Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2012 Sep 5;68(Pt 10):o2841. doi: 10.1107/S1600536812037385

2,4-Bis(4-eth­oxy­phen­yl)-3-aza­bicyclo­[3.3.1]nonan-9-one

Dong Ho Park a, V Ramkumar b, P Parthiban a,*
PMCID: PMC3470201  PMID: 23125645

Abstract

The title compound, C24H29NO3, exists in a twin-chair conformation with an equatorial orientation of the 4-eth­oxy­phenyl groups. The benzene rings are inclined to each other at an angle of 28.0 (1)°. In the crystal, weak C—H⋯O inter­actions link mol­ecules related by translation into chains along the b axis. The crystal packing exhibits π–π inter­actions between the benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.692 (3) Å].

Related literature  

For the synthesis and stereochemistry of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Park et al. (2011a ). For the biological activity of 3-aza­bicyclo­[3.3.1]nonan-9-ones, see: Barker et al. (2005); Parthiban et al. (2009, 2010a ,b , 2011a ). For related structures, see: Parthiban et al. (2011b ); Park et al. (2012).graphic file with name e-68-o2841-scheme1.jpg

Experimental  

Crystal data  

  • C24H29NO3

  • M r = 379.48

  • Monoclinic, Inline graphic

  • a = 14.0319 (11) Å

  • b = 7.3143 (6) Å

  • c = 20.5820 (17) Å

  • β = 106.841 (3)°

  • V = 2021.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.35 × 0.28 × 0.25 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.972, T max = 0.980

  • 15180 measured reflections

  • 5415 independent reflections

  • 3042 reflections with I > 2σ(I)

  • R int = 0.034

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.072

  • wR(F 2) = 0.232

  • S = 1.05

  • 5415 reflections

  • 255 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037385/cv5330sup1.cif

e-68-o2841-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037385/cv5330Isup2.hkl

e-68-o2841-Isup2.hkl (265.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037385/cv5330Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.57 3.428 (3) 154
C14—H14⋯O1i 0.92 2.61 3.501 (3) 159

Symmetry code: (i) Inline graphic.

Acknowledgments

This research was supported by the Inje University research grant 2011. The authors acknowledge the Department of Chemistry, IIT Madras, for the data collection.

supplementary crystallographic information

Comment

Alkaloids with 3-azabicyclononane nucleus display broad-spectrum of biological activities ranging from antibacterial to anticancer (Barker et al., 2005; Parthiban et al., 2009, 2010a, 2010b, 2011a). Hence, the synthesis of new molecules that contain 3-azabicyclononane pharmacophore as well as their isolaton from the natural products are important in the field of medicinal chemistry. Accordingly, we synthesized the title compound by a non-laborious method to explore its stereochemistry in the solid-state.

Examination of the asymmery parameters and torsion angles of the title compound reveal that the values are similar to those observed in the analogs viz., 2,4-bis(4-ethoxyphenyl)-7-methyl-3-azabicyclo[3.3.1]nonan-9-one (Park et al., 2012) and 2,4-bis(2-ethoxyphenyl)-7-methyl -3-azabicyclo[3.3.1]nonan-9-one (Parthiban et al., 2011b). The torsion angles of the title compound C2—C8—C6—C7, C1—C2—C8—C6, C2—C8—C6—C5 and C3—C2—C8—C6 are -62.5 (2), 62.3 (2), 62.6 (2) and -62.6 (2)°, respectively, that clearly assign the chair-chair conformation to the bicycle as in the analogs. The orientations of the ethoxyphenyl groups on both sides of the secondary amino group are identified by their torsion angles. The torsion angles C8—C2—C1—C9 and C8—C6—C7—C17 are 179.34 (18) and -178.52 (18)°, respectively. This clearly conform their equatorial orientations and it is very similar to those in 7-methylated 4-ehtoxyphenyl [C3—C2—C1—C7 and its mirror image is 176.7 (5)%, center of symmetry bisects the molecule] and 2-ethoxyphenyl analogs [C8—C6—C7—C15 and C8—C2—C1—C9 are 176.83 (14) and -179.07 (14)°, respectively]. In the title compound, two benzene rings are inclined to each other with an angle of 28.0 (1)° as in 7-methylated analog (26.11 (3)°), while in 7-methylated ortho analog this angle is 12.41 (4)°.

The crystal packing is stabilized by the weak intermolecular C—H···O hydrogen bonds (Table 1) and π–π interactions.

Experimental

The 2,4-bis(4-ethoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one was synthesized by a modified and an optimized Mannich condensation in one-pot, using 4-ethoxybenzaldehyde (0.1 mol, 15.018 g/13.91 ml), cyclohexanone (0.05 mol, 4.90 g/5.18 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol (Park et al., 2011). The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å, methylene C—H = 0.97 Å, and N—H = 0.86 Å, and with Uiso(H) = 1.2-1.5Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

Anistropic displacement representation of the molecule with atoms represented with 30% probability ellipsoids.

Crystal data

C24H29NO3 F(000) = 816
Mr = 379.48 Dx = 1.247 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4030 reflections
a = 14.0319 (11) Å θ = 2.8–28.3°
b = 7.3143 (6) Å µ = 0.08 mm1
c = 20.5820 (17) Å T = 293 K
β = 106.841 (3)° Block, colourless
V = 2021.8 (3) Å3 0.35 × 0.28 × 0.25 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 5415 independent reflections
Radiation source: fine-focus sealed tube 3042 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.034
phi and ω scans θmax = 29.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −19→10
Tmin = 0.972, Tmax = 0.980 k = −6→10
15180 measured reflections l = −26→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.232 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1095P)2 + 0.8855P] where P = (Fo2 + 2Fc2)/3
5415 reflections (Δ/σ)max = 0.001
255 parameters Δρmax = 0.49 e Å3
0 restraints Δρmin = −0.51 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 1.11887 (13) 0.5928 (3) 0.47084 (8) 0.0489 (5)
O2 0.82074 (15) 0.5864 (3) −0.14064 (8) 0.0496 (5)
O1 0.86995 (18) −0.2221 (3) 0.17033 (10) 0.0645 (7)
N1 0.96262 (14) 0.2816 (3) 0.16513 (8) 0.0340 (5)
H1N 0.9683 0.3986 0.1645 0.041*
C20 1.08546 (17) 0.5034 (4) 0.40974 (11) 0.0368 (5)
C5 0.80462 (19) 0.1721 (4) 0.23518 (11) 0.0388 (6)
H5A 0.7556 0.0889 0.2435 0.047*
H5B 0.8242 0.2559 0.2733 0.047*
C18 0.98813 (17) 0.4710 (3) 0.29306 (11) 0.0385 (6)
H18 0.9428 0.5203 0.2548 0.046*
C9 0.90291 (17) 0.2906 (3) 0.04047 (10) 0.0326 (5)
C21 1.12530 (19) 0.3309 (4) 0.40653 (11) 0.0424 (6)
H21 1.1720 0.2828 0.4444 0.051*
C8 0.86704 (19) −0.0568 (3) 0.16953 (12) 0.0385 (6)
C3 0.74291 (18) 0.1672 (4) 0.10705 (11) 0.0377 (5)
H3A 0.7253 0.2478 0.0679 0.045*
H3B 0.6878 0.0834 0.1027 0.045*
C6 0.89630 (19) 0.0616 (3) 0.23207 (11) 0.0370 (5)
H6 0.9168 −0.0175 0.2721 0.044*
C7 0.98759 (17) 0.1764 (3) 0.22787 (10) 0.0342 (5)
H7 1.0412 0.0914 0.2270 0.041*
C2 0.83556 (18) 0.0568 (3) 0.10609 (11) 0.0354 (5)
H2 0.8178 −0.0252 0.0668 0.042*
C19 1.01727 (18) 0.5742 (4) 0.35234 (12) 0.0398 (6)
H19 0.9911 0.6906 0.3535 0.048*
C14 0.8740 (2) 0.4705 (4) 0.04078 (11) 0.0427 (6)
H14 0.8732 0.5238 0.0816 0.051*
C22 1.09565 (18) 0.2309 (4) 0.34725 (11) 0.0403 (6)
H22 1.1236 0.1163 0.3456 0.048*
C11 0.8779 (2) 0.3173 (4) −0.08037 (11) 0.0425 (6)
H11 0.8806 0.2646 −0.1209 0.051*
C13 0.8459 (2) 0.5745 (4) −0.01813 (12) 0.0443 (6)
H13 0.8265 0.6956 −0.0166 0.053*
C10 0.90468 (19) 0.2167 (4) −0.02133 (11) 0.0416 (6)
H10 0.9245 0.0959 −0.0229 0.050*
C4 0.75624 (17) 0.2812 (3) 0.17080 (11) 0.0360 (5)
H4A 0.6918 0.3253 0.1724 0.043*
H4B 0.7973 0.3866 0.1690 0.043*
C17 1.02478 (16) 0.2975 (3) 0.28970 (11) 0.0332 (5)
C12 0.84721 (18) 0.4958 (4) −0.07936 (11) 0.0364 (5)
C1 0.92723 (17) 0.1728 (3) 0.10336 (10) 0.0337 (5)
H1 0.9806 0.0885 0.1013 0.040*
C23 1.0724 (2) 0.7590 (4) 0.47980 (14) 0.0520 (7)
H23A 1.0010 0.7412 0.4694 0.062*
H23B 1.0846 0.8516 0.4494 0.062*
C24 1.1141 (2) 0.8196 (4) 0.55196 (14) 0.0562 (8)
H24A 1.0961 0.7332 0.5815 0.084*
H24B 1.0877 0.9377 0.5576 0.084*
H24C 1.1854 0.8269 0.5630 0.084*
C15 0.7732 (3) 0.7581 (4) −0.14446 (14) 0.0554 (8)
H15A 0.8209 0.8497 −0.1212 0.067*
H15B 0.7206 0.7515 −0.1226 0.067*
C16 0.7307 (3) 0.8097 (5) −0.21709 (15) 0.0712 (10)
H16A 0.7821 0.8063 −0.2393 0.107*
H16B 0.7036 0.9309 −0.2200 0.107*
H16C 0.6790 0.7251 −0.2388 0.107*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0551 (11) 0.0491 (11) 0.0322 (9) 0.0124 (9) −0.0039 (7) −0.0091 (8)
O2 0.0672 (12) 0.0548 (12) 0.0289 (9) 0.0118 (10) 0.0172 (8) 0.0084 (8)
O1 0.1000 (18) 0.0292 (11) 0.0569 (13) 0.0043 (11) 0.0110 (11) 0.0016 (9)
N1 0.0411 (10) 0.0356 (11) 0.0225 (9) −0.0035 (9) 0.0048 (7) 0.0003 (8)
C20 0.0364 (11) 0.0413 (14) 0.0279 (11) 0.0011 (10) 0.0016 (9) −0.0016 (10)
C5 0.0483 (13) 0.0402 (14) 0.0304 (11) −0.0065 (11) 0.0153 (10) −0.0025 (10)
C18 0.0384 (12) 0.0401 (14) 0.0286 (11) 0.0024 (11) −0.0035 (9) 0.0057 (10)
C9 0.0352 (11) 0.0384 (13) 0.0241 (10) −0.0015 (10) 0.0085 (8) −0.0017 (9)
C21 0.0436 (13) 0.0488 (16) 0.0267 (11) 0.0115 (12) −0.0027 (9) 0.0024 (10)
C8 0.0485 (13) 0.0281 (13) 0.0377 (12) 0.0037 (11) 0.0105 (10) 0.0002 (10)
C3 0.0375 (11) 0.0411 (14) 0.0305 (11) −0.0038 (11) 0.0034 (9) −0.0014 (10)
C6 0.0495 (13) 0.0306 (12) 0.0278 (11) 0.0006 (11) 0.0065 (9) 0.0054 (9)
C7 0.0375 (11) 0.0366 (13) 0.0257 (10) 0.0074 (10) 0.0046 (8) 0.0019 (9)
C2 0.0476 (13) 0.0306 (12) 0.0254 (10) −0.0010 (10) 0.0066 (9) −0.0062 (9)
C19 0.0410 (12) 0.0341 (13) 0.0375 (12) 0.0066 (11) 0.0004 (10) 0.0015 (10)
C14 0.0645 (16) 0.0398 (15) 0.0251 (11) −0.0022 (12) 0.0152 (10) −0.0057 (10)
C22 0.0450 (13) 0.0411 (14) 0.0292 (11) 0.0153 (11) 0.0017 (10) 0.0009 (10)
C11 0.0538 (14) 0.0512 (16) 0.0235 (11) 0.0093 (13) 0.0128 (10) −0.0033 (10)
C13 0.0688 (17) 0.0344 (14) 0.0318 (12) 0.0025 (13) 0.0180 (11) −0.0008 (10)
C10 0.0495 (14) 0.0462 (15) 0.0289 (11) 0.0133 (12) 0.0111 (10) −0.0028 (10)
C4 0.0357 (11) 0.0381 (14) 0.0348 (12) 0.0018 (10) 0.0113 (9) −0.0032 (10)
C17 0.0327 (11) 0.0384 (13) 0.0252 (10) 0.0025 (10) 0.0033 (8) 0.0011 (9)
C12 0.0415 (12) 0.0432 (14) 0.0259 (10) −0.0013 (11) 0.0118 (9) 0.0016 (10)
C1 0.0381 (11) 0.0377 (13) 0.0248 (10) 0.0048 (10) 0.0083 (8) −0.0015 (9)
C23 0.0540 (16) 0.0437 (16) 0.0505 (16) 0.0079 (13) 0.0027 (12) −0.0104 (13)
C24 0.0613 (17) 0.0534 (18) 0.0479 (16) 0.0040 (15) 0.0060 (13) −0.0154 (14)
C15 0.073 (2) 0.0520 (18) 0.0429 (15) 0.0098 (15) 0.0185 (14) 0.0102 (13)
C16 0.090 (2) 0.076 (2) 0.0498 (18) 0.026 (2) 0.0241 (16) 0.0267 (17)

Geometric parameters (Å, º)

O3—C20 1.374 (3) C7—C17 1.514 (3)
O3—C23 1.416 (3) C7—H7 0.9800
O2—C12 1.377 (3) C2—C1 1.555 (3)
O2—C15 1.413 (3) C2—H2 0.9800
O1—C8 1.209 (3) C19—H19 0.9300
N1—C7 1.456 (3) C14—C13 1.388 (3)
N1—C1 1.460 (3) C14—H14 0.9300
N1—H1N 0.8600 C22—C17 1.395 (3)
C20—C19 1.387 (3) C22—H22 0.9300
C20—C21 1.389 (4) C11—C10 1.376 (3)
C5—C4 1.527 (3) C11—C12 1.377 (4)
C5—C6 1.536 (4) C11—H11 0.9300
C5—H5A 0.9700 C13—C12 1.390 (3)
C5—H5B 0.9700 C13—H13 0.9300
C18—C17 1.379 (3) C10—H10 0.9300
C18—C19 1.392 (3) C4—H4A 0.9700
C18—H18 0.9300 C4—H4B 0.9700
C9—C14 1.378 (3) C1—H1 0.9800
C9—C10 1.389 (3) C23—C24 1.497 (3)
C9—C1 1.510 (3) C23—H23A 0.9700
C21—C22 1.379 (3) C23—H23B 0.9700
C21—H21 0.9300 C24—H24A 0.9600
C8—C2 1.502 (3) C24—H24B 0.9600
C8—C6 1.507 (3) C24—H24C 0.9600
C3—C4 1.520 (3) C15—C16 1.489 (4)
C3—C2 1.536 (3) C15—H15A 0.9700
C3—H3A 0.9700 C15—H15B 0.9700
C3—H3B 0.9700 C16—H16A 0.9600
C6—C7 1.555 (3) C16—H16B 0.9600
C6—H6 0.9800 C16—H16C 0.9600
C20—O3—C23 118.68 (18) C13—C14—H14 119.0
C12—O2—C15 118.45 (19) C21—C22—C17 121.6 (2)
C7—N1—C1 114.74 (19) C21—C22—H22 119.2
C7—N1—H1N 122.6 C17—C22—H22 119.2
C1—N1—H1N 122.6 C10—C11—C12 120.0 (2)
O3—C20—C19 124.8 (2) C10—C11—H11 120.0
O3—C20—C21 116.14 (19) C12—C11—H11 120.0
C19—C20—C21 119.1 (2) C12—C13—C14 119.3 (2)
C4—C5—C6 113.94 (19) C12—C13—H13 120.3
C4—C5—H5A 108.8 C14—C13—H13 120.3
C6—C5—H5A 108.8 C11—C10—C9 121.9 (2)
C4—C5—H5B 108.8 C11—C10—H10 119.1
C6—C5—H5B 108.8 C9—C10—H10 119.1
H5A—C5—H5B 107.7 C3—C4—C5 112.0 (2)
C17—C18—C19 121.6 (2) C3—C4—H4A 109.2
C17—C18—H18 119.2 C5—C4—H4A 109.2
C19—C18—H18 119.2 C3—C4—H4B 109.2
C14—C9—C10 117.4 (2) C5—C4—H4B 109.2
C14—C9—C1 122.35 (19) H4A—C4—H4B 107.9
C10—C9—C1 120.2 (2) C18—C17—C22 117.6 (2)
C22—C21—C20 120.1 (2) C18—C17—C7 122.54 (19)
C22—C21—H21 120.0 C22—C17—C7 119.8 (2)
C20—C21—H21 120.0 O2—C12—C11 116.4 (2)
O1—C8—C2 124.4 (2) O2—C12—C13 124.1 (2)
O1—C8—C6 124.3 (2) C11—C12—C13 119.5 (2)
C2—C8—C6 111.3 (2) N1—C1—C9 111.8 (2)
C4—C3—C2 114.00 (18) N1—C1—C2 110.00 (18)
C4—C3—H3A 108.8 C9—C1—C2 111.01 (17)
C2—C3—H3A 108.8 N1—C1—H1 108.0
C4—C3—H3B 108.8 C9—C1—H1 108.0
C2—C3—H3B 108.8 C2—C1—H1 108.0
H3A—C3—H3B 107.6 O3—C23—C24 108.7 (2)
C8—C6—C5 108.31 (19) O3—C23—H23A 109.9
C8—C6—C7 106.74 (19) C24—C23—H23A 109.9
C5—C6—C7 115.6 (2) O3—C23—H23B 109.9
C8—C6—H6 108.7 C24—C23—H23B 109.9
C5—C6—H6 108.7 H23A—C23—H23B 108.3
C7—C6—H6 108.7 C23—C24—H24A 109.5
N1—C7—C17 111.9 (2) C23—C24—H24B 109.5
N1—C7—C6 110.13 (17) H24A—C24—H24B 109.5
C17—C7—C6 110.99 (18) C23—C24—H24C 109.5
N1—C7—H7 107.9 H24A—C24—H24C 109.5
C17—C7—H7 107.9 H24B—C24—H24C 109.5
C6—C7—H7 107.9 O2—C15—C16 109.1 (2)
C8—C2—C3 108.46 (19) O2—C15—H15A 109.9
C8—C2—C1 107.17 (18) C16—C15—H15A 109.9
C3—C2—C1 115.2 (2) O2—C15—H15B 109.9
C8—C2—H2 108.6 C16—C15—H15B 109.9
C3—C2—H2 108.6 H15A—C15—H15B 108.3
C1—C2—H2 108.6 C15—C16—H16A 109.5
C20—C19—C18 119.9 (2) C15—C16—H16B 109.5
C20—C19—H19 120.0 H16A—C16—H16B 109.5
C18—C19—H19 120.0 C15—C16—H16C 109.5
C9—C14—C13 121.9 (2) H16A—C16—H16C 109.5
C9—C14—H14 119.0 H16B—C16—H16C 109.5
C23—O3—C20—C19 8.5 (4) C14—C9—C10—C11 −0.6 (4)
C23—O3—C20—C21 −172.5 (3) C1—C9—C10—C11 176.5 (2)
O3—C20—C21—C22 179.7 (2) C2—C3—C4—C5 −46.6 (3)
C19—C20—C21—C22 −1.2 (4) C6—C5—C4—C3 46.6 (3)
O1—C8—C6—C5 −118.4 (3) C19—C18—C17—C22 −2.5 (4)
C2—C8—C6—C5 62.6 (2) C19—C18—C17—C7 174.5 (2)
O1—C8—C6—C7 116.5 (3) C21—C22—C17—C18 2.7 (4)
C2—C8—C6—C7 −62.5 (2) C21—C22—C17—C7 −174.5 (2)
C4—C5—C6—C8 −53.9 (3) N1—C7—C17—C18 35.2 (3)
C4—C5—C6—C7 65.7 (3) C6—C7—C17—C18 −88.3 (3)
C1—N1—C7—C17 179.35 (18) N1—C7—C17—C22 −147.8 (2)
C1—N1—C7—C6 −56.7 (2) C6—C7—C17—C22 88.7 (3)
C8—C6—C7—N1 57.0 (2) C15—O2—C12—C11 169.6 (3)
C5—C6—C7—N1 −63.5 (2) C15—O2—C12—C13 −11.4 (4)
C8—C6—C7—C17 −178.52 (18) C10—C11—C12—O2 −179.3 (2)
C5—C6—C7—C17 61.0 (2) C10—C11—C12—C13 1.6 (4)
O1—C8—C2—C3 118.4 (3) C14—C13—C12—O2 179.9 (2)
C6—C8—C2—C3 −62.6 (2) C14—C13—C12—C11 −1.2 (4)
O1—C8—C2—C1 −116.7 (3) C7—N1—C1—C9 −179.96 (18)
C6—C8—C2—C1 62.3 (2) C7—N1—C1—C2 56.2 (2)
C4—C3—C2—C8 54.2 (3) C14—C9—C1—N1 −27.4 (3)
C4—C3—C2—C1 −65.9 (3) C10—C9—C1—N1 155.7 (2)
O3—C20—C19—C18 −179.6 (2) C14—C9—C1—C2 95.9 (3)
C21—C20—C19—C18 1.4 (4) C10—C9—C1—C2 −81.1 (3)
C17—C18—C19—C20 0.5 (4) C8—C2—C1—N1 −56.4 (2)
C10—C9—C14—C13 1.0 (4) C3—C2—C1—N1 64.4 (2)
C1—C9—C14—C13 −176.0 (2) C8—C2—C1—C9 179.34 (18)
C20—C21—C22—C17 −0.8 (4) C3—C2—C1—C9 −59.9 (2)
C9—C14—C13—C12 −0.2 (4) C20—O3—C23—C24 174.3 (2)
C12—C11—C10—C9 −0.8 (4) C12—O2—C15—C16 −166.9 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18···O1i 0.93 2.57 3.428 (3) 154
C14—H14···O1i 0.92 2.61 3.501 (3) 159

Symmetry code: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5330).

References

  1. Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575. [DOI] [PubMed]
  2. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Park, D. H., Jeong, Y. T. & Parthiban, P. (2011a). J. Mol. Struct. 1005, 31–44.
  5. Park, D. H., Ramkumar, V. & Parthiban, P. (2012). Acta Cryst. E68, o779–o780. [DOI] [PMC free article] [PubMed]
  6. Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009). Bioorg. Med. Chem. Lett. 19, 6981–6985. [DOI] [PubMed]
  7. Parthiban, P., Ramkumar, V., Park, D. H. & Jeong, Y. T. (2011b). Acta Cryst. E67, o1475–o1476. [DOI] [PMC free article] [PubMed]
  8. Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79–93.
  9. Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010a). Bioorg. Med. Chem. Lett. 20, 1642–1647. [DOI] [PubMed]
  10. Parthiban, P., Subalakshmi, V., Balasubramanian, K., Islam, Md. N., Choi, J. S. & Jeong, Y. T. (2011a). Bioorg. Med. Chem. Lett. 21, 2287–2296. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536812037385/cv5330sup1.cif

e-68-o2841-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536812037385/cv5330Isup2.hkl

e-68-o2841-Isup2.hkl (265.2KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536812037385/cv5330Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES