262 (16) 0.0202 (17) 0.0186 (17) 0.0056 (14) −0.0034 (13) −0.0038 (13)
C59 0.0171 (15) 0.0211 (17) 0.0166 (16) −0.0021 (13) 0.0015 (13) −0.0056 (13)
C60 0.0228 (16) 0.0233 (17) 0.0188 (17) 0.0028 (13) −0.0043 (13) −0.0013 (14)
C61 0.0249 (16) 0.0321 (19) 0.0153 (16) 0.0004 (15) −0.0017 (14) −0.0025 (14)
C62 0.0231 (16) 0.0274 (18) 0.0182 (17) −0.0026 (14) −0.0001 (13) −0.0078 (14)
C63 0.0171 (14) 0.0203 (16) 0.0167 (16) −0.0035 (13) 0.0006 (12) −0.0063 (13)
C64 0.0319 (17) 0.0218 (17) 0.0151 (16) 0.0007 (14) 0.0007 (14) −0.0073 (13)
C65 0.0281 (18) 0.0248 (19) 0.039 (2) 0.0023 (15) −0.0006 (16) −0.0104 (16)
C66 0.071 (3) 0.031 (2) 0.041 (3) 0.017 (2) 0.007 (2) −0.0037 (19)
C67 0.159 (6) 0.047 (3) 0.064 (4) 0.048 (4) 0.035 (4) 0.013 (3)
C68 0.167 (6) 0.036 (3) 0.093 (5) 0.048 (3) 0.044 (4) −0.004 (3)
C69 0.072 (3) 0.037 (2) 0.070 (3) 0.009 (2) 0.024 (3) −0.022 (2)
C70 0.0275 (18) 0.030 (2) 0.048 (2) 0.0031 (15) −0.0002 (17) −0.0211 (18)
C71 0.0324 (19) 0.051 (2) 0.037 (2) 0.0130 (18) −0.0060 (17) −0.027 (2)

Geometric parameters (Å, º)

Dy1—O1 2.435 (2) O5—H52 0.73 (3)
Dy1—O5 2.327 (2) O6—H61 0.71 (3)
Dy1—O6 2.320 (2) O6—H62 0.86 (3)
Dy1—O7 2.410 (2) N2—O9 1.212 (3)
Dy1—O8 2.437 (2) N2—O8 1.267 (3)
Dy1—O10 2.443 (2) N2—O7 1.281 (3)
Dy1—O11 2.429 (2) N3—O12 1.221 (3)
Dy1—O13 2.460 (2) N3—O11 1.270 (3)
Dy1—O14 2.403 (2) N3—O10 1.271 (3)
Dy1—N2 2.846 (3) N4—O15 1.206 (3)
Dy1—N3 2.849 (3) N4—O13 1.279 (3)
Dy1—N4 2.865 (3) N4—O14 1.285 (3)
O1—C1 1.220 (3) O51—C51 1.199 (4)
O2—C7 1.363 (3) O52—C57 1.368 (4)
O2—C8 1.428 (3) O52—C58 1.426 (3)
O3—C15 1.366 (3) O53—C65 1.358 (4)
O3—C14 1.426 (3) O53—C64 1.420 (3)
O4—C21 1.216 (4) O54—C71 1.217 (4)
N1—C9 1.347 (4) N51—C59 1.344 (4)
N1—C13 1.353 (4) N51—C63 1.346 (4)
C1—C2 1.450 (4) C51—C52 1.475 (5)
C1—H1A 0.9500 C51—H51A 0.9500
C2—C3 1.398 (4) C52—C57 1.394 (4)
C2—C7 1.402 (4) C52—C53 1.395 (5)
C3—C4 1.377 (4) C53—C54 1.386 (5)
C3—H3A 0.9500 C53—H53A 0.9500
C4—C5 1.384 (4) C54—C55 1.373 (5)
C4—H4A 0.9500 C54—H54A 0.9500
C5—C6 1.385 (4) C55—C56 1.388 (5)
C5—H5A 0.9500 C55—H55A 0.9500
C6—C7 1.385 (4) C56—C57 1.382 (5)
C6—H6A 0.9500 C56—H56A 0.9500
C8—C9 1.507 (4) C58—C59 1.505 (4)
C8—H8A 0.9900 C58—H58A 0.9900
C8—H8B 0.9900 C58—H58B 0.9900
C9—C10 1.379 (4) C59—C60 1.385 (4)
C10—C11 1.380 (4) C60—C61 1.377 (4)
C10—H10A 0.9500 C60—H60A 0.9500
C11—C12 1.378 (4) C61—C62 1.378 (4)
C11—H11A 0.9500 C61—H61A 0.9500
C12—C13 1.379 (4) C62—C63 1.385 (4)
C12—H12A 0.9500 C62—H62A 0.9500
C13—C14 1.503 (4) C63—C64 1.497 (4)
C14—H14A 0.9900 C64—H64A 0.9900
C14—H14B 0.9900 C64—H64B 0.9900
C15—C16 1.390 (4) C65—C66 1.366 (5)
C15—C20 1.403 (4) C65—C70 1.419 (5)
C16—C17 1.389 (4) C66—C67 1.385 (6)
C16—H16A 0.9500 C66—H66A 0.9500
C17—C18 1.379 (5) C67—C68 1.380 (7)
C17—H17A 0.9500 C67—H67A 0.9500
C18—C19 1.380 (5) C68—C69 1.366 (7)
C18—H18A 0.9500 C68—H68A 0.9500
C19—C20 1.394 (4) C69—C70 1.377 (5)
C19—H19A 0.9500 C69—H69A 0.9500
C20—C21 1.458 (4) C70—C71 1.451 (5)
C21—H21A 0.9500 C71—H71A 0.9500
O5—H51 0.76 (4)
O6—Dy1—O5 78.55 (8) C17—C16—C15 118.7 (3)
O6—Dy1—O14 79.03 (8) C17—C16—H16A 120.6
O5—Dy1—O14 79.82 (8) C15—C16—H16A 120.6
O6—Dy1—O7 125.04 (7) C18—C17—C16 121.4 (3)
O5—Dy1—O7 81.96 (8) C18—C17—H17A 119.3
O14—Dy1—O7 145.81 (7) C16—C17—H17A 119.3
O6—Dy1—O11 89.94 (7) C17—C18—C19 119.4 (3)
O5—Dy1—O11 149.62 (8) C17—C18—H18A 120.3
O14—Dy1—O11 125.81 (7) C19—C18—H18A 120.3
O7—Dy1—O11 81.97 (7) C18—C19—C20 121.1 (3)
O6—Dy1—O1 145.20 (8) C18—C19—H19A 119.4
O5—Dy1—O1 77.24 (8) C20—C19—H19A 119.4
O14—Dy1—O1 72.40 (7) C19—C20—C15 118.5 (3)
O7—Dy1—O1 75.50 (7) C19—C20—C21 120.8 (3)
O11—Dy1—O1 122.85 (7) C15—C20—C21 120.6 (3)
O6—Dy1—O8 72.43 (7) O4—C21—C20 125.3 (3)
O5—Dy1—O8 74.04 (8) O4—C21—H21A 117.4
O14—Dy1—O8 144.36 (7) C20—C21—H21A 117.4
O7—Dy1—O8 52.83 (7) Dy1—O5—H51 129 (3)
O11—Dy1—O8 75.70 (7) Dy1—O5—H52 118 (3)
O1—Dy1—O8 123.16 (7) H51—O5—H52 113 (4)
O6—Dy1—O10 136.95 (7) Dy1—O6—H61 121 (3)
O5—Dy1—O10 144.49 (8) Dy1—O6—H62 121 (2)
O14—Dy1—O10 104.30 (7) H61—O6—H62 110 (4)
O7—Dy1—O10 75.42 (7) O9—N2—O8 122.9 (3)
O11—Dy1—O10 52.72 (7) O9—N2—O7 121.5 (3)
O1—Dy1—O10 70.85 (7) O8—N2—O7 115.6 (2)
O8—Dy1—O10 111.08 (7) O9—N2—Dy1 172.6 (2)
O6—Dy1—O13 75.04 (7) O8—N2—Dy1 58.53 (14)
O5—Dy1—O13 128.94 (8) O7—N2—Dy1 57.34 (14)
O14—Dy1—O13 52.83 (7) O12—N3—O11 122.2 (3)
O7—Dy1—O13 148.23 (7) O12—N3—O10 121.0 (3)
O11—Dy1—O13 73.02 (7) O11—N3—O10 116.7 (2)
O1—Dy1—O13 101.80 (7) O12—N3—Dy1 179.5 (2)
O8—Dy1—O13 134.29 (7) O11—N3—Dy1 58.04 (14)
O10—Dy1—O13 73.92 (7) O10—N3—Dy1 58.66 (14)
O6—Dy1—N2 98.47 (8) O15—N4—O13 122.9 (3)
O5—Dy1—N2 75.03 (8) O15—N4—O14 122.1 (3)
O14—Dy1—N2 154.70 (7) O13—N4—O14 115.1 (2)
O7—Dy1—N2 26.59 (7) O15—N4—Dy1 176.9 (2)
O11—Dy1—N2 79.08 (7) O13—N4—Dy1 58.85 (13)
O1—Dy1—N2 98.99 (7) O14—N4—Dy1 56.29 (13)
O8—Dy1—N2 26.32 (7) N2—O7—Dy1 96.07 (17)
O10—Dy1—N2 94.69 (8) N2—O8—Dy1 95.15 (17)
O13—Dy1—N2 151.25 (7) N3—O10—Dy1 94.95 (17)
O6—Dy1—N3 113.96 (8) N3—O11—Dy1 95.62 (16)
O5—Dy1—N3 159.45 (8) N4—O13—Dy1 94.73 (16)
O14—Dy1—N3 117.58 (7) N4—O14—Dy1 97.28 (16)
O7—Dy1—N3 77.50 (7) C57—O52—C58 119.3 (2)
O11—Dy1—N3 26.34 (7) C65—O53—C64 120.0 (3)
O1—Dy1—N3 96.91 (7) C59—N51—C63 118.5 (2)
O8—Dy1—N3 93.67 (7) O51—C51—C52 124.7 (3)
O10—Dy1—N3 26.38 (7) O51—C51—H51A 117.7
O13—Dy1—N3 71.37 (7) C52—C51—H51A 117.7
N2—Dy1—N3 86.66 (8) C57—C52—C53 118.4 (3)
O6—Dy1—N4 74.87 (7) C57—C52—C51 122.1 (3)
O5—Dy1—N4 104.39 (8) C53—C52—C51 119.5 (3)
O14—Dy1—N4 26.42 (7) C54—C53—C52 121.0 (3)
O7—Dy1—N4 160.10 (7) C54—C53—H53A 119.5
O11—Dy1—N4 99.44 (7) C52—C53—H53A 119.5
O1—Dy1—N4 87.39 (7) C55—C54—C53 119.2 (3)
O8—Dy1—N4 146.90 (7) C55—C54—H54A 120.4
O10—Dy1—N4 89.55 (7) C53—C54—H54A 120.4
O13—Dy1—N4 26.42 (7) C54—C55—C56 121.2 (3)
N2—Dy1—N4 173.22 (7) C54—C55—H55A 119.4
N3—Dy1—N4 94.89 (7) C56—C55—H55A 119.4
C1—O1—Dy1 125.07 (19) C57—C56—C55 119.1 (3)
C7—O2—C8 119.3 (2) C57—C56—H56A 120.4
C15—O3—C14 118.7 (2) C55—C56—H56A 120.4
C9—N1—C13 117.5 (2) O52—C57—C56 123.6 (3)
O1—C1—C2 125.1 (3) O52—C57—C52 115.5 (3)
O1—C1—H1A 117.4 C56—C57—C52 121.0 (3)
C2—C1—H1A 117.4 O52—C58—C59 107.3 (2)
C3—C2—C7 119.0 (3) O52—C58—H58A 110.3
C3—C2—C1 121.7 (3) C59—C58—H58A 110.3
C7—C2—C1 119.3 (3) O52—C58—H58B 110.3
C4—C3—C2 120.7 (3) C59—C58—H58B 110.3
C4—C3—H3A 119.7 H58A—C58—H58B 108.5
C2—C3—H3A 119.7 N51—C59—C60 122.5 (3)
C3—C4—C5 119.3 (3) N51—C59—C58 115.2 (2)
C3—C4—H4A 120.3 C60—C59—C58 122.4 (3)
C5—C4—H4A 120.3 C61—C60—C59 118.7 (3)
C4—C5—C6 121.5 (3) C61—C60—H60A 120.7
C4—C5—H5A 119.2 C59—C60—H60A 120.7
C6—C5—H5A 119.2 C60—C61—C62 119.4 (3)
C7—C6—C5 119.0 (3) C60—C61—H61A 120.3
C7—C6—H6A 120.5 C62—C61—H61A 120.3
C5—C6—H6A 120.5 C61—C62—C63 119.2 (3)
O2—C7—C6 124.6 (3) C61—C62—H62A 120.4
O2—C7—C2 114.9 (3) C63—C62—H62A 120.4
C6—C7—C2 120.5 (3) N51—C63—C62 121.9 (3)
O2—C8—C9 107.6 (2) N51—C63—C64 115.9 (3)
O2—C8—H8A 110.2 C62—C63—C64 122.2 (3)
C9—C8—H8A 110.2 O53—C64—C63 106.6 (2)
O2—C8—H8B 110.2 O53—C64—H64A 110.4
C9—C8—H8B 110.2 C63—C64—H64A 110.4
H8A—C8—H8B 108.5 O53—C64—H64B 110.4
N1—C9—C10 123.0 (3) C63—C64—H64B 110.4
N1—C9—C8 113.6 (2) H64A—C64—H64B 108.6
C10—C9—C8 123.3 (3) O53—C65—C66 124.2 (3)
C9—C10—C11 118.4 (3) O53—C65—C70 114.5 (3)
C9—C10—H10A 120.8 C66—C65—C70 121.3 (3)
C11—C10—H10A 120.8 C65—C66—C67 118.3 (4)
C12—C11—C10 119.7 (3) C65—C66—H66A 120.9
C12—C11—H11A 120.1 C67—C66—H66A 120.9
C10—C11—H11A 120.1 C68—C67—C66 120.8 (5)
C11—C12—C13 118.6 (3) C68—C67—H67A 119.6
C11—C12—H12A 120.7 C66—C67—H67A 119.6
C13—C12—H12A 120.7 C69—C68—C67 121.0 (4)
N1—C13—C12 122.7 (3) C69—C68—H68A 119.5
N1—C13—C14 115.3 (2) C67—C68—H68A 119.5
C12—C13—C14 121.9 (3) C68—C69—C70 119.7 (4)
O3—C14—C13 106.5 (2) C68—C69—H69A 120.1
O3—C14—H14A 110.4 C70—C69—H69A 120.1
C13—C14—H14A 110.4 C69—C70—C65 118.8 (4)
O3—C14—H14B 110.4 C69—C70—C71 120.0 (4)
C13—C14—H14B 110.4 C65—C70—C71 121.2 (3)
H14A—C14—H14B 108.6 O54—C71—C70 125.2 (3)
O3—C15—C16 123.6 (3) O54—C71—H71A 117.4
O3—C15—C20 115.6 (3) C70—C71—H71A 117.4
C16—C15—C20 120.8 (3)
O6—Dy1—O1—C1 104.2 (2) O6—Dy1—O7—N2 2.6 (2)
O5—Dy1—O1—C1 57.2 (2) O5—Dy1—O7—N2 72.50 (17)
O14—Dy1—O1—C1 140.4 (2) O14—Dy1—O7—N2 130.81 (17)
O7—Dy1—O1—C1 −27.7 (2) O11—Dy1—O7—N2 −81.64 (17)
O11—Dy1—O1—C1 −97.9 (2) O1—Dy1—O7—N2 151.32 (18)
O8—Dy1—O1—C1 −3.8 (3) O8—Dy1—O7—N2 −3.53 (15)
O10—Dy1—O1—C1 −107.0 (2) O10—Dy1—O7—N2 −135.10 (18)
O13—Dy1—O1—C1 −175.1 (2) O13—Dy1—O7—N2 −119.63 (18)
N2—Dy1—O1—C1 −15.1 (2) N3—Dy1—O7—N2 −108.03 (17)
N3—Dy1—O1—C1 −102.8 (2) N4—Dy1—O7—N2 −177.18 (19)
N4—Dy1—O1—C1 162.6 (2) O9—N2—O8—Dy1 171.4 (3)
Dy1—O1—C1—C2 −175.3 (2) O7—N2—O8—Dy1 −5.9 (3)
O1—C1—C2—C3 −1.7 (5) O6—Dy1—O8—N2 −171.17 (18)
O1—C1—C2—C7 176.0 (3) O5—Dy1—O8—N2 −88.41 (18)
C7—C2—C3—C4 0.2 (4) O14—Dy1—O8—N2 −132.82 (17)
C1—C2—C3—C4 177.9 (3) O7—Dy1—O8—N2 3.56 (16)
C2—C3—C4—C5 −0.6 (5) O11—Dy1—O8—N2 94.27 (17)
C3—C4—C5—C6 0.5 (5) O1—Dy1—O8—N2 −25.88 (19)
C4—C5—C6—C7 0.1 (5) O10—Dy1—O8—N2 54.45 (18)
C8—O2—C7—C6 2.1 (4) O13—Dy1—O8—N2 142.22 (16)
C8—O2—C7—C2 −177.9 (2) N3—Dy1—O8—N2 74.84 (17)
C5—C6—C7—O2 179.5 (3) N4—Dy1—O8—N2 179.61 (15)
C5—C6—C7—C2 −0.6 (4) O12—N3—O10—Dy1 179.5 (3)
C3—C2—C7—O2 −179.6 (3) O11—N3—O10—Dy1 −0.4 (3)
C1—C2—C7—O2 2.7 (4) O6—Dy1—O10—N3 −35.0 (2)
C3—C2—C7—C6 0.4 (4) O5—Dy1—O10—N3 143.38 (17)
C1—C2—C7—C6 −177.3 (3) O14—Dy1—O10—N3 −124.13 (16)
C7—O2—C8—C9 −175.5 (2) O7—Dy1—O10—N3 91.21 (17)
C13—N1—C9—C10 0.8 (4) O11—Dy1—O10—N3 0.26 (15)
C13—N1—C9—C8 −177.2 (2) O1—Dy1—O10—N3 170.63 (18)
O2—C8—C9—N1 −176.9 (2) O8—Dy1—O10—N3 51.50 (17)
O2—C8—C9—C10 5.1 (4) O13—Dy1—O10—N3 −80.39 (16)
N1—C9—C10—C11 0.0 (4) N2—Dy1—O10—N3 72.73 (17)
C8—C9—C10—C11 177.8 (3) N4—Dy1—O10—N3 −101.98 (17)
C9—C10—C11—C12 −0.7 (4) O12—N3—O11—Dy1 −179.5 (3)
C10—C11—C12—C13 0.6 (4) O10—N3—O11—Dy1 0.4 (3)
C9—N1—C13—C12 −0.9 (4) O6—Dy1—O11—N3 156.54 (16)
C9—N1—C13—C14 179.7 (2) O5—Dy1—O11—N3 −136.68 (18)
C11—C12—C13—N1 0.2 (5) O14—Dy1—O11—N3 80.16 (18)
C11—C12—C13—C14 179.6 (3) O7—Dy1—O11—N3 −78.01 (16)
C15—O3—C14—C13 175.3 (2) O1—Dy1—O11—N3 −11.10 (19)
N1—C13—C14—O3 −152.1 (2) O8—Dy1—O11—N3 −131.59 (17)
C12—C13—C14—O3 28.4 (4) O10—Dy1—O11—N3 −0.26 (15)
C14—O3—C15—C16 5.5 (4) O13—Dy1—O11—N3 82.18 (16)
C14—O3—C15—C20 −174.6 (3) N2—Dy1—O11—N3 −104.82 (17)
O3—C15—C16—C17 178.7 (3) N4—Dy1—O11—N3 81.90 (16)
C20—C15—C16—C17 −1.3 (5) O15—N4—O13—Dy1 −176.9 (2)
C15—C16—C17—C18 −0.4 (5) O14—N4—O13—Dy1 2.3 (2)
C16—C17—C18—C19 1.3 (5) O6—Dy1—O13—N4 86.02 (16)
C17—C18—C19—C20 −0.5 (5) O5—Dy1—O13—N4 24.7 (2)
C18—C19—C20—C15 −1.1 (4) O14—Dy1—O13—N4 −1.42 (15)
C18—C19—C20—C21 176.4 (3) O7—Dy1—O13—N4 −139.78 (17)
O3—C15—C20—C19 −177.9 (3) O11—Dy1—O13—N4 −179.37 (17)
C16—C15—C20—C19 2.0 (4) O1—Dy1—O13—N4 −58.33 (17)
O3—C15—C20—C21 4.5 (4) O8—Dy1—O13—N4 131.83 (16)
C16—C15—C20—C21 −175.5 (3) O10—Dy1—O13—N4 −124.19 (17)
C19—C20—C21—O4 3.3 (5) N2—Dy1—O13—N4 166.22 (16)
C15—C20—C21—O4 −179.2 (3) N3—Dy1—O13—N4 −151.73 (17)
O6—Dy1—N2—O8 8.51 (18) O15—N4—O14—Dy1 176.9 (2)
O5—Dy1—N2—O8 84.18 (17) O13—N4—O14—Dy1 −2.4 (2)
O14—Dy1—N2—O8 90.7 (2) O6—Dy1—O14—N4 −78.03 (16)
O7—Dy1—N2—O8 −173.6 (3) O5—Dy1—O14—N4 −158.21 (17)
O11—Dy1—N2—O8 −79.78 (17) O7—Dy1—O14—N4 142.92 (16)
O1—Dy1—N2—O8 158.29 (16) O11—Dy1—O14—N4 3.85 (19)
O10—Dy1—N2—O8 −130.38 (17) O1—Dy1—O14—N4 122.07 (17)
O13—Dy1—N2—O8 −65.8 (2) O8—Dy1—O14—N4 −115.09 (17)
N3—Dy1—N2—O8 −105.23 (17) O10—Dy1—O14—N4 57.91 (17)
O6—Dy1—N2—O7 −177.84 (17) O13—Dy1—O14—N4 1.42 (15)
O5—Dy1—N2—O7 −102.17 (18) N2—Dy1—O14—N4 −164.64 (17)
O14—Dy1—N2—O7 −95.6 (2) N3—Dy1—O14—N4 33.40 (18)
O11—Dy1—N2—O7 93.87 (17) O51—C51—C52—C57 −177.0 (4)
O1—Dy1—N2—O7 −28.06 (17) O51—C51—C52—C53 4.8 (6)
O8—Dy1—N2—O7 173.6 (3) C57—C52—C53—C54 0.0 (5)
O10—Dy1—N2—O7 43.27 (17) C51—C52—C53—C54 178.3 (4)
O13—Dy1—N2—O7 107.9 (2) C52—C53—C54—C55 −0.6 (6)
N3—Dy1—N2—O7 68.42 (17) C53—C54—C55—C56 0.6 (6)
O6—Dy1—N3—O11 −25.82 (18) C54—C55—C56—C57 0.0 (5)
O5—Dy1—N3—O11 98.7 (3) C58—O52—C57—C56 0.3 (4)
O14—Dy1—N3—O11 −115.66 (16) C58—O52—C57—C52 179.0 (3)
O7—Dy1—N3—O11 97.20 (16) C55—C56—C57—O52 178.1 (3)
O1—Dy1—N3—O11 170.62 (16) C55—C56—C57—C52 −0.6 (5)
O8—Dy1—N3—O11 46.57 (16) C53—C52—C57—O52 −178.2 (3)
O10—Dy1—N3—O11 179.5 (3) C51—C52—C57—O52 3.6 (5)
O13—Dy1—N3—O11 −89.21 (16) C53—C52—C57—C56 0.6 (5)
N2—Dy1—N3—O11 71.96 (16) C51—C52—C57—C56 −177.7 (3)
N4—Dy1—N3—O11 −101.42 (16) C57—O52—C58—C59 −168.1 (3)
O6—Dy1—N3—O10 154.64 (16) C63—N51—C59—C60 0.6 (4)
O5—Dy1—N3—O10 −80.8 (3) C63—N51—C59—C58 −178.5 (3)
O14—Dy1—N3—O10 64.81 (18) O52—C58—C59—N51 −178.2 (2)
O7—Dy1—N3—O10 −82.34 (17) O52—C58—C59—C60 2.7 (4)
O11—Dy1—N3—O10 −179.5 (3) N51—C59—C60—C61 −0.4 (5)
O1—Dy1—N3—O10 −8.91 (17) C58—C59—C60—C61 178.7 (3)
O8—Dy1—N3—O10 −132.96 (16) C59—C60—C61—C62 −0.5 (5)
O13—Dy1—N3—O10 91.25 (17) C60—C61—C62—C63 1.2 (4)
N2—Dy1—N3—O10 −107.58 (17) C59—N51—C63—C62 0.0 (4)
N4—Dy1—N3—O10 79.04 (17) C59—N51—C63—C64 178.1 (3)
O6—Dy1—N4—O13 −86.75 (16) C61—C62—C63—N51 −0.9 (5)
O5—Dy1—N4—O13 −160.39 (16) C61—C62—C63—C64 −178.8 (3)
O14—Dy1—N4—O13 177.5 (3) C65—O53—C64—C63 171.2 (3)
O7—Dy1—N4—O13 93.1 (3) N51—C63—C64—O53 168.3 (3)
O11—Dy1—N4—O13 0.61 (17) C62—C63—C64—O53 −13.7 (4)
O1—Dy1—N4—O13 123.49 (16) C64—O53—C65—C66 4.7 (5)
O8—Dy1—N4—O13 −77.6 (2) C64—O53—C65—C70 −175.0 (3)
O10—Dy1—N4—O13 52.64 (16) O53—C65—C66—C67 179.2 (4)
N3—Dy1—N4—O13 26.77 (17) C70—C65—C66—C67 −1.1 (7)
O6—Dy1—N4—O14 95.80 (17) C65—C66—C67—C68 −0.3 (9)
O5—Dy1—N4—O14 22.16 (17) C66—C67—C68—C69 2.1 (11)
O7—Dy1—N4—O14 −84.4 (3) C67—C68—C69—C70 −2.6 (10)
O11—Dy1—N4—O14 −176.84 (15) C68—C69—C70—C65 1.2 (7)
O1—Dy1—N4—O14 −53.96 (16) C68—C69—C70—C71 −177.8 (5)
O8—Dy1—N4—O14 104.90 (18) O53—C65—C70—C69 −179.6 (3)
O10—Dy1—N4—O14 −124.81 (16) C66—C65—C70—C69 0.7 (5)
O13—Dy1—N4—O14 −177.5 (3) O53—C65—C70—C71 −0.7 (5)
N3—Dy1—N4—O14 −150.68 (16) C66—C65—C70—C71 179.6 (4)
O9—N2—O7—Dy1 −171.4 (3) C69—C70—C71—O54 −5.8 (6)
O8—N2—O7—Dy1 6.0 (3) C65—C70—C71—O54 175.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H51···N1i 0.76 (4) 1.97 (4) 2.724 (3) 173 (4)
O5—H52···O12ii 0.73 (3) 2.19 (4) 2.907 (3) 168 (4)
O6—H61···O4iii 0.71 (3) 2.10 (3) 2.797 (3) 169 (4)
O6—H62···N51iii 0.86 (3) 1.86 (4) 2.712 (3) 177 (3)

Symmetry codes: (i) −x, −y+1, −z; (ii) x−1, y, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2050).

References

  1. Agilent (2010). CrysAlis PRO, CrysAlis CCD and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  3. Garza Rodríguez, L. Á. (2010). PhD thesis, Universidad Autónoma de Nuevo León, Mexico.
  4. IUPAC (2005). Nomenclature of Inorganic Chemistry: IUPAC recommendations 2005, edited by N. G. Connelly & T. Damhus, pp. 175–179. Cambridge: RSC Publishing.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Rodríguez De Luna, S. L., Garza, L. Á., Bernès, S., Elizondo, P., Nájera, B. & Pérez, N. (2010). Polyhedron, 29, 2048–2052.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681203680X/vn2050sup1.cif

e-68-m1239-sup1.cif (53.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681203680X/vn2050Isup2.hkl

e-68-m1239-Isup2.hkl (412.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES